linux/drivers/media/platform/rcar_fdp1.c
Kieran Bingham 31165ad4c2 [media] media: fdp1: Support ES2 platforms
The new Renesas R-Car H3 ES2.0 platforms have a new hw version register.
Update the driver accordingly, defaulting to the new hw revision, and
differentiating the older revision as ES1

Signed-off-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-06-20 09:07:44 -03:00

2450 lines
66 KiB
C

/*
* Renesas R-Car Fine Display Processor
*
* Video format converter and frame deinterlacer device.
*
* Author: Kieran Bingham, <kieran@bingham.xyz>
* Copyright (c) 2016 Renesas Electronics Corporation.
*
* This code is developed and inspired from the vim2m, rcar_jpu,
* m2m-deinterlace, and vsp1 drivers.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the
* License, or (at your option) any later version
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <media/rcar-fcp.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-dma-contig.h>
static unsigned int debug;
module_param(debug, uint, 0644);
MODULE_PARM_DESC(debug, "activate debug info");
/* Minimum and maximum frame width/height */
#define FDP1_MIN_W 80U
#define FDP1_MIN_H 80U
#define FDP1_MAX_W 3840U
#define FDP1_MAX_H 2160U
#define FDP1_MAX_PLANES 3U
#define FDP1_MAX_STRIDE 8190U
/* Flags that indicate a format can be used for capture/output */
#define FDP1_CAPTURE BIT(0)
#define FDP1_OUTPUT BIT(1)
#define DRIVER_NAME "rcar_fdp1"
/* Number of Job's to have available on the processing queue */
#define FDP1_NUMBER_JOBS 8
#define dprintk(fdp1, fmt, arg...) \
v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
/*
* FDP1 registers and bits
*/
/* FDP1 start register - Imm */
#define FD1_CTL_CMD 0x0000
#define FD1_CTL_CMD_STRCMD BIT(0)
/* Sync generator register - Imm */
#define FD1_CTL_SGCMD 0x0004
#define FD1_CTL_SGCMD_SGEN BIT(0)
/* Register set end register - Imm */
#define FD1_CTL_REGEND 0x0008
#define FD1_CTL_REGEND_REGEND BIT(0)
/* Channel activation register - Vupdt */
#define FD1_CTL_CHACT 0x000c
#define FD1_CTL_CHACT_SMW BIT(9)
#define FD1_CTL_CHACT_WR BIT(8)
#define FD1_CTL_CHACT_SMR BIT(3)
#define FD1_CTL_CHACT_RD2 BIT(2)
#define FD1_CTL_CHACT_RD1 BIT(1)
#define FD1_CTL_CHACT_RD0 BIT(0)
/* Operation Mode Register - Vupdt */
#define FD1_CTL_OPMODE 0x0010
#define FD1_CTL_OPMODE_PRG BIT(4)
#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
#define FD1_CTL_VPERIOD 0x0014
#define FD1_CTL_CLKCTRL 0x0018
#define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
/* Software reset register */
#define FD1_CTL_SRESET 0x001c
#define FD1_CTL_SRESET_SRST BIT(0)
/* Control status register (V-update-status) */
#define FD1_CTL_STATUS 0x0024
#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
#define FD1_CTL_STATUS_SGREGSET BIT(10)
#define FD1_CTL_STATUS_SGVERR BIT(9)
#define FD1_CTL_STATUS_SGFREND BIT(8)
#define FD1_CTL_STATUS_BSY BIT(0)
#define FD1_CTL_VCYCLE_STAT 0x0028
/* Interrupt enable register */
#define FD1_CTL_IRQENB 0x0038
/* Interrupt status register */
#define FD1_CTL_IRQSTA 0x003c
/* Interrupt control register */
#define FD1_CTL_IRQFSET 0x0040
/* Common IRQ Bit settings */
#define FD1_CTL_IRQ_VERE BIT(16)
#define FD1_CTL_IRQ_VINTE BIT(4)
#define FD1_CTL_IRQ_FREE BIT(0)
#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
FD1_CTL_IRQ_VINTE | \
FD1_CTL_IRQ_FREE)
/* RPF */
#define FD1_RPF_SIZE 0x0060
#define FD1_RPF_SIZE_MASK GENMASK(12, 0)
#define FD1_RPF_SIZE_H_SHIFT 16
#define FD1_RPF_SIZE_V_SHIFT 0
#define FD1_RPF_FORMAT 0x0064
#define FD1_RPF_FORMAT_CIPM BIT(16)
#define FD1_RPF_FORMAT_RSPYCS BIT(13)
#define FD1_RPF_FORMAT_RSPUVS BIT(12)
#define FD1_RPF_FORMAT_CF BIT(8)
#define FD1_RPF_PSTRIDE 0x0068
#define FD1_RPF_PSTRIDE_Y_SHIFT 16
#define FD1_RPF_PSTRIDE_C_SHIFT 0
/* RPF0 Source Component Y Address register */
#define FD1_RPF0_ADDR_Y 0x006c
/* RPF1 Current Picture Registers */
#define FD1_RPF1_ADDR_Y 0x0078
#define FD1_RPF1_ADDR_C0 0x007c
#define FD1_RPF1_ADDR_C1 0x0080
/* RPF2 next picture register */
#define FD1_RPF2_ADDR_Y 0x0084
