linux/arch/powerpc/kernel/pci_dn.c
Gavin Shan a8b2f8288a powerpc/pci: Create pci_dn for VFs
pci_dn is the extension of PCI device node and is created from device node.
Unfortunately, VFs are enabled dynamically by PF's driver and they don't
have corresponding device nodes and pci_dn, which is required to access
VFs' config spaces.

The patch creates pci_dn for VFs in pcibios_sriov_enable() on their PF,
and removes pci_dn for VFs in pcibios_sriov_disable() on their PF. When
VF's pci_dn is created, it's put to the child list of the pci_dn of PF's
upstream bridge. The pci_dn is linked to pci_dev during early fixup time
to setup the fast path.

[bhelgaas: add ifdef around add_one_dev_pci_info(), use dev_printk()]
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2015-03-31 13:02:37 +11:00

462 lines
11 KiB
C

/*
* pci_dn.c
*
* Copyright (C) 2001 Todd Inglett, IBM Corporation
*
* PCI manipulation via device_nodes.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include <asm/firmware.h>
/*
* The function is used to find the firmware data of one
* specific PCI device, which is attached to the indicated
* PCI bus. For VFs, their firmware data is linked to that
* one of PF's bridge. For other devices, their firmware
* data is linked to that of their bridge.
*/
static struct pci_dn *pci_bus_to_pdn(struct pci_bus *bus)
{
struct pci_bus *pbus;
struct device_node *dn;
struct pci_dn *pdn;
/*
* We probably have virtual bus which doesn't
* have associated bridge.
*/
pbus = bus;
while (pbus) {
if (pci_is_root_bus(pbus) || pbus->self)
break;
pbus = pbus->parent;
}
/*
* Except virtual bus, all PCI buses should
* have device nodes.
*/
dn = pci_bus_to_OF_node(pbus);
pdn = dn ? PCI_DN(dn) : NULL;
return pdn;
}
struct pci_dn *pci_get_pdn_by_devfn(struct pci_bus *bus,
int devfn)
{
struct device_node *dn = NULL;
struct pci_dn *parent, *pdn;
struct pci_dev *pdev = NULL;
/* Fast path: fetch from PCI device */
list_for_each_entry(pdev, &bus->devices, bus_list) {
if (pdev->devfn == devfn) {
if (pdev->dev.archdata.pci_data)
return pdev->dev.archdata.pci_data;
dn = pci_device_to_OF_node(pdev);
break;
}
}
/* Fast path: fetch from device node */
pdn = dn ? PCI_DN(dn) : NULL;
if (pdn)
return pdn;
/* Slow path: fetch from firmware data hierarchy */
parent = pci_bus_to_pdn(bus);
if (!parent)
return NULL;
list_for_each_entry(pdn, &parent->child_list, list) {
if (pdn->busno == bus->number &&
pdn->devfn == devfn)
return pdn;
}
return NULL;
}
struct pci_dn *pci_get_pdn(struct pci_dev *pdev)
{
struct device_node *dn;
struct pci_dn *parent, *pdn;
/* Search device directly */
if (pdev->dev.archdata.pci_data)
return pdev->dev.archdata.pci_data;
/* Check device node */
dn = pci_device_to_OF_node(pdev);
pdn = dn ? PCI_DN(dn) : NULL;
if (pdn)
return pdn;
/*
* VFs don't have device nodes. We hook their
* firmware data to PF's bridge.
*/
parent = pci_bus_to_pdn(pdev->bus);
if (!parent)
return NULL;
list_for_each_entry(pdn, &parent->child_list, list) {
if (pdn->busno == pdev->bus->number &&
pdn->devfn == pdev->devfn)
return pdn;
}
return NULL;
}
#ifdef CONFIG_PCI_IOV
static struct pci_dn *add_one_dev_pci_data(struct pci_dn *parent,
struct pci_dev *pdev,
int busno, int devfn)
{
struct pci_dn *pdn;
/* Except PHB, we always have the parent */
if (!parent)
return NULL;
pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
if (!pdn) {
dev_warn(&pdev->dev, "%s: Out of memory!\n", __func__);
return NULL;
}
pdn->phb = parent->phb;
pdn->parent = parent;
pdn->busno = busno;
pdn->devfn = devfn;
#ifdef CONFIG_PPC_POWERNV
pdn->pe_number = IODA_INVALID_PE;
#endif
INIT_LIST_HEAD(&pdn->child_list);
INIT_LIST_HEAD(&pdn->list);
list_add_tail(&pdn->list, &parent->child_list);
/*
* If we already have PCI device instance, lets
* bind them.
