mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 06:02:05 +00:00
cfa1a2329a
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter.
Fixes: 457f44363a
("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Reported-by: Muhammad Ramdhan <ramdhan@starlabs.sg>
Co-developed-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Bing-Jhong Billy Jheng <billy@starlabs.sg>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240621140828.18238-1-daniel@iogearbox.net
809 lines
23 KiB
C
809 lines
23 KiB
C
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <uapi/linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
|
|
#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
|
|
|
|
/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
|
|
#define RINGBUF_PGOFF \
|
|
(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
|
|
/* consumer page and producer page */
|
|
#define RINGBUF_POS_PAGES 2
|
|
#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
|
|
|
|
#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
|
|
|
|
struct bpf_ringbuf {
|
|
wait_queue_head_t waitq;
|
|
struct irq_work work;
|
|
u64 mask;
|
|
struct page **pages;
|
|
int nr_pages;
|
|
spinlock_t spinlock ____cacheline_aligned_in_smp;
|
|
/* For user-space producer ring buffers, an atomic_t busy bit is used
|
|
* to synchronize access to the ring buffers in the kernel, rather than
|
|
* the spinlock that is used for kernel-producer ring buffers. This is
|
|
* done because the ring buffer must hold a lock across a BPF program's
|
|
* callback:
|
|
*
|
|
* __bpf_user_ringbuf_peek() // lock acquired
|
|
* -> program callback_fn()
|
|
* -> __bpf_user_ringbuf_sample_release() // lock released
|
|
*
|
|
* It is unsafe and incorrect to hold an IRQ spinlock across what could
|
|
* be a long execution window, so we instead simply disallow concurrent
|
|
* access to the ring buffer by kernel consumers, and return -EBUSY from
|
|
* __bpf_user_ringbuf_peek() if the busy bit is held by another task.
|
|
*/
|
|
atomic_t busy ____cacheline_aligned_in_smp;
|
|
/* Consumer and producer counters are put into separate pages to
|
|
* allow each position to be mapped with different permissions.
|
|
* This prevents a user-space application from modifying the
|
|
* position and ruining in-kernel tracking. The permissions of the
|
|
* pages depend on who is producing samples: user-space or the
|
|
* kernel. Note that the pending counter is placed in the same
|
|
* page as the producer, so that it shares the same cache line.
|
|
*
|
|
* Kernel-producer
|
|
* ---------------
|
|
* The producer position and data pages are mapped as r/o in
|
|
* userspace. For this approach, bits in the header of samples are
|
|
* used to signal to user-space, and to other producers, whether a
|
|
* sample is currently being written.
|
|
*
|
|
* User-space producer
|
|
* -------------------
|
|
* Only the page containing the consumer position is mapped r/o in
|
|
* user-space. User-space producers also use bits of the header to
|
|
* communicate to the kernel, but the kernel must carefully check and
|
|
* validate each sample to ensure that they're correctly formatted, and
|
|
* fully contained within the ring buffer.
|
|
*/
|
|
unsigned long consumer_pos __aligned(PAGE_SIZE);
|
|
unsigned long producer_pos __aligned(PAGE_SIZE);
|
|
unsigned long pending_pos;
|
|
char data[] __aligned(PAGE_SIZE);
|
|
};
|
|
|
|
struct bpf_ringbuf_map {
|
|
struct bpf_map map;
|
|
struct bpf_ringbuf *rb;
|
|
};
|
|
|
|
/* 8-byte ring buffer record header structure */
|
|
struct bpf_ringbuf_hdr {
|
|
u32 len;
|
|
u32 pg_off;
|
|
};
|
|
|
|
static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
|
|
__GFP_NOWARN | __GFP_ZERO;
|
|
int nr_meta_pages = RINGBUF_NR_META_PAGES;
|
|
int nr_data_pages = data_sz >> PAGE_SHIFT;
|
|
int nr_pages = nr_meta_pages + nr_data_pages;
|
|
struct page **pages, *page;
|
|
struct bpf_ringbuf *rb;
|
|
size_t array_size;
|
|
int i;
|
|
|
|
/* Each data page is mapped twice to allow "virtual"
|
|
* continuous read of samples wrapping around the end of ring
|
|
* buffer area:
|
|
* ------------------------------------------------------
|
|
* | meta pages | real data pages | same data pages |
|
|
* ------------------------------------------------------
|
|
* | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
|
|
* ------------------------------------------------------
|
|
* | | TA DA | TA DA |
|
|
* ------------------------------------------------------
|
|
* ^^^^^^^
|
|
* |
|
|
* Here, no need to worry about special handling of wrapped-around
|
|
* data due to double-mapped data pages. This works both in kernel and
|
|
* when mmap()'ed in user-space, simplifying both kernel and
|
|
* user-space implementations significantly.