#define FD1_RPF_SMSK_ADDR 0x0090
#define FD1_RPF_SWAP 0x0094
/* WPF */
#define FD1_WPF_FORMAT 0x00c0
#define FD1_WPF_FORMAT_PDV_SHIFT 24
#define FD1_WPF_FORMAT_FCNL BIT(20)
#define FD1_WPF_FORMAT_WSPYCS BIT(15)
#define FD1_WPF_FORMAT_WSPUVS BIT(14)
#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
#define FD1_WPF_FORMAT_CSC BIT(8)
#define FD1_WPF_RNDCTL 0x00c4
#define FD1_WPF_RNDCTL_CBRM BIT(28)
#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
#define FD1_WPF_PSTRIDE 0x00c8
#define FD1_WPF_PSTRIDE_Y_SHIFT 16
#define FD1_WPF_PSTRIDE_C_SHIFT 0
/* WPF Destination picture */
#define FD1_WPF_ADDR_Y 0x00cc
#define FD1_WPF_ADDR_C0 0x00d0
#define FD1_WPF_ADDR_C1 0x00d4
#define FD1_WPF_SWAP 0x00d8
#define FD1_WPF_SWAP_OSWAP_SHIFT 0
#define FD1_WPF_SWAP_SSWAP_SHIFT 4
/* WPF/RPF Common */
#define FD1_RWPF_SWAP_BYTE BIT(0)
#define FD1_RWPF_SWAP_WORD BIT(1)
#define FD1_RWPF_SWAP_LWRD BIT(2)
#define FD1_RWPF_SWAP_LLWD BIT(3)
/* IPC */
#define FD1_IPC_MODE 0x0100
#define FD1_IPC_MODE_DLI BIT(8)
#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
#define FD1_IPC_SMSK_THRESH 0x0104
#define FD1_IPC_SMSK_THRESH_CONST 0x00010002
#define FD1_IPC_COMB_DET 0x0108
#define FD1_IPC_COMB_DET_CONST 0x00200040
#define FD1_IPC_MOTDEC 0x010c
#define FD1_IPC_MOTDEC_CONST 0x00008020
/* DLI registers */
#define FD1_IPC_DLI_BLEND 0x0120
#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
#define FD1_IPC_DLI_HGAIN 0x0124
#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
#define FD1_IPC_DLI_SPRS 0x0128
#define FD1_IPC_DLI_SPRS_CONST 0x009004ff
#define FD1_IPC_DLI_ANGLE 0x012c
#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
#define FD1_IPC_DLI_ISOPIX0 0x0130
#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
#define FD1_IPC_DLI_ISOPIX1 0x0134
#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
/* Sensor registers */
#define FD1_IPC_SENSOR_TH0 0x0140
#define FD1_IPC_SENSOR_TH0_CONST 0x20208080
#define FD1_IPC_SENSOR_TH1 0x0144
#define FD1_IPC_SENSOR_TH1_CONST 0
#define FD1_IPC_SENSOR_CTL0 0x0170
#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
#define FD1_IPC_SENSOR_CTL1 0x0174
#define FD1_IPC_SENSOR_CTL1_CONST 0
#define FD1_IPC_SENSOR_CTL2 0x0178
#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
#define FD1_IPC_SENSOR_CTL3 0x017c
#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
/* Line memory pixel number register */
#define FD1_IPC_LMEM 0x01e0
#define FD1_IPC_LMEM_LINEAR 1024
#define FD1_IPC_LMEM_TILE 960
/* Internal Data (HW Version) */
#define FD1_IP_INTDATA 0x0800
#define FD1_IP_H3_ES1 0x02010101
#define FD1_IP_M3W 0x02010202
#define FD1_IP_H3 0x02010203
/* LUTs */
#define FD1_LUT_DIF_ADJ 0x1000
#define FD1_LUT_SAD_ADJ 0x1400
#define FD1_LUT_BLD_GAIN 0x1800
#define FD1_LUT_DIF_GAIN 0x1c00
#define FD1_LUT_MDET 0x2000
/**
* struct fdp1_fmt - The FDP1 internal format data
* @fourcc: the fourcc code, to match the V4L2 API
* @bpp: bits per pixel per plane
* @num_planes: number of planes
* @hsub: horizontal subsampling factor
* @vsub: vertical subsampling factor
* @fmt: 7-bit format code for the fdp1 hardware
* @swap_yc: the Y and C components are swapped (Y comes before C)
* @swap_uv: the U and V components are swapped (V comes before U)
* @swap: swap register control
* @types: types of queue this format is applicable to
*/
struct fdp1_fmt {
u32 fourcc;
u8 bpp[3];
u8 num_planes;
u8 hsub;
u8 vsub;
u8 fmt;
bool swap_yc;
bool swap_uv;
u8 swap;
u8 types;
};
static const struct fdp1_fmt fdp1_formats[] = {
/* RGB formats are only supported by the Write Pixel Formatter */
{ V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
/* YUV Formats are supported by Read and Write Pixel Formatters */
{ V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
};
static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
{
return fmt->fmt <= 0x1b; /* Last RGB code */
}
/*
* FDP1 Lookup tables range from 0...255 only
*
* Each table must be less than 256 entries, and all tables
* are padded out to 256 entries by duplicating the last value.