*/
if (pdev)
pdev->dev.archdata.pci_data = pdn;
return pdn;
}
#endif
struct pci_dn *add_dev_pci_data(struct pci_dev *pdev)
{
#ifdef CONFIG_PCI_IOV
struct pci_dn *parent, *pdn;
int i;
/* Only support IOV for now */
if (!pdev->is_physfn)
return pci_get_pdn(pdev);
/* Check if VFs have been populated */
pdn = pci_get_pdn(pdev);
if (!pdn || (pdn->flags & PCI_DN_FLAG_IOV_VF))
return NULL;
pdn->flags |= PCI_DN_FLAG_IOV_VF;
parent = pci_bus_to_pdn(pdev->bus);
if (!parent)
return NULL;
for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
pdn = add_one_dev_pci_data(parent, NULL,
pci_iov_virtfn_bus(pdev, i),
pci_iov_virtfn_devfn(pdev, i));
if (!pdn) {
dev_warn(&pdev->dev, "%s: Cannot create firmware data for VF#%d\n",
__func__, i);
return NULL;
}
}
#endif /* CONFIG_PCI_IOV */
return pci_get_pdn(pdev);
}
void remove_dev_pci_data(struct pci_dev *pdev)
{
#ifdef CONFIG_PCI_IOV
struct pci_dn *parent;
struct pci_dn *pdn, *tmp;
int i;
/* Only support IOV PF for now */
if (!pdev->is_physfn)
return;
/* Check if VFs have been populated */
pdn = pci_get_pdn(pdev);
if (!pdn || !(pdn->flags & PCI_DN_FLAG_IOV_VF))
return;
pdn->flags &= ~PCI_DN_FLAG_IOV_VF;
parent = pci_bus_to_pdn(pdev->bus);
if (!parent)
return;
/*
* We might introduce flag to pci_dn in future
* so that we can release VF's firmware data in
* a batch mode.
*/
for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
list_for_each_entry_safe(pdn, tmp,
&parent->child_list, list) {
if (pdn->busno != pci_iov_virtfn_bus(pdev, i) ||
pdn->devfn != pci_iov_virtfn_devfn(pdev, i))
continue;
if (!list_empty(&pdn->list))
list_del(&pdn->list);
kfree(pdn);
}
}
#endif /* CONFIG_PCI_IOV */
}
/*
* Traverse_func that inits the PCI fields of the device node.
* NOTE: this *must* be done before read/write config to the device.
*/
void *update_dn_pci_info(struct device_node *dn, void *data)
{
struct pci_controller *phb = data;
const __be32 *type = of_get_property(dn, "ibm,pci-config-space-type", NULL);
const __be32 *regs;
struct device_node *parent;
struct pci_dn *pdn;
pdn = zalloc_maybe_bootmem(sizeof(*pdn), GFP_KERNEL);
if (pdn == NULL)
return NULL;
dn->data = pdn;
pdn->node = dn;
pdn->phb = phb;
#ifdef CONFIG_PPC_POWERNV
pdn->pe_number = IODA_INVALID_PE;
#endif
regs = of_get_property(dn, "reg", NULL);
if (regs) {
u32 addr = of_read_number(regs, 1);
/* First register entry is addr (00BBSS00) */
pdn->busno = (addr >> 16) & 0xff;
pdn->devfn = (addr >> 8) & 0xff;
}
/* vendor/device IDs and class code */
regs = of_get_property(dn, "vendor-id", NULL);
pdn->vendor_id = regs ? of_read_number(regs, 1) : 0;
regs = of_get_property(dn, "device-id", NULL);
pdn->device_id = regs ? of_read_number(regs, 1) : 0;
regs = of_get_property(dn, "class-code", NULL);
pdn->class_code = regs ? of_read_number(regs, 1) : 0;
/* Extended config space */
pdn->pci_ext_config_space = (type && of_read_number(type, 1) == 1);
/* Attach to parent node */
INIT_LIST_HEAD(&pdn->child_list);
INIT_LIST_HEAD(&pdn->list);
parent = of_get_parent(dn);
pdn->parent = parent ? PCI_DN(parent) : NULL;
if (pdn->parent)
list_add_tail(&pdn->list, &pdn->parent->child_list);
return NULL;
}
/*
* Traverse a device tree stopping each PCI device in the tree.