|
|
*/
|
|
array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
|
|
pages = bpf_map_area_alloc(array_size, numa_node);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = alloc_pages_node(numa_node, flags, 0);
|
|
if (!page) {
|
|
nr_pages = i;
|
|
goto err_free_pages;
|
|
}
|
|
pages[i] = page;
|
|
if (i >= nr_meta_pages)
|
|
pages[nr_data_pages + i] = page;
|
|
}
|
|
|
|
rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
|
|
VM_MAP | VM_USERMAP, PAGE_KERNEL);
|
|
if (rb) {
|
|
kmemleak_not_leak(pages);
|
|
rb->pages = pages;
|
|
rb->nr_pages = nr_pages;
|
|
return rb;
|
|
}
|
|
|
|
err_free_pages:
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static void bpf_ringbuf_notify(struct irq_work *work)
|
|
{
|
|
struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
|
|
|
|
wake_up_all(&rb->waitq);
|
|
}
|
|
|
|
/* Maximum size of ring buffer area is limited by 32-bit page offset within
|
|
* record header, counted in pages. Reserve 8 bits for extensibility, and
|
|
* take into account few extra pages for consumer/producer pages and
|
|
* non-mmap()'able parts, the current maximum size would be:
|
|
*
|
|
* (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
|
|
*
|
|
* This gives 64GB limit, which seems plenty for single ring buffer. Now
|
|
* considering that the maximum value of data_sz is (4GB - 1), there
|
|
* will be no overflow, so just note the size limit in the comments.
|
|
*/
|
|
static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
|
|
if (!rb)
|
|
return NULL;
|
|
|
|
spin_lock_init(&rb->spinlock);
|
|
atomic_set(&rb->busy, 0);
|
|
init_waitqueue_head(&rb->waitq);
|
|
init_irq_work(&rb->work, bpf_ringbuf_notify);
|
|
|
|
rb->mask = data_sz - 1;
|
|
rb->consumer_pos = 0;
|
|
rb->producer_pos = 0;
|
|
rb->pending_pos = 0;
|
|
|
|
return rb;
|
|
}
|
|
|
|
static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (attr->key_size || attr->value_size ||
|
|
!is_power_of_2(attr->max_entries) ||
|
|
!PAGE_ALIGNED(attr->max_entries))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
|
|
if (!rb_map)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
bpf_map_init_from_attr(&rb_map->map, attr);
|
|
|
|
rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
|
|
if (!rb_map->rb) {
|
|
bpf_map_area_free(rb_map);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return &rb_map->map;
|
|
}
|
|
|
|
static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
|
|
{
|
|
/* copy pages pointer and nr_pages to local variable, as we are going
|
|
* to unmap rb itself with vunmap() below
|
|
*/
|
|
struct page **pages = rb->pages;
|
|
int i, nr_pages = rb->nr_pages;
|
|
|
|
vunmap(rb);
|
|
for (i = 0; i < nr_pages; i++)
|
|
__free_page(pages[i]);
|
|
bpf_map_area_free(pages);
|
|
}
|
|
|
|
static void ringbuf_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
bpf_ringbuf_free(rb_map->rb);
|
|
bpf_map_area_free(rb_map);
|
|
}
|
|
|
|
static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return ERR_PTR(-ENOTSUPP);
|
|
}
|
|
|
|
static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 flags)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
|
|
void *next_key)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
/* allow writable mapping for the consumer_pos only */
|
|
if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
|
|
return -EPERM;
|
|
} else {
|
|
vm_flags_clear(vma, VM_MAYWRITE);
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb,
|
|
vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
if (vma->vm_pgoff == 0)
|
|
/* Disallow writable mappings to the consumer pointer,
|
|
* and allow writable mappings to both the producer
|
|
* position, and the ring buffer data itself.