*/
static const u8 fdp1_diff_adj[] = {
0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};
static const u8 fdp1_sad_adj[] = {
0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};
static const u8 fdp1_bld_gain[] = {
0x80,
};
static const u8 fdp1_dif_gain[] = {
0x80,
};
static const u8 fdp1_mdet[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
/* Per-queue, driver-specific private data */
struct fdp1_q_data {
const struct fdp1_fmt *fmt;
struct v4l2_pix_format_mplane format;
unsigned int vsize;
unsigned int stride_y;
unsigned int stride_c;
};
static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
{
const struct fdp1_fmt *fmt;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
fmt = &fdp1_formats[i];
if (fmt->fourcc == pixelformat)
return fmt;
}
return NULL;
}
enum fdp1_deint_mode {
FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
FDP1_ADAPT2D3D,
FDP1_FIXED2D,
FDP1_FIXED3D,
FDP1_PREVFIELD,
FDP1_NEXTFIELD,
};
#define FDP1_DEINT_MODE_USES_NEXT(mode) \
(mode == FDP1_ADAPT2D3D || \
mode == FDP1_FIXED3D || \
mode == FDP1_NEXTFIELD)
#define FDP1_DEINT_MODE_USES_PREV(mode) \
(mode == FDP1_ADAPT2D3D || \
mode == FDP1_FIXED3D || \
mode == FDP1_PREVFIELD)
/*
* FDP1 operates on potentially 3 fields, which are tracked
* from the VB buffers using this context structure.
* Will always be a field or a full frame, never two fields.
*/
struct fdp1_field_buffer {
struct vb2_v4l2_buffer *vb;
dma_addr_t addrs[3];
/* Should be NONE:TOP:BOTTOM only */
enum v4l2_field field;
/* Flag to indicate this is the last field in the vb */
bool last_field;
/* Buffer queue lists */
struct list_head list;
};
struct fdp1_buffer {
struct v4l2_m2m_buffer m2m_buf;
struct fdp1_field_buffer fields[2];
unsigned int num_fields;
};
static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
{
return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
}
struct fdp1_job {
struct fdp1_field_buffer *previous;
struct fdp1_field_buffer *active;
struct fdp1_field_buffer *next;
struct fdp1_field_buffer *dst;
/* A job can only be on one list at a time */
struct list_head list;
};
struct fdp1_dev {
struct v4l2_device v4l2_dev;
struct video_device vfd;
struct mutex dev_mutex;
spinlock_t irqlock;
spinlock_t device_process_lock;
void __iomem *regs;
unsigned int irq;
struct device *dev;
/* Job Queues */
struct fdp1_job jobs[FDP1_NUMBER_JOBS];
struct list_head free_job_list;
struct list_head queued_job_list;
struct list_head hw_job_list;
unsigned int clk_rate;
struct rcar_fcp_device *fcp;
struct v4l2_m2m_dev *m2m_dev;
};
struct fdp1_ctx {
struct v4l2_fh fh;
struct fdp1_dev *fdp1;
struct v4l2_ctrl_handler hdl;
unsigned int sequence;
/* Processed buffers in this transaction */
u8 num_processed;
/* Transaction length (i.e. how many buffers per transaction) */
u32 translen;
/* Abort requested by m2m */
int aborting;
/* Deinterlace processing mode */
enum fdp1_deint_mode deint_mode;
/*
* Adaptive 2D/3D mode uses a shared mask
* This is allocated at streamon, if the ADAPT2D3D mode
* is requested
*/
unsigned int smsk_size;
dma_addr_t smsk_addr[2];
void *smsk_cpu;
/* Capture pipeline, can specify an alpha value
* for supported formats. 0-255 only
*/
unsigned char alpha;
/* Source and destination queue data */
struct fdp1_q_data out_q; /* HW Source */
struct fdp1_q_data cap_q; /* HW Destination */
/*
* Field Queues
* Interlaced fields are used on 3 occasions, and tracked in this list.
*
* V4L2 Buffers are tracked inside the fdp1_buffer
* and released when the last 'field' completes
*/
struct list_head fields_queue;
unsigned int buffers_queued;
/*
* For de-interlacing we need to track our previous buffer
* while preparing our job lists.
*/
struct fdp1_field_buffer *previous;
};
static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
{
return container_of(fh, struct fdp1_ctx, fh);
}
static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
enum v4l2_buf_type type)
{
if (V4L2_TYPE_IS_OUTPUT(type))
return &ctx->out_q;
else
return &ctx->cap_q;
}
/*
* list_remove_job: Take the first item off the specified job list
*
* Returns: pointer to a job, or NULL if the list is empty.
