mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 19:01:37 +00:00
4a7e625ce5
Commit9b96fbacda
("serial: PL011: clear pending interrupts") clears the RX and receive timeout interrupts on pl011 startup, to avoid a screaming-interrupt scenario that can occur when the firmware or bootloader leaves these interrupts asserted. This has been noted as an issue when running Linux on qemu [1]. Unfortunately, the above fix seems to lead to potential misbehaviour if the RX FIFO interrupt is asserted _non_ spuriously on driver startup, if the RX FIFO is also already full to the trigger level. Clearing the RX FIFO interrupt does not change the FIFO fill level. In this scenario, because the interrupt is now clear and because the FIFO is already full to the trigger level, no new assertion of the RX FIFO interrupt can occur unless the FIFO is drained back below the trigger level. This never occurs because the pl011 driver is waiting for an RX FIFO interrupt to tell it that there is something to read, and does not read the FIFO at all until that interrupt occurs. Thus, simply clearing "spurious" interrupts on startup may be misguided, since there is no way to be sure that the interrupts are truly spurious, and things can go wrong if they are not. This patch instead clears the interrupt condition by draining the RX FIFO during UART startup, after clearing any potentially spurious interrupt. This should ensure that an interrupt will definitely be asserted if the RX FIFO subsequently becomes sufficiently full. The drain is done at the point of enabling interrupts only. This means that it will occur any time the UART is newly opened through the tty layer. It will not apply to polled-mode use of the UART by kgdboc: since that scenario cannot use interrupts by design, this should not matter. kgdboc will interact badly with "normal" use of the UART in any case: this patch makes no attempt to paper over such issues. This patch does not attempt to address the case where the RX FIFO fills faster than it can be drained: that is a pathological hardware design problem that is beyond the scope of the driver to work around. As a failsafe, the number of poll iterations for draining the FIFO is limited to twice the FIFO size. This will ensure that the kernel at least boots even if it is impossible to drain the FIFO for some reason. [1] [Qemu-devel] [Qemu-arm] [PATCH] pl011: do not put into fifo before enabled the interruption https://lists.gnu.org/archive/html/qemu-devel/2018-01/msg06446.html Reported-by: Wei Xu <xuwei5@hisilicon.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Peter Maydell <peter.maydell@linaro.org> Fixes:9b96fbacda
("serial: PL011: clear pending interrupts") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: stable <stable@vger.kernel.org> Tested-by: Wei Xu <xuwei5@hisilicon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2842 lines
71 KiB
C
2842 lines
71 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Driver for AMBA serial ports
|
|
*
|
|
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
|
|
*
|
|
* Copyright 1999 ARM Limited
|
|
* Copyright (C) 2000 Deep Blue Solutions Ltd.
|
|
* Copyright (C) 2010 ST-Ericsson SA
|
|
*
|
|
* This is a generic driver for ARM AMBA-type serial ports. They
|
|
* have a lot of 16550-like features, but are not register compatible.
|
|
* Note that although they do have CTS, DCD and DSR inputs, they do
|
|
* not have an RI input, nor do they have DTR or RTS outputs. If
|
|
* required, these have to be supplied via some other means (eg, GPIO)
|
|
* and hooked into this driver.
|
|
*/
|
|
|
|
|
|
#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
|
|
#define SUPPORT_SYSRQ
|
|
#endif
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/console.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/device.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/amba/serial.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/types.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/io.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include "amba-pl011.h"
|
|
|
|
#define UART_NR 14
|
|
|
|
#define SERIAL_AMBA_MAJOR 204
|
|
#define SERIAL_AMBA_MINOR 64
|
|
#define SERIAL_AMBA_NR UART_NR
|
|
|
|
#define AMBA_ISR_PASS_LIMIT 256
|
|
|
|
#define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
|
|
#define UART_DUMMY_DR_RX (1 << 16)
|
|
|
|
static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
|
|
[REG_DR] = UART01x_DR,
|
|
[REG_FR] = UART01x_FR,
|
|
[REG_LCRH_RX] = UART011_LCRH,
|
|
[REG_LCRH_TX] = UART011_LCRH,
|
|
[REG_IBRD] = UART011_IBRD,
|
|
[REG_FBRD] = UART011_FBRD,
|
|
[REG_CR] = UART011_CR,
|
|
[REG_IFLS] = UART011_IFLS,
|
|
[REG_IMSC] = UART011_IMSC,
|
|
[REG_RIS] = UART011_RIS,
|
|
[REG_MIS] = UART011_MIS,
|
|
[REG_ICR] = UART011_ICR,
|
|
[REG_DMACR] = UART011_DMACR,
|
|
};
|
|
|
|
/* There is by now at least one vendor with differing details, so handle it */
|
|
struct vendor_data {
|
|
const u16 *reg_offset;
|
|
unsigned int ifls;
|
|
unsigned int fr_busy;
|
|
unsigned int fr_dsr;
|
|
unsigned int fr_cts;
|
|
unsigned int fr_ri;
|
|
unsigned int inv_fr;
|
|
bool access_32b;
|
|
bool oversampling;
|
|
bool dma_threshold;
|
|
bool cts_event_workaround;
|
|
bool always_enabled;
|
|
bool fixed_options;
|
|
|
|
unsigned int (*get_fifosize)(struct amba_device *dev);
|
|
};
|
|
|
|
static unsigned int get_fifosize_arm(struct amba_device *dev)
|
|
{
|
|
return amba_rev(dev) < 3 ? 16 : 32;
|
|
}
|
|
|
|
static struct vendor_data vendor_arm = {
|
|
.reg_offset = pl011_std_offsets,
|
|
.ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
|
|
.fr_busy = UART01x_FR_BUSY,
|
|
.fr_dsr = UART01x_FR_DSR,
|
|
.fr_cts = UART01x_FR_CTS,
|
|
.fr_ri = UART011_FR_RI,
|
|
.oversampling = false,
|
|
.dma_threshold = false,
|
|
.cts_event_workaround = false,
|
|
.always_enabled = false,
|
|
.fixed_options = false,
|
|
.get_fifosize = get_fifosize_arm,
|
|
};
|
|
|
|
static const struct vendor_data vendor_sbsa = {
|
|
.reg_offset = pl011_std_offsets,
|
|
.fr_busy = UART01x_FR_BUSY,
|
|
.fr_dsr = UART01x_FR_DSR,
|
|
.fr_cts = UART01x_FR_CTS,
|
|
.fr_ri = UART011_FR_RI,
|
|
.access_32b = true,
|
|
.oversampling = false,
|
|
.dma_threshold = false,
|
|
.cts_event_workaround = false,
|
|
.always_enabled = true,
|
|
.fixed_options = true,
|
|
};
|
|
|
|
#ifdef CONFIG_ACPI_SPCR_TABLE
|
|
static const struct vendor_data vendor_qdt_qdf2400_e44 = {
|
|
.reg_offset = pl011_std_offsets,
|
|
.fr_busy = UART011_FR_TXFE,
|
|
.fr_dsr = UART01x_FR_DSR,
|
|
.fr_cts = UART01x_FR_CTS,
|
|
.fr_ri = UART011_FR_RI,
|
|
.inv_fr = UART011_FR_TXFE,
|
|
.access_32b = true,
|
|
.oversampling = false,
|
|
.dma_threshold = false,
|
|
.cts_event_workaround = false,
|
|
.always_enabled = true,
|
|
.fixed_options = true,
|
|
};
|
|
#endif
|
|
|
|
static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
|
|
[REG_DR] = UART01x_DR,
|
|
[REG_ST_DMAWM] = ST_UART011_DMAWM,
|
|
[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
|
|
[REG_FR] = UART01x_FR,
|
|
[REG_LCRH_RX] = ST_UART011_LCRH_RX,
|
|
[REG_LCRH_TX] = ST_UART011_LCRH_TX,
|
|
[REG_IBRD] = UART011_IBRD,
|
|
[REG_FBRD] = UART011_FBRD,
|
|
[REG_CR] = UART011_CR,
|
|
[REG_IFLS] = UART011_IFLS,
|
|
[REG_IMSC] = UART011_IMSC,
|
|
[REG_RIS] = UART011_RIS,
|
|
[REG_MIS] = UART011_MIS,
|
|
[REG_ICR] = UART011_ICR,
|
|
[REG_DMACR] = UART011_DMACR,
|
|
[REG_ST_XFCR] = ST_UART011_XFCR,
|
|
[REG_ST_XON1] = ST_UART011_XON1,
|
|
[REG_ST_XON2] = ST_UART011_XON2,
|
|
[REG_ST_XOFF1] = ST_UART011_XOFF1,
|
|
[REG_ST_XOFF2] = ST_UART011_XOFF2,
|
|
[REG_ST_ITCR] = ST_UART011_ITCR,
|
|
[REG_ST_ITIP] = ST_UART011_ITIP,
|
|
[REG_ST_ABCR] = ST_UART011_ABCR,
|
|
[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
|
|
};
|
|
|
|
static unsigned int get_fifosize_st(struct amba_device *dev)
|
|
{
|
|
return 64;
|
|
}
|
|
|
|
static struct vendor_data vendor_st = {
|
|
.reg_offset = pl011_st_offsets,
|
|
.ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
|
|
.fr_busy = UART01x_FR_BUSY,
|
|
.fr_dsr = UART01x_FR_DSR,
|
|
.fr_cts = UART01x_FR_CTS,
|
|
.fr_ri = UART011_FR_RI,
|
|
.oversampling = true,
|
|
.dma_threshold = true,
|
|
.cts_event_workaround = true,
|
|
.always_enabled = false,
|
|
.fixed_options = false,
|
|
.get_fifosize = get_fifosize_st,
|
|
};
|
|
|
|
static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
|
|
[REG_DR] = ZX_UART011_DR,
|
|
[REG_FR] = ZX_UART011_FR,
|
|
[REG_LCRH_RX] = ZX_UART011_LCRH,
|
|
[REG_LCRH_TX] = ZX_UART011_LCRH,
|
|
[REG_IBRD] = ZX_UART011_IBRD,
|
|
[REG_FBRD] = ZX_UART011_FBRD,
|
|
[REG_CR] = ZX_UART011_CR,
|
|
[REG_IFLS] = ZX_UART011_IFLS,
|
|
[REG_IMSC] = ZX_UART011_IMSC,
|
|
[REG_RIS] = ZX_UART011_RIS,
|
|
[REG_MIS] = ZX_UART011_MIS,
|
|
[REG_ICR] = ZX_UART011_ICR,
|
|
[REG_DMACR] = ZX_UART011_DMACR,
|
|
};
|
|
|
|
static unsigned int get_fifosize_zte(struct amba_device *dev)
|
|
{
|
|
return 16;
|
|
}
|
|
|
|
static struct vendor_data vendor_zte = {
|
|
.reg_offset = pl011_zte_offsets,
|
|
.access_32b = true,
|
|
.ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
|
|
.fr_busy = ZX_UART01x_FR_BUSY,
|
|
.fr_dsr = ZX_UART01x_FR_DSR,
|
|
.fr_cts = ZX_UART01x_FR_CTS,
|
|
.fr_ri = ZX_UART011_FR_RI,
|
|
.get_fifosize = get_fifosize_zte,
|
|
};
|
|
|
|
/* Deals with DMA transactions */
|
|
|
|
struct pl011_sgbuf {
|
|
struct scatterlist sg;
|
|
char *buf;
|
|
};
|
|
|
|
struct pl011_dmarx_data {
|
|
struct dma_chan *chan;
|
|
struct completion complete;
|
|
bool use_buf_b;
|
|
struct pl011_sgbuf sgbuf_a;
|
|
struct pl011_sgbuf sgbuf_b;
|
|
dma_cookie_t cookie;
|
|
bool running;
|
|
struct timer_list timer;
|
|
unsigned int last_residue;
|
|
unsigned long last_jiffies;
|
|
bool auto_poll_rate;
|
|
unsigned int poll_rate;
|
|
unsigned int poll_timeout;
|
|
};
|
|
|
|
struct pl011_dmatx_data {
|
|
struct dma_chan *chan;
|
|
struct scatterlist sg;
|
|
char *buf;
|
|
bool queued;
|
|
};
|
|
|
|
/*
|
|
* We wrap our port structure around the generic uart_port.