|
|
*/
|
|
return -EPERM;
|
|
} else {
|
|
vm_flags_clear(vma, VM_MAYWRITE);
|
|
}
|
|
/* remap_vmalloc_range() checks size and offset constraints */
|
|
return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
|
|
}
|
|
|
|
static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
|
|
{
|
|
unsigned long cons_pos, prod_pos;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
prod_pos = smp_load_acquire(&rb->producer_pos);
|
|
return prod_pos - cons_pos;
|
|
}
|
|
|
|
static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
|
|
{
|
|
return rb->mask + 1;
|
|
}
|
|
|
|
static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
|
|
struct poll_table_struct *pts)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
poll_wait(filp, &rb_map->rb->waitq, pts);
|
|
|
|
if (ringbuf_avail_data_sz(rb_map->rb))
|
|
return EPOLLIN | EPOLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
|
|
struct poll_table_struct *pts)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
poll_wait(filp, &rb_map->rb->waitq, pts);
|
|
|
|
if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
|
|
return EPOLLOUT | EPOLLWRNORM;
|
|
return 0;
|
|
}
|
|
|
|
static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
int nr_data_pages;
|
|
int nr_meta_pages;
|
|
u64 usage = sizeof(struct bpf_ringbuf_map);
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
usage += (u64)rb->nr_pages << PAGE_SHIFT;
|
|
nr_meta_pages = RINGBUF_NR_META_PAGES;
|
|
nr_data_pages = map->max_entries >> PAGE_SHIFT;
|
|
usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
|
|
return usage;
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_kern,
|
|
.map_poll = ringbuf_map_poll_kern,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_mem_usage = ringbuf_map_mem_usage,
|
|
.map_btf_id = &ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
|
const struct bpf_map_ops user_ringbuf_map_ops = {
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
.map_alloc = ringbuf_map_alloc,
|
|
.map_free = ringbuf_map_free,
|
|
.map_mmap = ringbuf_map_mmap_user,
|
|
.map_poll = ringbuf_map_poll_user,
|
|
.map_lookup_elem = ringbuf_map_lookup_elem,
|
|
.map_update_elem = ringbuf_map_update_elem,
|
|
.map_delete_elem = ringbuf_map_delete_elem,
|
|
.map_get_next_key = ringbuf_map_get_next_key,
|
|
.map_mem_usage = ringbuf_map_mem_usage,
|
|
.map_btf_id = &user_ringbuf_map_btf_ids[0],
|
|
};
|
|
|
|
/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
|
|
* calculate offset from record metadata to ring buffer in pages, rounded
|
|
* down. This page offset is stored as part of record metadata and allows to
|
|
* restore struct bpf_ringbuf * from record pointer. This page offset is
|
|
* stored at offset 4 of record metadata header.
|
|
*/
|
|
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
|
|
struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Given pointer to ring buffer record header, restore pointer to struct
|
|
* bpf_ringbuf itself by using page offset stored at offset 4
|
|
*/
|
|
static struct bpf_ringbuf *
|
|
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
|
|
{
|
|
unsigned long addr = (unsigned long)(void *)hdr;
|
|
unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
|
|
|
|
return (void*)((addr & PAGE_MASK) - off);
|
|
}
|
|
|
|
static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
|
|
{
|
|
unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
u32 len, pg_off, tmp_size, hdr_len;
|
|
|
|
if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
|
|
return NULL;
|
|
|
|
len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
|
if (len > ringbuf_total_data_sz(rb))
|
|
return NULL;
|
|
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
|
|
if (in_nmi()) {
|
|
if (!spin_trylock_irqsave(&rb->spinlock, flags))
|
|
return NULL;
|
|
} else {
|
|
spin_lock_irqsave(&rb->spinlock, flags);
|
|
}
|
|
|
|
pend_pos = rb->pending_pos;
|
|
prod_pos = rb->producer_pos;
|
|
new_prod_pos = prod_pos + len;
|
|
|
|
while (pend_pos < prod_pos) {
|
|
hdr = (void *)rb->data + (pend_pos & rb->mask);
|
|
hdr_len = READ_ONCE(hdr->len);
|
|
if (hdr_len & BPF_RINGBUF_BUSY_BIT)
|
|
break;
|
|
tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
|
|
tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