* This is done depth first. As each node is processed, a "pre"
* function is called and the children are processed recursively.
*
* The "pre" func returns a value. If non-zero is returned from
* the "pre" func, the traversal stops and this value is returned.
* This return value is useful when using traverse as a method of
* finding a device.
*
* NOTE: we do not run the func for devices that do not appear to
* be PCI except for the start node which we assume (this is good
* because the start node is often a phb which may be missing PCI
* properties).
* We use the class-code as an indicator. If we run into
* one of these nodes we also assume its siblings are non-pci for
* performance.
*/
void *traverse_pci_devices(struct device_node *start, traverse_func pre,
void *data)
{
struct device_node *dn, *nextdn;
void *ret;
/* We started with a phb, iterate all childs */
for (dn = start->child; dn; dn = nextdn) {
const __be32 *classp;
u32 class = 0;
nextdn = NULL;
classp = of_get_property(dn, "class-code", NULL);
if (classp)
class = of_read_number(classp, 1);
if (pre && ((ret = pre(dn, data)) != NULL))
return ret;
/* If we are a PCI bridge, go down */
if (dn->child && ((class >> 8) == PCI_CLASS_BRIDGE_PCI ||
(class >> 8) == PCI_CLASS_BRIDGE_CARDBUS))
/* Depth first...do children */
nextdn = dn->child;
else if (dn->sibling)
/* ok, try next sibling instead. */
nextdn = dn->sibling;
if (!nextdn) {
/* Walk up to next valid sibling. */
do {
dn = dn->parent;
if (dn == start)
return NULL;
} while (dn->sibling == NULL);
nextdn = dn->sibling;
}
}
return NULL;
}
static struct pci_dn *pci_dn_next_one(struct pci_dn *root,
struct pci_dn *pdn)
{
struct list_head *next = pdn->child_list.next;
if (next != &pdn->child_list)
return list_entry(next, struct pci_dn, list);
while (1) {
if (pdn == root)
return NULL;
next = pdn->list.next;
if (next != &pdn->parent->child_list)
break;
pdn = pdn->parent;
}
return list_entry(next, struct pci_dn, list);
}
void *traverse_pci_dn(struct pci_dn *root,
void *(*fn)(struct pci_dn *, void *),
void *data)
{
struct pci_dn *pdn = root;
void *ret;
/* Only scan the child nodes */
for (pdn = pci_dn_next_one(root, pdn); pdn;
pdn = pci_dn_next_one(root, pdn)) {
ret = fn(pdn, data);
if (ret)
return ret;
}
return NULL;
}
/**
* pci_devs_phb_init_dynamic - setup pci devices under this PHB
* phb: pci-to-host bridge (top-level bridge connecting to cpu)
*
* This routine is called both during boot, (before the memory
* subsystem is set up, before kmalloc is valid) and during the
* dynamic lpar operation of adding a PHB to a running system.
*/
void pci_devs_phb_init_dynamic(struct pci_controller *phb)
{
struct device_node *dn = phb->dn;
struct pci_dn *pdn;
/* PHB nodes themselves must not match */
update_dn_pci_info(dn, phb);
pdn = dn->data;
if (pdn) {
pdn->devfn = pdn->busno = -1;
pdn->vendor_id = pdn->device_id = pdn->class_code = 0;
pdn->phb = phb;
phb->pci_data = pdn;
}
/* Update dn->phb ptrs for new phb and children devices */
traverse_pci_devices(dn, update_dn_pci_info, phb);
}
/**
* pci_devs_phb_init - Initialize phbs and pci devs under them.
*
* This routine walks over all phb's (pci-host bridges) on the
* system, and sets up assorted pci-related structures
* (including pci info in the device node structs) for each
* pci device found underneath. This routine runs once,
* early in the boot sequence.
*/
void __init pci_devs_phb_init(void)
{
struct pci_controller *phb, *tmp;
/* This must be done first so the device nodes have valid pci info! */
list_for_each_entry_safe(phb, tmp, &hose_list, list_node)
pci_devs_phb_init_dynamic(phb);
}
static void pci_dev_pdn_setup(struct pci_dev *pdev)
{
struct pci_dn *pdn;
if (pdev->dev.archdata.pci_data)
return;
/* Setup the fast path */
pdn = pci_get_pdn(pdev);
pdev->dev.archdata.pci_data = pdn;
}
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pci_dev_pdn_setup);