*/
static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
struct list_head *list)
{
struct fdp1_job *job;
unsigned long flags;
spin_lock_irqsave(&fdp1->irqlock, flags);
job = list_first_entry_or_null(list, struct fdp1_job, list);
if (job)
list_del(&job->list);
spin_unlock_irqrestore(&fdp1->irqlock, flags);
return job;
}
/*
* list_add_job: Add a job to the specified job list
*
* Returns: void - always succeeds
*/
static void list_add_job(struct fdp1_dev *fdp1,
struct list_head *list,
struct fdp1_job *job)
{
unsigned long flags;
spin_lock_irqsave(&fdp1->irqlock, flags);
list_add_tail(&job->list, list);
spin_unlock_irqrestore(&fdp1->irqlock, flags);
}
static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->free_job_list);
}
static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
/* Ensure that all residue from previous jobs is gone */
memset(job, 0, sizeof(struct fdp1_job));
list_add_job(fdp1, &fdp1->free_job_list, job);
}
static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
list_add_job(fdp1, &fdp1->queued_job_list, job);
}
static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->queued_job_list);
}
static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
list_add_job(fdp1, &fdp1->hw_job_list, job);
}
static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->hw_job_list);
}
/*
* Buffer lists handling
*/
static void fdp1_field_complete(struct fdp1_ctx *ctx,
struct fdp1_field_buffer *fbuf)
{
/* job->previous may be on the first field */
if (!fbuf)
return;
if (fbuf->last_field)
v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
}
static void fdp1_queue_field(struct fdp1_ctx *ctx,
struct fdp1_field_buffer *fbuf)
{
unsigned long flags;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
list_add_tail(&fbuf->list, &ctx->fields_queue);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
ctx->buffers_queued++;
}
static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
{
struct fdp1_field_buffer *fbuf;
unsigned long flags;
ctx->buffers_queued--;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
fbuf = list_first_entry_or_null(&ctx->fields_queue,
struct fdp1_field_buffer, list);
if (fbuf)
list_del(&fbuf->list);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
return fbuf;
}
/*
* Return the next field in the queue - or NULL,
* without removing the item from the list
*/
static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
{
struct fdp1_field_buffer *fbuf;
unsigned long flags;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
fbuf = list_first_entry_or_null(&ctx->fields_queue,
struct fdp1_field_buffer, list);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
return fbuf;
}
static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
{
u32 value = ioread32(fdp1->regs + reg);
if (debug >= 2)
dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
return value;
}
static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
{
if (debug >= 2)
dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
iowrite32(val, fdp1->regs + reg);
}
/* IPC registers are to be programmed with constant values */
static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
}
static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_q_data *src_q_data = &ctx->out_q;
unsigned int x0, x1;
unsigned int hsize = src_q_data->format.width;
unsigned int vsize = src_q_data->format.height;
x0 = hsize / 3;
x1 = 2 * hsize / 3;
fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
FD1_IPC_SENSOR_CTL2);
fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
(x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
FD1_IPC_SENSOR_CTL3);
}
/*
* fdp1_write_lut: Write a padded LUT to the hw
*
* FDP1 uses constant data for de-interlacing processing,
* with large tables. These hardware tables are all 256 bytes
* long, however they often contain repeated data at the end.
*
* The last byte of the table is written to all remaining entries.
*/
static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
unsigned int len, unsigned int base)
{
unsigned int i;
u8 pad;
/* Tables larger than the hw are clipped */
len = min(len, 256u);
for (i = 0; i < len; i++)
fdp1_write(fdp1, lut[i], base + (i*4));
/* Tables are padded with the last entry */
pad = lut[i-1];
for (; i < 256; i++)
fdp1_write(fdp1, pad, base + (i*4));
}
static void fdp1_set_lut(struct fdp1_dev *fdp1)
{
fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
FD1_LUT_DIF_ADJ);
fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
FD1_LUT_SAD_ADJ);
fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
FD1_LUT_BLD_GAIN);
fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
FD1_LUT_DIF_GAIN);
fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
FD1_LUT_MDET);
}
static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
u32 picture_size;
u32 pstride;
u32 format;
u32 smsk_addr;
struct fdp1_q_data *q_data = &ctx->out_q;
/* Picture size is common to Source and Destination frames */
picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
| (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
/* Strides */
pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
if (q_data->format.num_planes > 1)
pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
/* Format control */
format = q_data->fmt->fmt;
if (q_data->fmt->swap_yc)
format |= FD1_RPF_FORMAT_RSPYCS;
if (q_data->fmt->swap_uv)
format |= FD1_RPF_FORMAT_RSPUVS;
if (job->active->field == V4L2_FIELD_BOTTOM) {
format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
smsk_addr = ctx->smsk_addr[0];
} else {
smsk_addr = ctx->smsk_addr[1];
}
/* Deint mode is non-zero when deinterlacing */
if (ctx->deint_mode)
format |= FD1_RPF_FORMAT_CIPM;
fdp1_write(fdp1, format, FD1_RPF_FORMAT);
fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
/* Previous Field Channel (CH0) */