|
|
pend_pos += tmp_size;
|
|
}
|
|
rb->pending_pos = pend_pos;
|
|
|
|
/* check for out of ringbuf space:
|
|
* - by ensuring producer position doesn't advance more than
|
|
* (ringbuf_size - 1) ahead
|
|
* - by ensuring oldest not yet committed record until newest
|
|
* record does not span more than (ringbuf_size - 1)
|
|
*/
|
|
if (new_prod_pos - cons_pos > rb->mask ||
|
|
new_prod_pos - pend_pos > rb->mask) {
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
hdr = (void *)rb->data + (prod_pos & rb->mask);
|
|
pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
|
|
hdr->len = size | BPF_RINGBUF_BUSY_BIT;
|
|
hdr->pg_off = pg_off;
|
|
|
|
/* pairs with consumer's smp_load_acquire() */
|
|
smp_store_release(&rb->producer_pos, new_prod_pos);
|
|
|
|
spin_unlock_irqrestore(&rb->spinlock, flags);
|
|
|
|
return (void *)hdr + BPF_RINGBUF_HDR_SZ;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
|
|
if (unlikely(flags))
|
|
return 0;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
|
|
.func = bpf_ringbuf_reserve,
|
|
.ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
|
|
{
|
|
unsigned long rec_pos, cons_pos;
|
|
struct bpf_ringbuf_hdr *hdr;
|
|
struct bpf_ringbuf *rb;
|
|
u32 new_len;
|
|
|
|
hdr = sample - BPF_RINGBUF_HDR_SZ;
|
|
rb = bpf_ringbuf_restore_from_rec(hdr);
|
|
new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
|
|
if (discard)
|
|
new_len |= BPF_RINGBUF_DISCARD_BIT;
|
|
|
|
/* update record header with correct final size prefix */
|
|
xchg(&hdr->len, new_len);
|
|
|
|
/* if consumer caught up and is waiting for our record, notify about
|
|
* new data availability
|
|
*/
|
|
rec_pos = (void *)hdr - (void *)rb->data;
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
|
|
|
|
if (flags & BPF_RB_FORCE_WAKEUP)
|
|
irq_work_queue(&rb->work);
|
|
else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
|
|
irq_work_queue(&rb->work);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_proto = {
|
|
.func = bpf_ringbuf_submit,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
|
|
{
|
|
bpf_ringbuf_commit(sample, flags, true /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_proto = {
|
|
.func = bpf_ringbuf_discard,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
|
|
u64, flags)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *rec;
|
|
|
|
if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
|
|
return -EINVAL;
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
rec = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!rec)
|
|
return -EAGAIN;
|
|
|
|
memcpy(rec, data, size);
|
|
bpf_ringbuf_commit(rec, flags, false /* discard */);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_output_proto = {
|
|
.func = bpf_ringbuf_output,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
|
|
switch (flags) {
|
|
case BPF_RB_AVAIL_DATA:
|
|
return ringbuf_avail_data_sz(rb);
|
|
case BPF_RB_RING_SIZE:
|
|
return ringbuf_total_data_sz(rb);
|
|
case BPF_RB_CONS_POS:
|
|
return smp_load_acquire(&rb->consumer_pos);
|
|
case BPF_RB_PROD_POS:
|
|
return smp_load_acquire(&rb->producer_pos);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_query_proto = {
|
|
.func = bpf_ringbuf_query,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
|
|
struct bpf_dynptr_kern *, ptr)
|
|
{
|
|
struct bpf_ringbuf_map *rb_map;
|
|
void *sample;
|
|
int err;
|
|
|
|
if (unlikely(flags)) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = bpf_dynptr_check_size(size);
|
|
if (err) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return err;
|
|
}
|
|
|
|
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
|
|
|
sample = __bpf_ringbuf_reserve(rb_map->rb, size);
|
|
if (!sample) {
|
|
bpf_dynptr_set_null(ptr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
|
|
.func = bpf_ringbuf_reserve_dynptr,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
|
|
.func = bpf_ringbuf_submit_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
|
{
|
|
if (!ptr->data)
|
|
return 0;
|
|
|
|
bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
|
|
|
|
bpf_dynptr_set_null(ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
|
|
.func = bpf_ringbuf_discard_dynptr,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