|
|
*/
|
|
struct uart_amba_port {
|
|
struct uart_port port;
|
|
const u16 *reg_offset;
|
|
struct clk *clk;
|
|
const struct vendor_data *vendor;
|
|
unsigned int dmacr; /* dma control reg */
|
|
unsigned int im; /* interrupt mask */
|
|
unsigned int old_status;
|
|
unsigned int fifosize; /* vendor-specific */
|
|
unsigned int old_cr; /* state during shutdown */
|
|
unsigned int fixed_baud; /* vendor-set fixed baud rate */
|
|
char type[12];
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/* DMA stuff */
|
|
bool using_tx_dma;
|
|
bool using_rx_dma;
|
|
struct pl011_dmarx_data dmarx;
|
|
struct pl011_dmatx_data dmatx;
|
|
bool dma_probed;
|
|
#endif
|
|
};
|
|
|
|
static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
|
|
unsigned int reg)
|
|
{
|
|
return uap->reg_offset[reg];
|
|
}
|
|
|
|
static unsigned int pl011_read(const struct uart_amba_port *uap,
|
|
unsigned int reg)
|
|
{
|
|
void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
|
|
|
|
return (uap->port.iotype == UPIO_MEM32) ?
|
|
readl_relaxed(addr) : readw_relaxed(addr);
|
|
}
|
|
|
|
static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
|
|
unsigned int reg)
|
|
{
|
|
void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
|
|
|
|
if (uap->port.iotype == UPIO_MEM32)
|
|
writel_relaxed(val, addr);
|
|
else
|
|
writew_relaxed(val, addr);
|
|
}
|
|
|
|
/*
|
|
* Reads up to 256 characters from the FIFO or until it's empty and
|
|
* inserts them into the TTY layer. Returns the number of characters
|
|
* read from the FIFO.
|
|
*/
|
|
static int pl011_fifo_to_tty(struct uart_amba_port *uap)
|
|
{
|
|
u16 status;
|
|
unsigned int ch, flag, fifotaken;
|
|
|
|
for (fifotaken = 0; fifotaken != 256; fifotaken++) {
|
|
status = pl011_read(uap, REG_FR);
|
|
if (status & UART01x_FR_RXFE)
|
|
break;
|
|
|
|
/* Take chars from the FIFO and update status */
|
|
ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
|
|
flag = TTY_NORMAL;
|
|
uap->port.icount.rx++;
|
|
|
|
if (unlikely(ch & UART_DR_ERROR)) {
|
|
if (ch & UART011_DR_BE) {
|
|
ch &= ~(UART011_DR_FE | UART011_DR_PE);
|
|
uap->port.icount.brk++;
|
|
if (uart_handle_break(&uap->port))
|
|
continue;
|
|
} else if (ch & UART011_DR_PE)
|
|
uap->port.icount.parity++;
|
|
else if (ch & UART011_DR_FE)
|
|
uap->port.icount.frame++;
|
|
if (ch & UART011_DR_OE)
|
|
uap->port.icount.overrun++;
|
|
|
|
ch &= uap->port.read_status_mask;
|
|
|
|
if (ch & UART011_DR_BE)
|
|
flag = TTY_BREAK;
|
|
else if (ch & UART011_DR_PE)
|
|
flag = TTY_PARITY;
|
|
else if (ch & UART011_DR_FE)
|
|
flag = TTY_FRAME;
|
|
}
|
|
|
|
if (uart_handle_sysrq_char(&uap->port, ch & 255))
|
|
continue;
|
|
|
|
uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
|
|
}
|
|
|
|
return fifotaken;
|
|
}
|
|
|
|
|
|
/*
|
|
* All the DMA operation mode stuff goes inside this ifdef.
|
|
* This assumes that you have a generic DMA device interface,
|
|
* no custom DMA interfaces are supported.
|
|
*/
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
|
|
#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
|
|
|
|
static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
|
|
enum dma_data_direction dir)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
|
|
sg->buf = dma_alloc_coherent(chan->device->dev,
|
|
PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
|
|
if (!sg->buf)
|
|
return -ENOMEM;
|
|
|
|
sg_init_table(&sg->sg, 1);
|
|
sg_set_page(&sg->sg, phys_to_page(dma_addr),
|
|
PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
|
|
sg_dma_address(&sg->sg) = dma_addr;
|
|
sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (sg->buf) {
|
|
dma_free_coherent(chan->device->dev,
|
|
PL011_DMA_BUFFER_SIZE, sg->buf,
|
|
sg_dma_address(&sg->sg));
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_probe(struct uart_amba_port *uap)
|
|
{
|
|
/* DMA is the sole user of the platform data right now */
|
|
struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
|
|
struct device *dev = uap->port.dev;
|
|
struct dma_slave_config tx_conf = {
|
|
.dst_addr = uap->port.mapbase +
|
|
pl011_reg_to_offset(uap, REG_DR),
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.direction = DMA_MEM_TO_DEV,
|
|
.dst_maxburst = uap->fifosize >> 1,
|
|
.device_fc = false,
|
|
};
|
|
struct dma_chan *chan;
|
|
dma_cap_mask_t mask;
|
|
|
|
uap->dma_probed = true;
|
|
chan = dma_request_slave_channel_reason(dev, "tx");
|
|
if (IS_ERR(chan)) {
|
|
if (PTR_ERR(chan) == -EPROBE_DEFER) {
|
|
uap->dma_probed = false;
|
|
return;
|
|
}
|
|
|
|
/* We need platform data */
|
|
if (!plat || !plat->dma_filter) {
|
|
dev_info(uap->port.dev, "no DMA platform data\n");
|
|
return;
|
|
}
|
|
|
|
/* Try to acquire a generic DMA engine slave TX channel */
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
chan = dma_request_channel(mask, plat->dma_filter,
|
|
plat->dma_tx_param);
|
|
if (!chan) {
|
|
dev_err(uap->port.dev, "no TX DMA channel!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
dmaengine_slave_config(chan, &tx_conf);
|
|
uap->dmatx.chan = chan;
|
|
|
|
dev_info(uap->port.dev, "DMA channel TX %s\n",
|
|
dma_chan_name(uap->dmatx.chan));
|
|
|
|
/* Optionally make use of an RX channel as well */
|
|
chan = dma_request_slave_channel(dev, "rx");
|
|
|
|
if (!chan && plat && plat->dma_rx_param) {
|
|
chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
|
|
|
|
if (!chan) {
|
|
dev_err(uap->port.dev, "no RX DMA channel!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (chan) {
|
|
struct dma_slave_config rx_conf = {
|
|
.src_addr = uap->port.mapbase +
|
|
pl011_reg_to_offset(uap, REG_DR),
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.direction = DMA_DEV_TO_MEM,
|
|
.src_maxburst = uap->fifosize >> 2,
|
|
.device_fc = false,
|
|
};
|
|
struct dma_slave_caps caps;
|
|
|
|
/*
|
|
* Some DMA controllers provide information on their capabilities.
|
|
* If the controller does, check for suitable residue processing
|
|
* otherwise assime all is well.
|
|
*/
|
|
if (0 == dma_get_slave_caps(chan, &caps)) {
|
|
if (caps.residue_granularity ==
|
|
DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
|
|
dma_release_channel(chan);
|
|
dev_info(uap->port.dev,
|
|
"RX DMA disabled - no residue processing\n");
|
|
return;
|
|
}
|
|
}
|
|
dmaengine_slave_config(chan, &rx_conf);
|
|
uap->dmarx.chan = chan;
|
|
|
|
uap->dmarx.auto_poll_rate = false;
|
|
if (plat && plat->dma_rx_poll_enable) {
|
|
/* Set poll rate if specified. */
|
|
if (plat->dma_rx_poll_rate) {
|
|
uap->dmarx.auto_poll_rate = false;
|
|
uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
|
|
} else {
|
|
/*
|
|
* 100 ms defaults to poll rate if not
|
|
* specified. This will be adjusted with
|
|
* the baud rate at set_termios.
|
|
*/
|
|
uap->dmarx.auto_poll_rate = true;
|
|
uap->dmarx.poll_rate = 100;
|
|
}
|
|
/* 3 secs defaults poll_timeout if not specified. */
|
|
if (plat->dma_rx_poll_timeout)
|
|
uap->dmarx.poll_timeout =
|
|
plat->dma_rx_poll_timeout;
|
|
else
|
|
uap->dmarx.poll_timeout = 3000;
|
|
} else if (!plat && dev->of_node) {
|
|
uap->dmarx.auto_poll_rate = of_property_read_bool(
|
|
dev->of_node, "auto-poll");
|
|
if (uap->dmarx.auto_poll_rate) {
|
|
u32 x;
|
|
|
|
if (0 == of_property_read_u32(dev->of_node,
|
|
"poll-rate-ms", &x))
|
|
uap->dmarx.poll_rate = x;
|
|
else
|
|
uap->dmarx.poll_rate = 100;
|
|
if (0 == of_property_read_u32(dev->of_node,
|
|
"poll-timeout-ms", &x))
|
|
uap->dmarx.poll_timeout = x;
|
|
else
|
|
uap->dmarx.poll_timeout = 3000;
|
|
}
|
|
}
|
|
dev_info(uap->port.dev, "DMA channel RX %s\n",
|
|
dma_chan_name(uap->dmarx.chan));
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_remove(struct uart_amba_port *uap)
|
|
{
|
|
if (uap->dmatx.chan)
|
|
dma_release_channel(uap->dmatx.chan);
|
|
if (uap->dmarx.chan)
|
|
dma_release_channel(uap->dmarx.chan);
|
|
}
|
|
|
|
/* Forward declare these for the refill routine */
|
|
static int pl011_dma_tx_refill(struct uart_amba_port *uap);
|
|
static void pl011_start_tx_pio(struct uart_amba_port *uap);
|
|
|
|
/*
|
|
* The current DMA TX buffer has been sent.