if (job->previous)
fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
/* Current Field Channel (CH1) */
fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
/* Next Field Channel (CH2) */
if (job->next)
fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
}
static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_q_data *src_q_data = &ctx->out_q;
struct fdp1_q_data *q_data = &ctx->cap_q;
u32 pstride;
u32 format;
u32 swap;
u32 rndctl;
pstride = q_data->format.plane_fmt[0].bytesperline
<< FD1_WPF_PSTRIDE_Y_SHIFT;
if (q_data->format.num_planes > 1)
pstride |= q_data->format.plane_fmt[1].bytesperline
<< FD1_WPF_PSTRIDE_C_SHIFT;
format = q_data->fmt->fmt; /* Output Format Code */
if (q_data->fmt->swap_yc)
format |= FD1_WPF_FORMAT_WSPYCS;
if (q_data->fmt->swap_uv)
format |= FD1_WPF_FORMAT_WSPUVS;
if (fdp1_fmt_is_rgb(q_data->fmt)) {
/* Enable Colour Space conversion */
format |= FD1_WPF_FORMAT_CSC;
/* Set WRTM */
if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
format |= FD1_WPF_FORMAT_WRTM_709_16;
else if (src_q_data->format.quantization ==
V4L2_QUANTIZATION_FULL_RANGE)
format |= FD1_WPF_FORMAT_WRTM_601_0;
else
format |= FD1_WPF_FORMAT_WRTM_601_16;
}
/* Set an alpha value into the Pad Value */
format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
/* Determine picture rounding and clipping */
rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
/* WPF Swap needs both ISWAP and OSWAP setting */
swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
fdp1_write(fdp1, format, FD1_WPF_FORMAT);
fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
fdp1_write(fdp1, swap, FD1_WPF_SWAP);
fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
}
static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
/* De-interlacing Mode */
switch (ctx->deint_mode) {
default:
case FDP1_PROGRESSIVE:
dprintk(fdp1, "Progressive Mode\n");
opmode |= FD1_CTL_OPMODE_PRG;
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
break;
case FDP1_ADAPT2D3D:
dprintk(fdp1, "Adapt2D3D Mode\n");
if (ctx->sequence == 0 || ctx->aborting)
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
else
ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
if (ctx->sequence > 1) {
channels |= FD1_CTL_CHACT_SMW;
channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
}
if (ctx->sequence > 2)
channels |= FD1_CTL_CHACT_SMR;
break;
case FDP1_FIXED3D:
dprintk(fdp1, "Fixed 3D Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
/* Except for first and last frame, enable all channels */
if (!(ctx->sequence == 0 || ctx->aborting))
channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
break;
case FDP1_FIXED2D:
dprintk(fdp1, "Fixed 2D Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
/* No extra channels enabled */
break;
case FDP1_PREVFIELD:
dprintk(fdp1, "Previous Field Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
channels |= FD1_CTL_CHACT_RD0; /* Previous */
break;
case FDP1_NEXTFIELD:
dprintk(fdp1, "Next Field Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
channels |= FD1_CTL_CHACT_RD2; /* Next */
break;
}
fdp1_write(fdp1, channels, FD1_CTL_CHACT);
fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
}
/*
* fdp1_device_process() - Run the hardware
*
* Configure and start the hardware to generate a single frame
* of output given our input parameters.
*/
static int fdp1_device_process(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_job *job;
unsigned long flags;
spin_lock_irqsave(&fdp1->device_process_lock, flags);
/* Get a job to process */
job = get_queued_job(fdp1);
if (!job) {
/*
* VINT can call us to see if we can queue another job.
* If we have no work to do, we simply return.
*/
spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
return 0;
}
/* First Frame only? ... */
fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
/* Set the mode, and configuration */
fdp1_configure_deint_mode(ctx, job);
/* DLI Static Configuration */
fdp1_set_ipc_dli(ctx);
/* Sensor Configuration */
fdp1_set_ipc_sensor(ctx);
/* Setup the source picture */
fdp1_configure_rpf(ctx, job);
/* Setup the destination picture */
fdp1_configure_wpf(ctx, job);
/* Line Memory Pixel Number Register for linear access */
fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
/* Enable Interrupts */
fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
/* Finally, the Immediate Registers */
/* This job is now in the HW queue */
queue_hw_job(fdp1, job);
/* Start the command */
fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
/* Registers will update to HW at next VINT */
fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
/* Enable VINT Generator */
fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
return 0;
}
/*
* mem2mem callbacks
*/
/**
* job_ready() - check whether an instance is ready to be scheduled to run
*/
static int fdp1_m2m_job_ready(void *priv)
{
struct fdp1_ctx *ctx = priv;
struct fdp1_q_data *src_q_data = &ctx->out_q;
int srcbufs = 1;
int dstbufs = 1;
dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
/* One output buffer is required for each field */
if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
dstbufs = 2;
if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
|| v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
dprintk(ctx->fdp1, "Not enough buffers available\n");
return 0;
}
return 1;
}
static void fdp1_m2m_job_abort(void *priv)
{
struct fdp1_ctx *ctx = priv;
dprintk(ctx->fdp1, "+\n");
/* Will cancel the transaction in the next interrupt handler */
ctx->aborting = 1;
/* Immediate abort sequence */
fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
}
/*
* fdp1_prepare_job: Prepare and queue a new job for a single action of work
*
* Prepare the next field, (or frame in progressive) and an output
* buffer for the hardware to perform a single operation.