|
|
{
|
|
int err;
|
|
u32 hdr_len, sample_len, total_len, flags, *hdr;
|
|
u64 cons_pos, prod_pos;
|
|
|
|
/* Synchronizes with smp_store_release() in user-space producer. */
|
|
prod_pos = smp_load_acquire(&rb->producer_pos);
|
|
if (prod_pos % 8)
|
|
return -EINVAL;
|
|
|
|
/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
|
|
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
|
if (cons_pos >= prod_pos)
|
|
return -ENODATA;
|
|
|
|
hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
|
|
/* Synchronizes with smp_store_release() in user-space producer. */
|
|
hdr_len = smp_load_acquire(hdr);
|
|
flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
|
|
sample_len = hdr_len & ~flags;
|
|
total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
|
|
|
|
/* The sample must fit within the region advertised by the producer position. */
|
|
if (total_len > prod_pos - cons_pos)
|
|
return -EINVAL;
|
|
|
|
/* The sample must fit within the data region of the ring buffer. */
|
|
if (total_len > ringbuf_total_data_sz(rb))
|
|
return -E2BIG;
|
|
|
|
/* The sample must fit into a struct bpf_dynptr. */
|
|
err = bpf_dynptr_check_size(sample_len);
|
|
if (err)
|
|
return -E2BIG;
|
|
|
|
if (flags & BPF_RINGBUF_DISCARD_BIT) {
|
|
/* If the discard bit is set, the sample should be skipped.
|
|
*
|
|
* Update the consumer pos, and return -EAGAIN so the caller
|
|
* knows to skip this sample and try to read the next one.
|
|
*/
|
|
smp_store_release(&rb->consumer_pos, cons_pos + total_len);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (flags & BPF_RINGBUF_BUSY_BIT)
|
|
return -ENODATA;
|
|
|
|
*sample = (void *)((uintptr_t)rb->data +
|
|
(uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
|
|
*size = sample_len;
|
|
return 0;
|
|
}
|
|
|
|
static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
|
|
{
|
|
u64 consumer_pos;
|
|
u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
|
|
|
/* Using smp_load_acquire() is unnecessary here, as the busy-bit
|
|
* prevents another task from writing to consumer_pos after it was read
|
|
* by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
|
|
*/
|
|
consumer_pos = rb->consumer_pos;
|
|
/* Synchronizes with smp_load_acquire() in user-space producer. */
|
|
smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
|
|
}
|
|
|
|
BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
|
|
void *, callback_fn, void *, callback_ctx, u64, flags)
|
|
{
|
|
struct bpf_ringbuf *rb;
|
|
long samples, discarded_samples = 0, ret = 0;
|
|
bpf_callback_t callback = (bpf_callback_t)callback_fn;
|
|
u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
|
|
int busy = 0;
|
|
|
|
if (unlikely(flags & ~wakeup_flags))
|
|
return -EINVAL;
|
|
|
|
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
|
|
|
/* If another consumer is already consuming a sample, wait for them to finish. */
|
|
if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
|
|
return -EBUSY;
|
|
|
|
for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
|
|
int err;
|
|
u32 size;
|
|
void *sample;
|
|
struct bpf_dynptr_kern dynptr;
|
|
|
|
err = __bpf_user_ringbuf_peek(rb, &sample, &size);
|
|
if (err) {
|
|
if (err == -ENODATA) {
|
|
break;
|
|
} else if (err == -EAGAIN) {
|
|
discarded_samples++;
|
|
continue;
|
|
} else {
|
|
ret = err;
|
|
goto schedule_work_return;
|
|
}
|
|
}
|
|
|
|
bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
|
|
ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
|
|
__bpf_user_ringbuf_sample_release(rb, size, flags);
|
|
}
|
|
ret = samples - discarded_samples;
|
|
|
|
schedule_work_return:
|
|
/* Prevent the clearing of the busy-bit from being reordered before the
|
|
* storing of any rb consumer or producer positions.
|
|
*/
|
|
atomic_set_release(&rb->busy, 0);
|
|
|
|
if (flags & BPF_RB_FORCE_WAKEUP)
|
|
irq_work_queue(&rb->work);
|
|
else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
|
|
irq_work_queue(&rb->work);
|
|
return ret;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
|
|
.func = bpf_user_ringbuf_drain,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_FUNC,
|
|
.arg3_type = ARG_PTR_TO_STACK_OR_NULL,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|