|
|
* Try to queue up another DMA buffer.
|
|
*/
|
|
static void pl011_dma_tx_callback(void *data)
|
|
{
|
|
struct uart_amba_port *uap = data;
|
|
struct pl011_dmatx_data *dmatx = &uap->dmatx;
|
|
unsigned long flags;
|
|
u16 dmacr;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
if (uap->dmatx.queued)
|
|
dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
|
|
DMA_TO_DEVICE);
|
|
|
|
dmacr = uap->dmacr;
|
|
uap->dmacr = dmacr & ~UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
|
|
/*
|
|
* If TX DMA was disabled, it means that we've stopped the DMA for
|
|
* some reason (eg, XOFF received, or we want to send an X-char.)
|
|
*
|
|
* Note: we need to be careful here of a potential race between DMA
|
|
* and the rest of the driver - if the driver disables TX DMA while
|
|
* a TX buffer completing, we must update the tx queued status to
|
|
* get further refills (hence we check dmacr).
|
|
*/
|
|
if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
|
|
uart_circ_empty(&uap->port.state->xmit)) {
|
|
uap->dmatx.queued = false;
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
return;
|
|
}
|
|
|
|
if (pl011_dma_tx_refill(uap) <= 0)
|
|
/*
|
|
* We didn't queue a DMA buffer for some reason, but we
|
|
* have data pending to be sent. Re-enable the TX IRQ.
|
|
*/
|
|
pl011_start_tx_pio(uap);
|
|
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Try to refill the TX DMA buffer.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* 1 if we queued up a TX DMA buffer.
|
|
* 0 if we didn't want to handle this by DMA
|
|
* <0 on error
|
|
*/
|
|
static int pl011_dma_tx_refill(struct uart_amba_port *uap)
|
|
{
|
|
struct pl011_dmatx_data *dmatx = &uap->dmatx;
|
|
struct dma_chan *chan = dmatx->chan;
|
|
struct dma_device *dma_dev = chan->device;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct circ_buf *xmit = &uap->port.state->xmit;
|
|
unsigned int count;
|
|
|
|
/*
|
|
* Try to avoid the overhead involved in using DMA if the
|
|
* transaction fits in the first half of the FIFO, by using
|
|
* the standard interrupt handling. This ensures that we
|
|
* issue a uart_write_wakeup() at the appropriate time.
|
|
*/
|
|
count = uart_circ_chars_pending(xmit);
|
|
if (count < (uap->fifosize >> 1)) {
|
|
uap->dmatx.queued = false;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Bodge: don't send the last character by DMA, as this
|
|
* will prevent XON from notifying us to restart DMA.
|
|
*/
|
|
count -= 1;
|
|
|
|
/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
|
|
if (count > PL011_DMA_BUFFER_SIZE)
|
|
count = PL011_DMA_BUFFER_SIZE;
|
|
|
|
if (xmit->tail < xmit->head)
|
|
memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
|
|
else {
|
|
size_t first = UART_XMIT_SIZE - xmit->tail;
|
|
size_t second;
|
|
|
|
if (first > count)
|
|
first = count;
|
|
second = count - first;
|
|
|
|
memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
|
|
if (second)
|
|
memcpy(&dmatx->buf[first], &xmit->buf[0], second);
|
|
}
|
|
|
|
dmatx->sg.length = count;
|
|
|
|
if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
|
|
uap->dmatx.queued = false;
|
|
dev_dbg(uap->port.dev, "unable to map TX DMA\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
/*
|
|
* If DMA cannot be used right now, we complete this
|
|
* transaction via IRQ and let the TTY layer retry.
|
|
*/
|
|
dev_dbg(uap->port.dev, "TX DMA busy\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Some data to go along to the callback */
|
|
desc->callback = pl011_dma_tx_callback;
|
|
desc->callback_param = uap;
|
|
|
|
/* All errors should happen at prepare time */
|
|
dmaengine_submit(desc);
|
|
|
|
/* Fire the DMA transaction */
|
|
dma_dev->device_issue_pending(chan);
|
|
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
uap->dmatx.queued = true;
|
|
|
|
/*
|
|
* Now we know that DMA will fire, so advance the ring buffer
|
|
* with the stuff we just dispatched.
|
|
*/
|
|
xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
|
|
uap->port.icount.tx += count;
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&uap->port);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We received a transmit interrupt without a pending X-char but with
|
|
* pending characters.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* false if we want to use PIO to transmit
|
|
* true if we queued a DMA buffer
|
|
*/
|
|
static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
|
|
{
|
|
if (!uap->using_tx_dma)
|
|
return false;
|
|
|
|
/*
|
|
* If we already have a TX buffer queued, but received a
|
|
* TX interrupt, it will be because we've just sent an X-char.
|
|
* Ensure the TX DMA is enabled and the TX IRQ is disabled.
|
|
*/
|
|
if (uap->dmatx.queued) {
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
uap->im &= ~UART011_TXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We don't have a TX buffer queued, so try to queue one.
|
|
* If we successfully queued a buffer, mask the TX IRQ.
|
|
*/
|
|
if (pl011_dma_tx_refill(uap) > 0) {
|
|
uap->im &= ~UART011_TXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Stop the DMA transmit (eg, due to received XOFF).
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
|
|
{
|
|
if (uap->dmatx.queued) {
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to start a DMA transmit, or in the case of an XON/OFF
|
|
* character queued for send, try to get that character out ASAP.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* false if we want the TX IRQ to be enabled
|
|
* true if we have a buffer queued
|
|
*/
|
|
static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
|
|
{
|
|
u16 dmacr;
|
|
|
|
if (!uap->using_tx_dma)
|
|
return false;
|
|
|
|
if (!uap->port.x_char) {
|
|
/* no X-char, try to push chars out in DMA mode */
|
|
bool ret = true;
|
|
|
|
if (!uap->dmatx.queued) {
|
|
if (pl011_dma_tx_refill(uap) > 0) {
|
|
uap->im &= ~UART011_TXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
} else
|
|
ret = false;
|
|
} else if (!(uap->dmacr & UART011_TXDMAE)) {
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We have an X-char to send. Disable DMA to prevent it loading
|
|
* the TX fifo, and then see if we can stuff it into the FIFO.
|
|
*/
|
|
dmacr = uap->dmacr;
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
|
|
if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
|
|
/*
|
|
* No space in the FIFO, so enable the transmit interrupt
|
|
* so we know when there is space. Note that once we've
|
|
* loaded the character, we should just re-enable DMA.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
pl011_write(uap->port.x_char, uap, REG_DR);
|
|
uap->port.icount.tx++;
|
|
uap->port.x_char = 0;
|
|
|
|
/* Success - restore the DMA state */
|
|
uap->dmacr = dmacr;
|
|
pl011_write(dmacr, uap, REG_DMACR);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Flush the transmit buffer.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static void pl011_dma_flush_buffer(struct uart_port *port)
|
|
__releases(&uap->port.lock)
|
|
__acquires(&uap->port.lock)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
if (!uap->using_tx_dma)
|
|
return;
|
|
|
|
/* Avoid deadlock with the DMA engine callback */
|
|
spin_unlock(&uap->port.lock);
|
|
dmaengine_terminate_all(uap->dmatx.chan);
|
|
spin_lock(&uap->port.lock);
|
|
if (uap->dmatx.queued) {
|
|
dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_rx_callback(void *data);
|
|
|
|
static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
|
|
{
|
|
struct dma_chan *rxchan = uap->dmarx.chan;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct pl011_sgbuf *sgbuf;
|
|
|
|
if (!rxchan)
|
|
return -EIO;
|
|
|
|
/* Start the RX DMA job */
|
|
sgbuf = uap->dmarx.use_buf_b ?
|
|
&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
/*
|
|
* If the DMA engine is busy and cannot prepare a
|
|
* channel, no big deal, the driver will fall back
|
|
* to interrupt mode as a result of this error code.
|
|
*/
|
|
if (!desc) {
|
|
uap->dmarx.running = false;
|
|
dmaengine_terminate_all(rxchan);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Some data to go along to the callback */
|
|
desc->callback = pl011_dma_rx_callback;
|
|
desc->callback_param = uap;
|
|
dmarx->cookie = dmaengine_submit(desc);
|
|
dma_async_issue_pending(rxchan);
|
|
|
|
uap->dmacr |= UART011_RXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
uap->dmarx.running = true;
|
|
|
|
uap->im &= ~UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called when either the DMA job is complete, or
|
|
* the FIFO timeout interrupt occurred. This must be called
|
|
* with the port spinlock uap->port.lock held.
|
|
*/
|
|
static void pl011_dma_rx_chars(struct uart_amba_port *uap,
|
|
u32 pending, bool use_buf_b,
|
|
bool readfifo)
|
|
{
|
|
struct tty_port *port = &uap->port.state->port;
|
|
struct pl011_sgbuf *sgbuf = use_buf_b ?
|
|
&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
int dma_count = 0;
|
|
u32 fifotaken = 0; /* only used for vdbg() */
|
|
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
int dmataken = 0;
|
|
|
|
if (uap->dmarx.poll_rate) {
|
|
/* The data can be taken by polling */
|
|
dmataken = sgbuf->sg.length - dmarx->last_residue;
|
|
/* Recalculate the pending size */
|
|
if (pending >= dmataken)
|
|
pending -= dmataken;
|
|
}
|
|
|
|
/* Pick the remain data from the DMA */
|
|
if (pending) {
|
|
|
|
/*
|
|
* First take all chars in the DMA pipe, then look in the FIFO.
|
|
* Note that tty_insert_flip_buf() tries to take as many chars
|
|
* as it can.
|
|
*/
|
|
dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
|
|
pending);
|
|
|
|
uap->port.icount.rx += dma_count;
|
|
if (dma_count < pending)
|
|
dev_warn(uap->port.dev,
|
|
"couldn't insert all characters (TTY is full?)\n");
|
|
}
|
|
|
|
/* Reset the last_residue for Rx DMA poll */
|
|
if (uap->dmarx.poll_rate)
|
|
dmarx->last_residue = sgbuf->sg.length;
|
|
|
|
/*
|
|
* Only continue with trying to read the FIFO if all DMA chars have
|
|
* been taken first.