*/
static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
{
struct vb2_v4l2_buffer *vbuf;
struct fdp1_buffer *fbuf;
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_job *job;
unsigned int buffers_required = 1;
dprintk(fdp1, "+\n");
if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
buffers_required = 2;
if (ctx->buffers_queued < buffers_required)
return NULL;
job = fdp1_job_alloc(fdp1);
if (!job) {
dprintk(fdp1, "No free jobs currently available\n");
return NULL;
}
job->active = fdp1_dequeue_field(ctx);
if (!job->active) {
/* Buffer check should prevent this ever happening */
dprintk(fdp1, "No input buffers currently available\n");
fdp1_job_free(fdp1, job);
return NULL;
}
dprintk(fdp1, "+ Buffer en-route...\n");
/* Source buffers have been prepared on our buffer_queue
* Prepare our Output buffer
*/
vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
fbuf = to_fdp1_buffer(vbuf);
job->dst = &fbuf->fields[0];
job->active->vb->sequence = ctx->sequence;
job->dst->vb->sequence = ctx->sequence;
ctx->sequence++;
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
job->previous = ctx->previous;
/* Active buffer becomes the next job's previous buffer */
ctx->previous = job->active;
}
if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
/* Must be called after 'active' is dequeued */
job->next = fdp1_peek_queued_field(ctx);
}
/* Transfer timestamps and flags from src->dst */
job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
job->dst->vb->flags = job->active->vb->flags &
V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
/* Ideally, the frame-end function will just 'check' to see
* if there are more jobs instead
*/
ctx->translen++;
/* Finally, Put this job on the processing queue */
queue_job(fdp1, job);
dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
return job;
}
/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
*
* A single input buffer is taken and serialised into our fdp1_buffer
* queue. The queue is then processed to create as many jobs as possible
* from our available input.
*/
static void fdp1_m2m_device_run(void *priv)
{
struct fdp1_ctx *ctx = priv;
struct fdp1_dev *fdp1 = ctx->fdp1;
struct vb2_v4l2_buffer *src_vb;
struct fdp1_buffer *buf;
unsigned int i;
dprintk(fdp1, "+\n");
ctx->translen = 0;
/* Get our incoming buffer of either one or two fields, or one frame */
src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
buf = to_fdp1_buffer(src_vb);
for (i = 0; i < buf->num_fields; i++) {
struct fdp1_field_buffer *fbuf = &buf->fields[i];
fdp1_queue_field(ctx, fbuf);
dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
i, fbuf->last_field);
}
/* Queue as many jobs as our data provides for */
while (fdp1_prepare_job(ctx))
;
if (ctx->translen == 0) {
dprintk(fdp1, "No jobs were processed. M2M action complete\n");
v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
return;
}
/* Kick the job processing action */
fdp1_device_process(ctx);
}
/*
* device_frame_end:
*
* Handles the M2M level after a buffer completion event.
*/
static void device_frame_end(struct fdp1_dev *fdp1,
enum vb2_buffer_state state)
{
struct fdp1_ctx *ctx;
unsigned long flags;
struct fdp1_job *job = get_hw_queued_job(fdp1);
dprintk(fdp1, "+\n");
ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
if (ctx == NULL) {
v4l2_err(&fdp1->v4l2_dev,
"Instance released before the end of transaction\n");
return;
}
ctx->num_processed++;
/*
* fdp1_field_complete will call buf_done only when the last vb2_buffer
* reference is complete
*/
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
fdp1_field_complete(ctx, job->previous);
else
fdp1_field_complete(ctx, job->active);
spin_lock_irqsave(&fdp1->irqlock, flags);
v4l2_m2m_buf_done(job->dst->vb, state);
job->dst = NULL;
spin_unlock_irqrestore(&fdp1->irqlock, flags);
/* Move this job back to the free job list */
fdp1_job_free(fdp1, job);
dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
ctx->num_processed, ctx->translen);
if (ctx->num_processed == ctx->translen ||
ctx->aborting) {
dprintk(ctx->fdp1, "Finishing transaction\n");
ctx->num_processed = 0;
v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
} else {
/*
* For pipelined performance support, this would
* be called from a VINT handler
*/
fdp1_device_process(ctx);
}
}
/*
* video ioctls
*/
static int fdp1_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", DRIVER_NAME);
return 0;
}
static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
unsigned int i, num;
num = 0;
for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
if (fdp1_formats[i].types & type) {
if (num == f->index)
break;
++num;
}
}
/* Format not found */
if (i >= ARRAY_SIZE(fdp1_formats))
return -EINVAL;
/* Format found */
f->pixelformat = fdp1_formats[i].fourcc;
return 0;
}
static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return fdp1_enum_fmt(f, FDP1_CAPTURE);
}
static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return fdp1_enum_fmt(f, FDP1_OUTPUT);
}
static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_q_data *q_data;