|
|
*/
|
|
if (dma_count == pending && readfifo) {
|
|
/* Clear any error flags */
|
|
pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
|
|
UART011_FEIS, uap, REG_ICR);
|
|
|
|
/*
|
|
* If we read all the DMA'd characters, and we had an
|
|
* incomplete buffer, that could be due to an rx error, or
|
|
* maybe we just timed out. Read any pending chars and check
|
|
* the error status.
|
|
*
|
|
* Error conditions will only occur in the FIFO, these will
|
|
* trigger an immediate interrupt and stop the DMA job, so we
|
|
* will always find the error in the FIFO, never in the DMA
|
|
* buffer.
|
|
*/
|
|
fifotaken = pl011_fifo_to_tty(uap);
|
|
}
|
|
|
|
spin_unlock(&uap->port.lock);
|
|
dev_vdbg(uap->port.dev,
|
|
"Took %d chars from DMA buffer and %d chars from the FIFO\n",
|
|
dma_count, fifotaken);
|
|
tty_flip_buffer_push(port);
|
|
spin_lock(&uap->port.lock);
|
|
}
|
|
|
|
static void pl011_dma_rx_irq(struct uart_amba_port *uap)
|
|
{
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = dmarx->chan;
|
|
struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
|
|
&dmarx->sgbuf_b : &dmarx->sgbuf_a;
|
|
size_t pending;
|
|
struct dma_tx_state state;
|
|
enum dma_status dmastat;
|
|
|
|
/*
|
|
* Pause the transfer so we can trust the current counter,
|
|
* do this before we pause the PL011 block, else we may
|
|
* overflow the FIFO.
|
|
*/
|
|
if (dmaengine_pause(rxchan))
|
|
dev_err(uap->port.dev, "unable to pause DMA transfer\n");
|
|
dmastat = rxchan->device->device_tx_status(rxchan,
|
|
dmarx->cookie, &state);
|
|
if (dmastat != DMA_PAUSED)
|
|
dev_err(uap->port.dev, "unable to pause DMA transfer\n");
|
|
|
|
/* Disable RX DMA - incoming data will wait in the FIFO */
|
|
uap->dmacr &= ~UART011_RXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
uap->dmarx.running = false;
|
|
|
|
pending = sgbuf->sg.length - state.residue;
|
|
BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
|
|
/* Then we terminate the transfer - we now know our residue */
|
|
dmaengine_terminate_all(rxchan);
|
|
|
|
/*
|
|
* This will take the chars we have so far and insert
|
|
* into the framework.
|
|
*/
|
|
pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
|
|
|
|
/* Switch buffer & re-trigger DMA job */
|
|
dmarx->use_buf_b = !dmarx->use_buf_b;
|
|
if (pl011_dma_rx_trigger_dma(uap)) {
|
|
dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
|
|
"fall back to interrupt mode\n");
|
|
uap->im |= UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_rx_callback(void *data)
|
|
{
|
|
struct uart_amba_port *uap = data;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = dmarx->chan;
|
|
bool lastbuf = dmarx->use_buf_b;
|
|
struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
|
|
&dmarx->sgbuf_b : &dmarx->sgbuf_a;
|
|
size_t pending;
|
|
struct dma_tx_state state;
|
|
int ret;
|
|
|
|
/*
|
|
* This completion interrupt occurs typically when the
|
|
* RX buffer is totally stuffed but no timeout has yet
|
|
* occurred. When that happens, we just want the RX
|
|
* routine to flush out the secondary DMA buffer while
|
|
* we immediately trigger the next DMA job.
|
|
*/
|
|
spin_lock_irq(&uap->port.lock);
|
|
/*
|
|
* Rx data can be taken by the UART interrupts during
|
|
* the DMA irq handler. So we check the residue here.
|
|
*/
|
|
rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
|
|
pending = sgbuf->sg.length - state.residue;
|
|
BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
|
|
/* Then we terminate the transfer - we now know our residue */
|
|
dmaengine_terminate_all(rxchan);
|
|
|
|
uap->dmarx.running = false;
|
|
dmarx->use_buf_b = !lastbuf;
|
|
ret = pl011_dma_rx_trigger_dma(uap);
|
|
|
|
pl011_dma_rx_chars(uap, pending, lastbuf, false);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
/*
|
|
* Do this check after we picked the DMA chars so we don't
|
|
* get some IRQ immediately from RX.
|
|
*/
|
|
if (ret) {
|
|
dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
|
|
"fall back to interrupt mode\n");
|
|
uap->im |= UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop accepting received characters, when we're shutting down or
|
|
* suspending this port.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
|
|
{
|
|
/* FIXME. Just disable the DMA enable */
|
|
uap->dmacr &= ~UART011_RXDMAE;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
}
|
|
|
|
/*
|
|
* Timer handler for Rx DMA polling.
|
|
* Every polling, It checks the residue in the dma buffer and transfer
|
|
* data to the tty. Also, last_residue is updated for the next polling.
|
|
*/
|
|
static void pl011_dma_rx_poll(struct timer_list *t)
|
|
{
|
|
struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
|
|
struct tty_port *port = &uap->port.state->port;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = uap->dmarx.chan;
|
|
unsigned long flags = 0;
|
|
unsigned int dmataken = 0;
|
|
unsigned int size = 0;
|
|
struct pl011_sgbuf *sgbuf;
|
|
int dma_count;
|
|
struct dma_tx_state state;
|
|
|
|
sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
|
|
if (likely(state.residue < dmarx->last_residue)) {
|
|
dmataken = sgbuf->sg.length - dmarx->last_residue;
|
|
size = dmarx->last_residue - state.residue;
|
|
dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
|
|
size);
|
|
if (dma_count == size)
|
|
dmarx->last_residue = state.residue;
|
|
dmarx->last_jiffies = jiffies;
|
|
}
|
|
tty_flip_buffer_push(port);
|
|
|
|
/*
|
|
* If no data is received in poll_timeout, the driver will fall back
|
|
* to interrupt mode. We will retrigger DMA at the first interrupt.
|
|
*/
|
|
if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
|
|
> uap->dmarx.poll_timeout) {
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
pl011_dma_rx_stop(uap);
|
|
uap->im |= UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
|
|
uap->dmarx.running = false;
|
|
dmaengine_terminate_all(rxchan);
|
|
del_timer(&uap->dmarx.timer);
|
|
} else {
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_startup(struct uart_amba_port *uap)
|
|
{
|
|
int ret;
|
|
|
|
if (!uap->dma_probed)
|
|
pl011_dma_probe(uap);
|
|
|
|
if (!uap->dmatx.chan)
|
|
return;
|
|
|
|
uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
|
|
if (!uap->dmatx.buf) {
|
|
dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
|
|
uap->port.fifosize = uap->fifosize;
|
|
return;
|
|
}
|
|
|
|
sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
|
|
|
|
/* The DMA buffer is now the FIFO the TTY subsystem can use */
|
|
uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
|
|
uap->using_tx_dma = true;
|
|
|
|
if (!uap->dmarx.chan)
|
|
goto skip_rx;
|
|
|
|
/* Allocate and map DMA RX buffers */
|
|
ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
|
|
DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
|
|
"RX buffer A", ret);
|
|
goto skip_rx;
|
|
}
|
|
|
|
ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
|
|
DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
|
|
"RX buffer B", ret);
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
|
|
DMA_FROM_DEVICE);
|
|
goto skip_rx;
|
|
}
|
|
|
|
uap->using_rx_dma = true;
|
|
|
|
skip_rx:
|
|
/* Turn on DMA error (RX/TX will be enabled on demand) */
|
|
uap->dmacr |= UART011_DMAONERR;
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
|
|
/*
|
|
* ST Micro variants has some specific dma burst threshold
|
|
* compensation. Set this to 16 bytes, so burst will only
|
|
* be issued above/below 16 bytes.
|
|
*/
|
|
if (uap->vendor->dma_threshold)
|
|
pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
|
|
uap, REG_ST_DMAWM);
|
|
|
|
if (uap->using_rx_dma) {
|
|
if (pl011_dma_rx_trigger_dma(uap))
|
|
dev_dbg(uap->port.dev, "could not trigger initial "
|
|
"RX DMA job, fall back to interrupt mode\n");
|
|
if (uap->dmarx.poll_rate) {
|
|
timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies +
|
|
msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
|
|
uap->dmarx.last_jiffies = jiffies;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_shutdown(struct uart_amba_port *uap)
|
|
{
|
|
if (!(uap->using_tx_dma || uap->using_rx_dma))
|
|
return;
|
|
|
|
/* Disable RX and TX DMA */
|
|
while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
|
|
cpu_relax();
|
|
|
|
spin_lock_irq(&uap->port.lock);
|
|
uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
|
|
pl011_write(uap->dmacr, uap, REG_DMACR);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
if (uap->using_tx_dma) {
|
|
/* In theory, this should already be done by pl011_dma_flush_buffer */
|
|
dmaengine_terminate_all(uap->dmatx.chan);
|
|
if (uap->dmatx.queued) {
|
|
dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
}
|
|
|
|
kfree(uap->dmatx.buf);
|
|
uap->using_tx_dma = false;
|
|
}
|
|
|
|
if (uap->using_rx_dma) {
|
|
dmaengine_terminate_all(uap->dmarx.chan);
|
|
/* Clean up the RX DMA */
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
|
|
if (uap->dmarx.poll_rate)
|
|
del_timer_sync(&uap->dmarx.timer);
|
|
uap->using_rx_dma = false;
|
|
}
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
|
|
{
|
|
return uap->using_rx_dma;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
|
|
{
|
|
return uap->using_rx_dma && uap->dmarx.running;
|
|
}
|
|
|
|
#else
|
|
/* Blank functions if the DMA engine is not available */
|
|
static inline void pl011_dma_probe(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_remove(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_startup(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
|
|
{
|
|
return -EIO;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#define pl011_dma_flush_buffer NULL
|
|
#endif
|
|
|
|
static void pl011_stop_tx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im &= ~UART011_TXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
pl011_dma_tx_stop(uap);
|
|
}
|
|
|
|
static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
|
|
|
|
/* Start TX with programmed I/O only (no DMA) */
|
|
static void pl011_start_tx_pio(struct uart_amba_port *uap)
|
|
{
|
|
if (pl011_tx_chars(uap, false)) {
|
|
uap->im |= UART011_TXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
}
|
|
}
|
|
|
|
static void pl011_start_tx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
if (!pl011_dma_tx_start(uap))
|
|
pl011_start_tx_pio(uap);
|
|
}
|
|
|
|
static void pl011_stop_rx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
|
|
UART011_PEIM|UART011_BEIM|UART011_OEIM);
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
|
|
pl011_dma_rx_stop(uap);
|
|
}
|
|
|
|
static void pl011_enable_ms(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
}
|
|
|
|
static void pl011_rx_chars(struct uart_amba_port *uap)
|
|
__releases(&uap->port.lock)
|
|
__acquires(&uap->port.lock)
|
|
{
|
|
pl011_fifo_to_tty(uap);
|
|
|
|
spin_unlock(&uap->port.lock);
|
|
tty_flip_buffer_push(&uap->port.state->port);
|
|
/*
|
|
* If we were temporarily out of DMA mode for a while,
|
|
* attempt to switch back to DMA mode again.
|
|
*/
|
|
if (pl011_dma_rx_available(uap)) {
|
|
if (pl011_dma_rx_trigger_dma(uap)) {
|
|
dev_dbg(uap->port.dev, "could not trigger RX DMA job "
|
|
"fall back to interrupt mode again\n");
|
|
uap->im |= UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
} else {
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/* Start Rx DMA poll */
|
|
if (uap->dmarx.poll_rate) {
|
|
uap->dmarx.last_jiffies = jiffies;
|
|
uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies +
|
|
msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
spin_lock(&uap->port.lock);
|
|
}
|
|
|
|
static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
|
|
bool from_irq)
|
|
{
|
|
if (unlikely(!from_irq) &&
|
|
pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
|
|
return false; /* unable to transmit character */
|
|
|
|
pl011_write(c, uap, REG_DR);
|
|
uap->port.icount.tx++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if tx interrupts have to be (kept) enabled */
|
|
static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
|
|
{
|
|
struct circ_buf *xmit = &uap->port.state->xmit;
|
|
int count = uap->fifosize >> 1;
|
|
|
|
if (uap->port.x_char) {
|
|
if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
|
|
return true;
|
|
uap->port.x_char = 0;
|
|
--count;
|
|
}
|
|
if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
|
|
pl011_stop_tx(&uap->port);
|
|
return false;
|
|
}
|
|
|
|
/* If we are using DMA mode, try to send some characters. */
|
|
if (pl011_dma_tx_irq(uap))
|
|
return true;
|
|
|
|
do {
|
|
if (likely(from_irq) && count-- == 0)
|
|
break;
|
|
|
|
if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
|
|
break;
|
|
|
|
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
|
|
} while (!uart_circ_empty(xmit));
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&uap->port);
|
|
|
|
if (uart_circ_empty(xmit)) {
|
|
pl011_stop_tx(&uap->port);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void pl011_modem_status(struct uart_amba_port *uap)
|
|
{
|
|
unsigned int status, delta;
|
|
|
|
status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
|
|
|
|
delta = status ^ uap->old_status;
|
|
uap->old_status = status;
|
|
|
|
if (!delta)
|
|
return;
|
|
|
|
if (delta & UART01x_FR_DCD)
|
|
uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
|
|
|
|
if (delta & uap->vendor->fr_dsr)
|
|
uap->port.icount.dsr++;
|
|
|
|
if (delta & uap->vendor->fr_cts)
|
|
uart_handle_cts_change(&uap->port,
|
|
status & uap->vendor->fr_cts);
|
|
|
|
wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
|
|
}
|
|
|
|
static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
|
|
{
|
|
unsigned int dummy_read;
|
|
|
|
if (!uap->vendor->cts_event_workaround)
|
|
return;
|
|
|
|
/* workaround to make sure that all bits are unlocked.. */
|
|
pl011_write(0x00, uap, REG_ICR);
|
|
|
|
/*
|
|
* WA: introduce 26ns(1 uart clk) delay before W1C;
|
|
* single apb access will incur 2 pclk(133.12Mhz) delay,
|
|
* so add 2 dummy reads
|
|
*/
|
|
dummy_read = pl011_read(uap, REG_ICR);
|
|
dummy_read = pl011_read(uap, REG_ICR);
|
|
}
|
|
|
|
static irqreturn_t pl011_int(int irq, void *dev_id)
|
|
{
|
|
struct uart_amba_port *uap = dev_id;
|
|
unsigned long flags;
|
|
unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
|
|
int handled = 0;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
status = pl011_read(uap, REG_RIS) & uap->im;
|
|
if (status) {
|
|
do {
|
|
check_apply_cts_event_workaround(uap);
|
|
|
|
pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
|
|
UART011_RXIS),
|
|
uap, REG_ICR);
|
|
|
|
if (status & (UART011_RTIS|UART011_RXIS)) {
|
|
if (pl011_dma_rx_running(uap))
|
|
pl011_dma_rx_irq(uap);
|
|
else
|
|
pl011_rx_chars(uap);
|
|
}
|
|
if (status & (UART011_DSRMIS|UART011_DCDMIS|
|
|
UART011_CTSMIS|UART011_RIMIS))
|
|
pl011_modem_status(uap);
|
|
if (status & UART011_TXIS)
|
|
pl011_tx_chars(uap, true);
|
|
|
|
if (pass_counter-- == 0)
|
|
break;
|
|
|
|
status = pl011_read(uap, REG_RIS) & uap->im;
|
|
} while (status != 0);
|
|
handled = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static unsigned int pl011_tx_empty(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
/* Allow feature register bits to be inverted to work around errata */
|
|
unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
|
|
|
|
return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
|
|
0 : TIOCSER_TEMT;
|
|
}
|
|
|
|
static unsigned int pl011_get_mctrl(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int result = 0;
|
|
unsigned int status = pl011_read(uap, REG_FR);
|
|
|
|
#define TIOCMBIT(uartbit, tiocmbit) \
|
|
if (status & uartbit) \
|
|
result |= tiocmbit
|
|
|
|
TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
|
|
TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
|
|
TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
|
|
TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
|
|
#undef TIOCMBIT
|
|
return result;
|
|
}
|
|
|
|
static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int cr;
|
|
|
|
cr = pl011_read(uap, REG_CR);
|
|
|
|
#define TIOCMBIT(tiocmbit, uartbit) \
|
|
if (mctrl & tiocmbit) \
|
|
cr |= uartbit; \
|
|
else \
|
|
cr &= ~uartbit
|
|
|
|
TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
|
|
TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
|
|
TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
|
|
TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
|
|
TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
|
|
|
|
if (port->status & UPSTAT_AUTORTS) {
|
|
/* We need to disable auto-RTS if we want to turn RTS off */
|
|
TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
|
|
}
|
|
#undef TIOCMBIT
|
|
|
|
pl011_write(cr, uap, REG_CR);
|
|
}
|
|
|
|
static void pl011_break_ctl(struct uart_port *port, int break_state)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned long flags;
|
|
unsigned int lcr_h;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
lcr_h = pl011_read(uap, REG_LCRH_TX);
|
|
if (break_state == -1)
|
|
lcr_h |= UART01x_LCRH_BRK;
|
|
else
|
|
lcr_h &= ~UART01x_LCRH_BRK;
|
|
pl011_write(lcr_h, uap, REG_LCRH_TX);
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
|
|
static void pl011_quiesce_irqs(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
|
|
/*
|
|
* There is no way to clear TXIM as this is "ready to transmit IRQ", so
|
|
* we simply mask it. start_tx() will unmask it.
|
|
*
|
|
* Note we can race with start_tx(), and if the race happens, the
|
|
* polling user might get another interrupt just after we clear it.
|
|
* But it should be OK and can happen even w/o the race, e.g.
|
|
* controller immediately got some new data and raised the IRQ.
|
|
*
|
|
* And whoever uses polling routines assumes that it manages the device
|
|
* (including tx queue), so we're also fine with start_tx()'s caller
|
|
* side.
|
|
*/
|
|
pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
|
|
REG_IMSC);
|
|
}
|
|
|
|
static int pl011_get_poll_char(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int status;
|
|
|
|
/*
|
|
* The caller might need IRQs lowered, e.g. if used with KDB NMI
|
|
* debugger.
|
|
*/
|
|
pl011_quiesce_irqs(port);
|
|
|
|
status = pl011_read(uap, REG_FR);
|
|
if (status & UART01x_FR_RXFE)
|
|
return NO_POLL_CHAR;
|
|
|
|
return pl011_read(uap, REG_DR);
|
|
}
|
|
|
|
static void pl011_put_poll_char(struct uart_port *port,
|
|
unsigned char ch)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
|
|
cpu_relax();
|
|
|
|
pl011_write(ch, uap, REG_DR);
|
|
}
|
|
|
|
#endif /* CONFIG_CONSOLE_POLL */
|
|
|
|
static int pl011_hwinit(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
int retval;
|
|
|
|
/* Optionaly enable pins to be muxed in and configured */
|
|
pinctrl_pm_select_default_state(port->dev);
|
|
|
|
/*
|
|
* Try to enable the clock producer.
|
|
*/
|
|
retval = clk_prepare_enable(uap->clk);
|
|
if (retval)
|
|
return retval;
|
|
|
|
uap->port.uartclk = clk_get_rate(uap->clk);
|
|
|
|
/* Clear pending error and receive interrupts */
|
|
pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
|
|
UART011_FEIS | UART011_RTIS | UART011_RXIS,
|
|
uap, REG_ICR);
|
|
|
|
/*
|
|
* Save interrupts enable mask, and enable RX interrupts in case if
|
|
* the interrupt is used for NMI entry.
|
|
*/
|
|
uap->im = pl011_read(uap, REG_IMSC);
|
|
pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->init)
|
|
plat->init();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool pl011_split_lcrh(const struct uart_amba_port *uap)
|
|
{
|
|
return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
|
|
pl011_reg_to_offset(uap, REG_LCRH_TX);
|
|
}
|
|
|
|
static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
|
|
{
|
|
pl011_write(lcr_h, uap, REG_LCRH_RX);
|
|
if (pl011_split_lcrh(uap)) {
|
|
int i;
|
|
/*
|
|
* Wait 10 PCLKs before writing LCRH_TX register,
|
|
* to get this delay write read only register 10 times
|
|
*/
|
|
for (i = 0; i < 10; ++i)
|
|
pl011_write(0xff, uap, REG_MIS);
|
|
pl011_write(lcr_h, uap, REG_LCRH_TX);
|
|
}
|
|
}
|
|
|
|
static int pl011_allocate_irq(struct uart_amba_port *uap)
|
|
{
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
|
|
return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts, only timeouts when using DMA
|
|
* if initial RX DMA job failed, start in interrupt mode
|
|
* as well.