struct fdp1_ctx *ctx = fh_to_ctx(priv);
if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
return -EINVAL;
q_data = get_q_data(ctx, f->type);
f->fmt.pix_mp = q_data->format;
return 0;
}
static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
const struct fdp1_fmt *fmt)
{
unsigned int i;
/* Compute and clamp the stride and image size. */
for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
unsigned int hsub = i > 0 ? fmt->hsub : 1;
unsigned int vsub = i > 0 ? fmt->vsub : 1;
/* From VSP : TODO: Confirm alignment limits for FDP1 */
unsigned int align = 128;
unsigned int bpl;
bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
pix->width / hsub * fmt->bpp[i] / 8,
round_down(FDP1_MAX_STRIDE, align));
pix->plane_fmt[i].bytesperline = round_up(bpl, align);
pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
* pix->height / vsub;
memset(pix->plane_fmt[i].reserved, 0,
sizeof(pix->plane_fmt[i].reserved));
}
if (fmt->num_planes == 3) {
/* The two chroma planes must have the same stride. */
pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
memset(pix->plane_fmt[2].reserved, 0,
sizeof(pix->plane_fmt[2].reserved));
}
}
static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
const struct fdp1_fmt **fmtinfo,
struct v4l2_pix_format_mplane *pix)
{
const struct fdp1_fmt *fmt;
unsigned int width;
unsigned int height;
/* Validate the pixel format to ensure the output queue supports it. */
fmt = fdp1_find_format(pix->pixelformat);
if (!fmt || !(fmt->types & FDP1_OUTPUT))
fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
if (fmtinfo)
*fmtinfo = fmt;
pix->pixelformat = fmt->fourcc;
pix->num_planes = fmt->num_planes;
/*
* Progressive video and all interlaced field orders are acceptable.
* Default to V4L2_FIELD_INTERLACED.
*/
if (pix->field != V4L2_FIELD_NONE &&
pix->field != V4L2_FIELD_ALTERNATE &&
!V4L2_FIELD_HAS_BOTH(pix->field))
pix->field = V4L2_FIELD_INTERLACED;
/*
* The deinterlacer doesn't care about the colorspace, accept all values
* and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
* at the output of the deinterlacer supports a subset of encodings and
* quantization methods and will only be available when the colorspace
* allows it.
*/
if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
/*
* Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
* them to the supported frame size range. The height boundary are
* related to the full frame, divide them by two when the format passes
* fields in separate buffers.
*/
width = round_down(pix->width, fmt->hsub);
pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
height = round_down(pix->height, fmt->vsub);
if (pix->field == V4L2_FIELD_ALTERNATE)
pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
else
pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
fdp1_compute_stride(pix, fmt);
}
static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
const struct fdp1_fmt **fmtinfo,
struct v4l2_pix_format_mplane *pix)
{
struct fdp1_q_data *src_data = &ctx->out_q;
enum v4l2_colorspace colorspace;
enum v4l2_ycbcr_encoding ycbcr_enc;
enum v4l2_quantization quantization;
const struct fdp1_fmt *fmt;
bool allow_rgb;
/*
* Validate the pixel format. We can only accept RGB output formats if
* the input encoding and quantization are compatible with the format
* conversions supported by the hardware. The supported combinations are
*
* V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
* V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
* V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
*/
colorspace = src_data->format.colorspace;
ycbcr_enc = src_data->format.ycbcr_enc;
if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
quantization = src_data->format.quantization;
if (quantization == V4L2_QUANTIZATION_DEFAULT)
quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
ycbcr_enc);
allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
(ycbcr_enc == V4L2_YCBCR_ENC_709 &&
quantization == V4L2_QUANTIZATION_LIM_RANGE);
fmt = fdp1_find_format(pix->pixelformat);
if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
if (fmtinfo)
*fmtinfo = fmt;
pix->pixelformat = fmt->fourcc;
pix->num_planes = fmt->num_planes;
pix->field = V4L2_FIELD_NONE;
/*
* The colorspace on the capture queue is copied from the output queue
* as the hardware can't change the colorspace. It can convert YCbCr to
* RGB though, in which case the encoding and quantization are set to
* default values as anything else wouldn't make sense.
*/
pix->colorspace = src_data->format.colorspace;
pix->xfer_func = src_data->format.xfer_func;
if (fdp1_fmt_is_rgb(fmt)) {
pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
pix->quantization = V4L2_QUANTIZATION_DEFAULT;
} else {
pix->ycbcr_enc = src_data->format.ycbcr_enc;
pix->quantization = src_data->format.quantization;
}
/*
* The frame width is identical to the output queue, and the height is
* either doubled or identical depending on whether the output queue
* field order contains one or two fields per frame.