|
|
*/
|
|
static void pl011_enable_interrupts(struct uart_amba_port *uap)
|
|
{
|
|
unsigned int i;
|
|
|
|
spin_lock_irq(&uap->port.lock);
|
|
|
|
/* Clear out any spuriously appearing RX interrupts */
|
|
pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
|
|
|
|
/*
|
|
* RXIS is asserted only when the RX FIFO transitions from below
|
|
* to above the trigger threshold. If the RX FIFO is already
|
|
* full to the threshold this can't happen and RXIS will now be
|
|
* stuck off. Drain the RX FIFO explicitly to fix this:
|
|
*/
|
|
for (i = 0; i < uap->fifosize * 2; ++i) {
|
|
if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
|
|
break;
|
|
|
|
pl011_read(uap, REG_DR);
|
|
}
|
|
|
|
uap->im = UART011_RTIM;
|
|
if (!pl011_dma_rx_running(uap))
|
|
uap->im |= UART011_RXIM;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
}
|
|
|
|
static int pl011_startup(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int cr;
|
|
int retval;
|
|
|
|
retval = pl011_hwinit(port);
|
|
if (retval)
|
|
goto clk_dis;
|
|
|
|
retval = pl011_allocate_irq(uap);
|
|
if (retval)
|
|
goto clk_dis;
|
|
|
|
pl011_write(uap->vendor->ifls, uap, REG_IFLS);
|
|
|
|
spin_lock_irq(&uap->port.lock);
|
|
|
|
/* restore RTS and DTR */
|
|
cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
|
|
cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
|
|
pl011_write(cr, uap, REG_CR);
|
|
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
/*
|
|
* initialise the old status of the modem signals
|
|
*/
|
|
uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
|
|
|
|
/* Startup DMA */
|
|
pl011_dma_startup(uap);
|
|
|
|
pl011_enable_interrupts(uap);
|
|
|
|
return 0;
|
|
|
|
clk_dis:
|
|
clk_disable_unprepare(uap->clk);
|
|
return retval;
|
|
}
|
|
|
|
static int sbsa_uart_startup(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
int retval;
|
|
|
|
retval = pl011_hwinit(port);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = pl011_allocate_irq(uap);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/* The SBSA UART does not support any modem status lines. */
|
|
uap->old_status = 0;
|
|
|
|
pl011_enable_interrupts(uap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl011_shutdown_channel(struct uart_amba_port *uap,
|
|
unsigned int lcrh)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = pl011_read(uap, lcrh);
|
|
val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
|
|
pl011_write(val, uap, lcrh);
|
|
}
|
|
|
|
/*
|
|
* disable the port. It should not disable RTS and DTR.
|
|
* Also RTS and DTR state should be preserved to restore
|
|
* it during startup().
|
|
*/
|
|
static void pl011_disable_uart(struct uart_amba_port *uap)
|
|
{
|
|
unsigned int cr;
|
|
|
|
uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
|
|
spin_lock_irq(&uap->port.lock);
|
|
cr = pl011_read(uap, REG_CR);
|
|
uap->old_cr = cr;
|
|
cr &= UART011_CR_RTS | UART011_CR_DTR;
|
|
cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
|
|
pl011_write(cr, uap, REG_CR);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
/*
|
|
* disable break condition and fifos
|
|
*/
|
|
pl011_shutdown_channel(uap, REG_LCRH_RX);
|
|
if (pl011_split_lcrh(uap))
|
|
pl011_shutdown_channel(uap, REG_LCRH_TX);
|
|
}
|
|
|
|
static void pl011_disable_interrupts(struct uart_amba_port *uap)
|
|
{
|
|
spin_lock_irq(&uap->port.lock);
|
|
|
|
/* mask all interrupts and clear all pending ones */
|
|
uap->im = 0;
|
|
pl011_write(uap->im, uap, REG_IMSC);
|
|
pl011_write(0xffff, uap, REG_ICR);
|
|
|
|
spin_unlock_irq(&uap->port.lock);
|
|
}
|
|
|
|
static void pl011_shutdown(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
pl011_disable_interrupts(uap);
|
|
|
|
pl011_dma_shutdown(uap);
|
|
|
|
free_irq(uap->port.irq, uap);
|
|
|
|
pl011_disable_uart(uap);
|
|
|
|
/*
|
|
* Shut down the clock producer
|
|
*/
|
|
clk_disable_unprepare(uap->clk);
|
|
/* Optionally let pins go into sleep states */
|
|
pinctrl_pm_select_sleep_state(port->dev);
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->exit)
|
|
plat->exit();
|
|
}
|
|
|
|
if (uap->port.ops->flush_buffer)
|
|
uap->port.ops->flush_buffer(port);
|
|
}
|
|
|
|
static void sbsa_uart_shutdown(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
pl011_disable_interrupts(uap);
|
|
|
|
free_irq(uap->port.irq, uap);
|
|
|
|
if (uap->port.ops->flush_buffer)
|
|
uap->port.ops->flush_buffer(port);
|
|
}
|
|
|
|
static void
|
|
pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
|
|
{
|
|
port->read_status_mask = UART011_DR_OE | 255;
|
|
if (termios->c_iflag & INPCK)
|
|
port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
|
|
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
|
|
port->read_status_mask |= UART011_DR_BE;
|
|
|
|
/*
|
|
* Characters to ignore
|
|
*/
|
|
port->ignore_status_mask = 0;
|
|
if (termios->c_iflag & IGNPAR)
|
|
port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
|
|
if (termios->c_iflag & IGNBRK) {
|
|
port->ignore_status_mask |= UART011_DR_BE;
|
|
/*
|
|
* If we're ignoring parity and break indicators,
|
|
* ignore overruns too (for real raw support).
|
|
*/
|
|
if (termios->c_iflag & IGNPAR)
|
|
port->ignore_status_mask |= UART011_DR_OE;
|
|
}
|
|
|
|
/*
|
|
* Ignore all characters if CREAD is not set.
|
|
*/
|
|
if ((termios->c_cflag & CREAD) == 0)
|
|
port->ignore_status_mask |= UART_DUMMY_DR_RX;
|
|
}
|
|
|
|
static void
|
|
pl011_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
struct ktermios *old)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int lcr_h, old_cr;
|
|
unsigned long flags;
|
|
unsigned int baud, quot, clkdiv;
|
|
|
|
if (uap->vendor->oversampling)
|
|
clkdiv = 8;
|
|
else
|
|
clkdiv = 16;
|
|
|
|
/*
|
|
* Ask the core to calculate the divisor for us.
|
|
*/
|
|
baud = uart_get_baud_rate(port, termios, old, 0,
|
|
port->uartclk / clkdiv);
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/*
|
|
* Adjust RX DMA polling rate with baud rate if not specified.
|
|
*/
|
|
if (uap->dmarx.auto_poll_rate)
|
|
uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
|
|
#endif
|
|
|
|
if (baud > port->uartclk/16)
|
|
quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
|
|
else
|
|
quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
|
|
|
|
switch (termios->c_cflag & CSIZE) {
|
|
case CS5:
|
|
lcr_h = UART01x_LCRH_WLEN_5;
|
|
break;
|
|
case CS6:
|
|
lcr_h = UART01x_LCRH_WLEN_6;
|
|
break;
|
|
case CS7:
|
|
lcr_h = UART01x_LCRH_WLEN_7;
|
|
break;
|
|
default: // CS8
|
|
lcr_h = UART01x_LCRH_WLEN_8;
|
|
break;
|
|
}
|
|
if (termios->c_cflag & CSTOPB)
|
|
lcr_h |= UART01x_LCRH_STP2;
|
|
if (termios->c_cflag & PARENB) {
|
|
lcr_h |= UART01x_LCRH_PEN;
|
|
if (!(termios->c_cflag & PARODD))
|
|
lcr_h |= UART01x_LCRH_EPS;
|
|
if (termios->c_cflag & CMSPAR)
|
|
lcr_h |= UART011_LCRH_SPS;
|
|
}
|
|
if (uap->fifosize > 1)
|
|
lcr_h |= UART01x_LCRH_FEN;
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
|
|
/*
|
|
* Update the per-port timeout.
|
|
*/
|
|
uart_update_timeout(port, termios->c_cflag, baud);
|
|
|
|
pl011_setup_status_masks(port, termios);
|
|
|
|
if (UART_ENABLE_MS(port, termios->c_cflag))
|
|
pl011_enable_ms(port);
|
|
|
|
/* first, disable everything */
|
|
old_cr = pl011_read(uap, REG_CR);
|
|
pl011_write(0, uap, REG_CR);
|
|
|
|
if (termios->c_cflag & CRTSCTS) {
|
|
if (old_cr & UART011_CR_RTS)
|
|
old_cr |= UART011_CR_RTSEN;
|
|
|
|
old_cr |= UART011_CR_CTSEN;
|
|
port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
|
|
} else {
|
|
old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
|
|
port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
|
|
}
|
|
|
|
if (uap->vendor->oversampling) {
|
|
if (baud > port->uartclk / 16)
|
|
old_cr |= ST_UART011_CR_OVSFACT;
|
|
else
|
|
old_cr &= ~ST_UART011_CR_OVSFACT;
|
|
}
|
|
|
|
/*
|
|
* Workaround for the ST Micro oversampling variants to
|
|
* increase the bitrate slightly, by lowering the divisor,
|
|
* to avoid delayed sampling of start bit at high speeds,
|
|
* else we see data corruption.
|
|
*/
|
|
if (uap->vendor->oversampling) {
|
|
if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
|
|
quot -= 1;
|
|
else if ((baud > 3250000) && (quot > 2))
|
|
quot -= 2;
|
|
}
|
|
/* Set baud rate */
|
|
pl011_write(quot & 0x3f, uap, REG_FBRD);
|
|
pl011_write(quot >> 6, uap, REG_IBRD);
|
|
|
|
/*
|
|
* ----------v----------v----------v----------v-----
|
|
* NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
|
|
* REG_FBRD & REG_IBRD.
|
|
* ----------^----------^----------^----------^-----
|
|
*/
|
|
pl011_write_lcr_h(uap, lcr_h);
|
|
pl011_write(old_cr, uap, REG_CR);
|
|
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
}
|
|
|
|
static void
|
|
sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
struct ktermios *old)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned long flags;
|
|
|
|
tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
|
|
|
|
/* The SBSA UART only supports 8n1 without hardware flow control. */
|
|
termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
|
|
termios->c_cflag &= ~(CMSPAR | CRTSCTS);
|
|
termios->c_cflag |= CS8 | CLOCAL;
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
uart_update_timeout(port, CS8, uap->fixed_baud);
|
|
pl011_setup_status_masks(port, termios);
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
}
|
|
|
|
static const char *pl011_type(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
return uap->port.type == PORT_AMBA ? uap->type : NULL;
|
|
}
|
|
|
|
/*
|
|
* Release the memory region(s) being used by 'port'
|
|
*/
|
|
static void pl011_release_port(struct uart_port *port)
|
|
{
|
|
release_mem_region(port->mapbase, SZ_4K);
|
|
}
|
|
|
|
/*
|
|
* Request the memory region(s) being used by 'port'
|
|
*/
|
|
static int pl011_request_port(struct uart_port *port)
|
|
{
|
|
return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
|
|
!= NULL ? 0 : -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Configure/autoconfigure the port.
|
|
*/
|
|
static void pl011_config_port(struct uart_port *port, int flags)
|
|
{
|
|
if (flags & UART_CONFIG_TYPE) {
|
|
port->type = PORT_AMBA;
|
|
pl011_request_port(port);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* verify the new serial_struct (for TIOCSSERIAL).
|
|
*/
|
|
static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
|
|
{
|
|
int ret = 0;
|
|
if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
|
|
ret = -EINVAL;
|
|
if (ser->irq < 0 || ser->irq >= nr_irqs)
|
|
ret = -EINVAL;
|
|
if (ser->baud_base < 9600)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
static const struct uart_ops amba_pl011_pops = {
|
|
.tx_empty = pl011_tx_empty,
|
|
.set_mctrl = pl011_set_mctrl,
|
|
.get_mctrl = pl011_get_mctrl,
|
|
.stop_tx = pl011_stop_tx,
|
|
.start_tx = pl011_start_tx,
|
|
.stop_rx = pl011_stop_rx,
|
|
.enable_ms = pl011_enable_ms,
|
|
.break_ctl = pl011_break_ctl,
|
|
.startup = pl011_startup,
|
|
.shutdown = pl011_shutdown,
|
|
.flush_buffer = pl011_dma_flush_buffer,
|
|
.set_termios = pl011_set_termios,
|
|
.type = pl011_type,
|
|
.release_port = pl011_release_port,
|
|
.request_port = pl011_request_port,
|
|
.config_port = pl011_config_port,
|
|
.verify_port = pl011_verify_port,
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
.poll_init = pl011_hwinit,
|
|
.poll_get_char = pl011_get_poll_char,
|
|
.poll_put_char = pl011_put_poll_char,
|
|
#endif
|
|
};
|
|
|
|
static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
}
|
|
|
|
static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct uart_ops sbsa_uart_pops = {
|
|
.tx_empty = pl011_tx_empty,
|
|
.set_mctrl = sbsa_uart_set_mctrl,
|
|
.get_mctrl = sbsa_uart_get_mctrl,
|
|
.stop_tx = pl011_stop_tx,
|
|
.start_tx = pl011_start_tx,
|
|
.stop_rx = pl011_stop_rx,
|
|
.startup = sbsa_uart_startup,
|
|
.shutdown = sbsa_uart_shutdown,
|
|
.set_termios = sbsa_uart_set_termios,
|
|
.type = pl011_type,
|
|
.release_port = pl011_release_port,
|
|
.request_port = pl011_request_port,
|
|
.config_port = pl011_config_port,
|
|
.verify_port = pl011_verify_port,
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
.poll_init = pl011_hwinit,
|
|
.poll_get_char = pl011_get_poll_char,
|
|
.poll_put_char = pl011_put_poll_char,
|
|
#endif
|
|
};
|
|
|
|
static struct uart_amba_port *amba_ports[UART_NR];
|
|
|
|
#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
|
|
|
|
static void pl011_console_putchar(struct uart_port *port, int ch)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
|
|
cpu_relax();
|
|
pl011_write(ch, uap, REG_DR);
|
|
}
|
|
|
|
static void
|
|
pl011_console_write(struct console *co, const char *s, unsigned int count)
|
|
{
|
|
struct uart_amba_port *uap = amba_ports[co->index];
|
|
unsigned int old_cr = 0, new_cr;
|
|
unsigned long flags;
|
|
int locked = 1;
|
|
|
|
clk_enable(uap->clk);
|
|
|
|
local_irq_save(flags);
|
|
if (uap->port.sysrq)
|
|
locked = 0;
|
|
else if (oops_in_progress)
|
|
locked = spin_trylock(&uap->port.lock);
|
|
else
|
|
spin_lock(&uap->port.lock);
|
|
|
|
/*
|
|
* First save the CR then disable the interrupts
|
|
*/
|
|
if (!uap->vendor->always_enabled) {
|
|
old_cr = pl011_read(uap, REG_CR);
|
|
new_cr = old_cr & ~UART011_CR_CTSEN;
|
|
new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
|
|
pl011_write(new_cr, uap, REG_CR);
|
|
}
|
|
|
|
uart_console_write(&uap->port, s, count, pl011_console_putchar);
|
|
|
|
/*
|
|
* Finally, wait for transmitter to become empty and restore the
|
|
* TCR. Allow feature register bits to be inverted to work around
|
|
* errata.
|
|
*/
|
|
while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
|
|
& uap->vendor->fr_busy)
|
|
cpu_relax();
|
|
if (!uap->vendor->always_enabled)
|
|
pl011_write(old_cr, uap, REG_CR);
|
|
|
|
if (locked)
|
|
spin_unlock(&uap->port.lock);
|
|
local_irq_restore(flags);
|
|
|
|
clk_disable(uap->clk);
|
|
}
|
|
|
|
static void __init
|
|
pl011_console_get_options(struct uart_amba_port *uap, int *baud,
|
|
int *parity, int *bits)
|
|
{
|
|
if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
|
|
unsigned int lcr_h, ibrd, fbrd;
|
|
|
|
lcr_h = pl011_read(uap, REG_LCRH_TX);
|
|
|
|
*parity = 'n';
|
|
if (lcr_h & UART01x_LCRH_PEN) {
|
|
if (lcr_h & UART01x_LCRH_EPS)
|
|
*parity = 'e';
|
|
else
|
|
*parity = 'o';
|
|
}
|
|
|
|
if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
|
|
*bits = 7;
|
|
else
|
|
*bits = 8;
|
|
|
|
ibrd = pl011_read(uap, REG_IBRD);
|
|
fbrd = pl011_read(uap, REG_FBRD);
|
|
|
|
*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
|
|
|
|
if (uap->vendor->oversampling) {
|
|
if (pl011_read(uap, REG_CR)
|
|
& ST_UART011_CR_OVSFACT)
|
|
*baud *= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init pl011_console_setup(struct console *co, char *options)
|
|
{
|
|
struct uart_amba_port *uap;
|
|
int baud = 38400;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int flow = 'n';
|
|
int ret;
|
|
|
|
/*
|
|
* Check whether an invalid uart number has been specified, and
|
|
* if so, search for the first available port that does have
|
|
* console support.
|
|
*/
|
|
if (co->index >= UART_NR)
|
|
co->index = 0;
|
|
uap = amba_ports[co->index];
|
|
if (!uap)
|
|
return -ENODEV;
|
|
|
|
/* Allow pins to be muxed in and configured */
|
|
pinctrl_pm_select_default_state(uap->port.dev);
|
|
|
|
ret = clk_prepare(uap->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->init)
|
|
plat->init();
|
|
}
|
|
|
|
uap->port.uartclk = clk_get_rate(uap->clk);
|
|
|
|
if (uap->vendor->fixed_options) {
|
|
baud = uap->fixed_baud;
|
|
} else {
|
|
if (options)
|
|
uart_parse_options(options,
|
|
&baud, &parity, &bits, &flow);
|
|
else
|
|
pl011_console_get_options(uap, &baud, &parity, &bits);
|
|
}
|
|
|
|
return uart_set_options(&uap->port, co, baud, parity, bits, flow);
|
|
}
|
|
|
|
/**
|
|
* pl011_console_match - non-standard console matching
|
|
* @co: registering console
|
|
* @name: name from console command line
|
|
* @idx: index from console command line
|
|
* @options: ptr to option string from console command line
|
|
*
|
|
* Only attempts to match console command lines of the form:
|
|
* console=pl011,mmio|mmio32,<addr>[,<options>]
|
|
* console=pl011,0x<addr>[,<options>]
|
|
* This form is used to register an initial earlycon boot console and
|
|
* replace it with the amba_console at pl011 driver init.
|
|
*
|
|
* Performs console setup for a match (as required by interface)
|
|
* If no <options> are specified, then assume the h/w is already setup.
|
|
*
|
|
* Returns 0 if console matches; otherwise non-zero to use default matching
|
|
*/
|
|
static int __init pl011_console_match(struct console *co, char *name, int idx,
|
|
char *options)
|
|
{
|
|
unsigned char iotype;
|
|
resource_size_t addr;
|
|
int i;
|
|
|
|
/*
|
|
* Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
|
|
* have a distinct console name, so make sure we check for that.
|
|
* The actual implementation of the erratum occurs in the probe
|
|
* function.
|
|
*/
|
|
if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
|
|
return -ENODEV;
|
|
|
|
if (uart_parse_earlycon(options, &iotype, &addr, &options))
|
|
return -ENODEV;
|
|
|
|
if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
|
|
return -ENODEV;
|
|
|
|
/* try to match the port specified on the command line */
|
|
for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
|
|
struct uart_port *port;
|
|
|
|
if (!amba_ports[i])
|
|
continue;
|
|
|
|
port = &amba_ports[i]->port;
|
|
|
|
if (port->mapbase != addr)
|
|
continue;
|
|
|
|
co->index = i;
|
|
port->cons = co;
|
|
return pl011_console_setup(co, options);
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static struct uart_driver amba_reg;
|
|
static struct console amba_console = {
|
|
.name = "ttyAMA",
|
|
.write = pl011_console_write,
|
|
.device = uart_console_device,
|
|
.setup = pl011_console_setup,
|
|
.match = pl011_console_match,
|
|
.flags = CON_PRINTBUFFER | CON_ANYTIME,
|
|
.index = -1,
|
|
.data = &amba_reg,
|
|
};
|
|
|
|
#define AMBA_CONSOLE (&amba_console)
|
|
|
|
static void qdf2400_e44_putc(struct uart_port *port, int c)
|
|
{
|
|
while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
|
|
cpu_relax();
|
|
writel(c, port->membase + UART01x_DR);
|
|
while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
|
|
cpu_relax();
|
|
}
|
|
|
|
static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
|
|
{
|
|
struct earlycon_device *dev = con->data;
|
|
|
|
uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
|
|
}
|
|
|
|
static void pl011_putc(struct uart_port *port, int c)
|
|
{
|
|
while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
|
|
cpu_relax();
|
|
if (port->iotype == UPIO_MEM32)
|
|
writel(c, port->membase + UART01x_DR);
|
|
else
|
|
writeb(c, port->membase + UART01x_DR);
|
|
while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
|
|
cpu_relax();
|
|
}
|
|
|
|
static void pl011_early_write(struct console *con, const char *s, unsigned n)
|
|
{
|
|
struct earlycon_device *dev = con->data;
|
|
|
|
uart_console_write(&dev->port, s, n, pl011_putc);
|
|
}
|
|
|
|
/*
|
|
* On non-ACPI systems, earlycon is enabled by specifying
|
|
* "earlycon=pl011,<address>" on the kernel command line.
|
|
*
|
|
* On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
|
|
* by specifying only "earlycon" on the command line. Because it requires
|
|
* SPCR, the console starts after ACPI is parsed, which is later than a
|
|
* traditional early console.
|
|
*
|
|
* To get the traditional early console that starts before ACPI is parsed,
|
|
* specify the full "earlycon=pl011,<address>" option.
|
|
*/
|
|
static int __init pl011_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
if (!device->port.membase)
|
|
return -ENODEV;
|
|
|
|
device->con->write = pl011_early_write;
|
|
|
|
return 0;
|
|
}
|
|
OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
|
|
OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
|
|
|
|
/*
|
|
* On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
|
|
* Erratum 44, traditional earlycon can be enabled by specifying
|
|
* "earlycon=qdf2400_e44,<address>". Any options are ignored.
|
|
*
|
|
* Alternatively, you can just specify "earlycon", and the early console
|
|
* will be enabled with the information from the SPCR table. In this
|
|
* case, the SPCR code will detect the need for the E44 work-around,
|
|
* and set the console name to "qdf2400_e44".
|
|
*/
|
|
static int __init
|
|
qdf2400_e44_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
if (!device->port.membase)
|
|
return -ENODEV;
|
|
|
|
device->con->write = qdf2400_e44_early_write;
|
|
return 0;
|
|
}
|
|
EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
|
|
|
|
#else
|
|
#define AMBA_CONSOLE NULL
|
|
#endif
|
|
|
|
static struct uart_driver amba_reg = {
|
|
.owner = THIS_MODULE,
|
|
.driver_name = "ttyAMA",
|
|
.dev_name = "ttyAMA",
|
|
.major = SERIAL_AMBA_MAJOR,
|
|
.minor = SERIAL_AMBA_MINOR,
|
|
.nr = UART_NR,
|
|
.cons = AMBA_CONSOLE,
|
|
};
|
|
|
|
static int pl011_probe_dt_alias(int index, struct device *dev)
|
|
{
|
|
struct device_node *np;
|
|
static bool seen_dev_with_alias = false;
|
|
static bool seen_dev_without_alias = false;
|
|
int ret = index;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF))
|
|
return ret;
|
|
|
|
np = dev->of_node;
|
|
if (!np)
|
|
return ret;
|
|
|
|
ret = of_alias_get_id(np, "serial");
|
|
if (ret < 0) {
|
|
seen_dev_without_alias = true;
|
|
ret = index;
|
|
} else {
|
|
seen_dev_with_alias = true;
|
|
if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
|
|
dev_warn(dev, "requested serial port %d not available.\n", ret);
|
|
ret = index;
|
|
}
|
|
}
|
|
|
|
if (seen_dev_with_alias && seen_dev_without_alias)
|
|
dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* unregisters the driver also if no more ports are left */
|
|
static void pl011_unregister_port(struct uart_amba_port *uap)
|
|
{
|
|
int i;
|
|
bool busy = false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
|
|
if (amba_ports[i] == uap)
|
|
amba_ports[i] = NULL;
|
|
else if (amba_ports[i])
|
|
busy = true;
|
|
}
|
|
pl011_dma_remove(uap);
|
|
if (!busy)
|
|
uart_unregister_driver(&amba_reg);
|
|
}
|
|
|
|
static int pl011_find_free_port(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
|
|
if (amba_ports[i] == NULL)
|
|
return i;
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
|
|
struct resource *mmiobase, int index)
|
|
{
|
|
void __iomem *base;
|
|
|
|
base = devm_ioremap_resource(dev, mmiobase);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
index = pl011_probe_dt_alias(index, dev);
|
|
|
|
uap->old_cr = 0;
|
|
uap->port.dev = dev;
|
|
uap->port.mapbase = mmiobase->start;
|
|
uap->port.membase = base;
|
|
uap->port.fifosize = uap->fifosize;
|
|
uap->port.flags = UPF_BOOT_AUTOCONF;
|
|
uap->port.line = index;
|
|
|
|
amba_ports[index] = uap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl011_register_port(struct uart_amba_port *uap)
|
|
{
|
|
int ret;
|
|
|
|
/* Ensure interrupts from this UART are masked and cleared */
|
|
pl011_write(0, uap, REG_IMSC);
|
|
pl011_write(0xffff, uap, REG_ICR);
|
|
|
|
if (!amba_reg.state) {
|
|
ret = uart_register_driver(&amba_reg);
|
|
if (ret < 0) {
|
|
dev_err(uap->port.dev,
|
|
"Failed to register AMBA-PL011 driver\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = uart_add_one_port(&amba_reg, &uap->port);
|
|
if (ret)
|
|
pl011_unregister_port(uap);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
|
|
{
|
|
struct uart_amba_port *uap;
|
|
struct vendor_data *vendor = id->data;
|
|
int portnr, ret;
|
|
|
|
portnr = pl011_find_free_port();
|
|
if (portnr < 0)
|
|
return portnr;
|
|
|
|
uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
|
|
GFP_KERNEL);
|
|
if (!uap)
|
|
return -ENOMEM;
|
|
|
|
uap->clk = devm_clk_get(&dev->dev, NULL);
|
|
if (IS_ERR(uap->clk))
|
|
return PTR_ERR(uap->clk);
|
|
|
|
uap->reg_offset = vendor->reg_offset;
|
|
uap->vendor = vendor;
|
|
uap->fifosize = vendor->get_fifosize(dev);
|
|
uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
|
|
uap->port.irq = dev->irq[0];
|
|
uap->port.ops = &amba_pl011_pops;
|
|
|
|
snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
|
|
|
|
ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
amba_set_drvdata(dev, uap);
|
|
|
|
return pl011_register_port(uap);
|
|
}
|
|
|
|
static int pl011_remove(struct amba_device *dev)
|
|
{
|
|
struct uart_amba_port *uap = amba_get_drvdata(dev);
|
|
|
|
uart_remove_one_port(&amba_reg, &uap->port);
|
|
pl011_unregister_port(uap);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int pl011_suspend(struct device *dev)
|
|
{
|
|
struct uart_amba_port *uap = dev_get_drvdata(dev);
|
|
|
|
if (!uap)
|
|
return -EINVAL;
|
|
|
|
return uart_suspend_port(&amba_reg, &uap->port);
|
|
}
|
|
|
|
static int pl011_resume(struct device *dev)
|
|
{
|
|
struct uart_amba_port *uap = dev_get_drvdata(dev);
|
|
|
|
if (!uap)
|
|
return -EINVAL;
|
|
|
|
return uart_resume_port(&amba_reg, &uap->port);
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
|
|
|
|
static int sbsa_uart_probe(struct platform_device *pdev)
|
|
{
|
|
struct uart_amba_port *uap;
|
|
struct resource *r;
|
|
int portnr, ret;
|
|
int baudrate;
|
|
|
|
/*
|
|
* Check the mandatory baud rate parameter in the DT node early
|
|
* so that we can easily exit with the error.
|
|
*/
|
|
if (pdev->dev.of_node) {
|
|
struct device_node *np = pdev->dev.of_node;
|
|
|
|
ret = of_property_read_u32(np, "current-speed", &baudrate);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
baudrate = 115200;
|
|
}
|
|
|
|
portnr = pl011_find_free_port();
|
|
if (portnr < 0)
|
|
return portnr;
|
|
|
|
uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
|
|
GFP_KERNEL);
|
|
if (!uap)
|
|
return -ENOMEM;
|
|
|
|
ret = platform_get_irq(pdev, 0);
|
|
if (ret < 0) {
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(&pdev->dev, "cannot obtain irq\n");
|
|
return ret;
|
|
}
|
|
uap->port.irq = ret;
|
|
|
|
#ifdef CONFIG_ACPI_SPCR_TABLE
|
|
if (qdf2400_e44_present) {
|
|
dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
|
|
uap->vendor = &vendor_qdt_qdf2400_e44;
|
|
} else
|
|
#endif
|
|
uap->vendor = &vendor_sbsa;
|
|
|
|
uap->reg_offset = uap->vendor->reg_offset;
|
|
uap->fifosize = 32;
|
|
uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
|
|
uap->port.ops = &sbsa_uart_pops;
|
|
uap->fixed_baud = baudrate;
|
|
|
|
snprintf(uap->type, sizeof(uap->type), "SBSA");
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
|
ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
platform_set_drvdata(pdev, uap);
|
|
|
|
return pl011_register_port(uap);
|
|
}
|
|
|
|
static int sbsa_uart_remove(struct platform_device *pdev)
|
|
{
|
|
struct uart_amba_port *uap = platform_get_drvdata(pdev);
|
|
|
|
uart_remove_one_port(&amba_reg, &uap->port);
|
|
pl011_unregister_port(uap);
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id sbsa_uart_of_match[] = {
|
|
{ .compatible = "arm,sbsa-uart", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
|
|
|
|
static const struct acpi_device_id sbsa_uart_acpi_match[] = {
|
|
{ "ARMH0011", 0 },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
|
|
|
|
static struct platform_driver arm_sbsa_uart_platform_driver = {
|
|
.probe = sbsa_uart_probe,
|
|
.remove = sbsa_uart_remove,
|
|
.driver = {
|
|
.name = "sbsa-uart",
|
|
.of_match_table = of_match_ptr(sbsa_uart_of_match),
|
|
.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
|
|
},
|
|
};
|
|
|
|
static const struct amba_id pl011_ids[] = {
|
|
{
|
|
.id = 0x00041011,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_arm,
|
|
},
|
|
{
|
|
.id = 0x00380802,
|
|
.mask = 0x00ffffff,
|
|
.data = &vendor_st,
|
|
},
|
|
{
|
|
.id = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
|
|
.mask = 0x00ffffff,
|
|
.data = &vendor_zte,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(amba, pl011_ids);
|
|
|
|
static struct amba_driver pl011_driver = {
|
|
.drv = {
|
|
.name = "uart-pl011",
|
|
.pm = &pl011_dev_pm_ops,
|
|
},
|
|
.id_table = pl011_ids,
|
|
.probe = pl011_probe,
|
|
.remove = pl011_remove,
|
|
};
|
|
|
|
static int __init pl011_init(void)
|
|
{
|
|
printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
|
|
|
|
if (platform_driver_register(&arm_sbsa_uart_platform_driver))
|
|
pr_warn("could not register SBSA UART platform driver\n");
|
|
return amba_driver_register(&pl011_driver);
|
|
}
|
|
|
|
static void __exit pl011_exit(void)
|
|
{
|
|
platform_driver_unregister(&arm_sbsa_uart_platform_driver);
|
|
amba_driver_unregister(&pl011_driver);
|
|
}
|
|
|
|
/*
|
|
* While this can be a module, if builtin it's most likely the console
|
|
* So let's leave module_exit but move module_init to an earlier place
|
|
*/
|
|
arch_initcall(pl011_init);
|
|
module_exit(pl011_exit);
|
|
|
|
MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
|
|
MODULE_DESCRIPTION("ARM AMBA serial port driver");
|
|
MODULE_LICENSE("GPL");
|