*/
pix->width = src_data->format.width;
if (src_data->format.field == V4L2_FIELD_ALTERNATE)
pix->height = 2 * src_data->format.height;
else
pix->height = src_data->format.height;
fdp1_compute_stride(pix, fmt);
}
static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_ctx *ctx = fh_to_ctx(priv);
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
else
fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
return 0;
}
static void fdp1_set_format(struct fdp1_ctx *ctx,
struct v4l2_pix_format_mplane *pix,
enum v4l2_buf_type type)
{
struct fdp1_q_data *q_data = get_q_data(ctx, type);
const struct fdp1_fmt *fmtinfo;
if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
fdp1_try_fmt_output(ctx, &fmtinfo, pix);
else
fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
q_data->fmt = fmtinfo;
q_data->format = *pix;
q_data->vsize = pix->height;
if (pix->field != V4L2_FIELD_NONE)
q_data->vsize /= 2;
q_data->stride_y = pix->plane_fmt[0].bytesperline;
q_data->stride_c = pix->plane_fmt[1].bytesperline;
/* Adjust strides for interleaved buffers */
if (pix->field == V4L2_FIELD_INTERLACED ||
pix->field == V4L2_FIELD_INTERLACED_TB ||
pix->field == V4L2_FIELD_INTERLACED_BT) {
q_data->stride_y *= 2;
q_data->stride_c *= 2;
}
/* Propagate the format from the output node to the capture node. */
if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
struct fdp1_q_data *dst_data = &ctx->cap_q;
/*
* Copy the format, clear the per-plane bytes per line and image
* size, override the field and double the height if needed.
*/
dst_data->format = q_data->format;
memset(dst_data->format.plane_fmt, 0,
sizeof(dst_data->format.plane_fmt));
dst_data->format.field = V4L2_FIELD_NONE;
if (pix->field == V4L2_FIELD_ALTERNATE)
dst_data->format.height *= 2;
fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
dst_data->vsize = dst_data->format.height;
dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
}
}
static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_ctx *ctx = fh_to_ctx(priv);
struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
if (vb2_is_busy(vq)) {
v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
return 0;
}
static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct fdp1_ctx *ctx =
container_of(ctrl->handler, struct fdp1_ctx, hdl);
struct fdp1_q_data *src_q_data = &ctx->out_q;
switch (ctrl->id) {
case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
ctrl->val = 2;
else
ctrl->val = 1;
return 0;
}
return 1;
}
static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct fdp1_ctx *ctx =
container_of(ctrl->handler, struct fdp1_ctx, hdl);
switch (ctrl->id) {
case V4L2_CID_ALPHA_COMPONENT:
ctx->alpha = ctrl->val;
break;
case V4L2_CID_DEINTERLACING_MODE:
ctx->deint_mode = ctrl->val;
break;
}
return 0;
}
static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
.s_ctrl = fdp1_s_ctrl,
.g_volatile_ctrl = fdp1_g_ctrl,
};
static const char * const fdp1_ctrl_deint_menu[] = {
"Progressive",
"Adaptive 2D/3D",
"Fixed 2D",
"Fixed 3D",
"Previous field",
"Next field",
NULL
};
static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
.vidioc_querycap = fdp1_vidioc_querycap,
.vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
.vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
.vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
.vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
.vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
.vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
.vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
.vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
.vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
.vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* Queue operations
*/
static int fdp1_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_ctxs[])
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
struct fdp1_q_data *q_data;
unsigned int i;
q_data = get_q_data(ctx, vq->type);
if (*nplanes) {
if (*nplanes > FDP1_MAX_PLANES)
return -EINVAL;
return 0;
}
*nplanes = q_data->format.num_planes;
for (i = 0; i < *nplanes; i++)
sizes[i] = q_data->format.plane_fmt[i].sizeimage;
return 0;
}
static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
struct vb2_v4l2_buffer *vbuf,
unsigned int field_num)
{
struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
unsigned int num_fields;
unsigned int i;
num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
fbuf->vb = vbuf;
fbuf->last_field = (field_num + 1) == num_fields;
for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
switch (vbuf->field) {
case V4L2_FIELD_INTERLACED:
/*
* Interlaced means bottom-top for 60Hz TV standards (NTSC) and
* top-bottom for 50Hz. As TV standards are not applicable to
* the mem-to-mem API, use the height as a heuristic.
*/
fbuf->field = (q_data->format.height < 576) == field_num
? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
break;
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_SEQ_TB:
fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
break;
case V4L2_FIELD_INTERLACED_BT:
case V4L2_FIELD_SEQ_BT:
fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
break;
default:
fbuf->field = vbuf->field;
break;
}
/* Buffer is completed */
if (!field_num)
return;
/* Adjust buffer addresses for second field */
switch (vbuf->field) {
case V4L2_FIELD_INTERLACED:
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
fbuf->addrs[i] +=
(i == 0 ? q_data->stride_y : q_data->stride_c);
break;
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
fbuf->addrs[i] += q_data->vsize *
(i == 0 ? q_data->stride_y : q_data->stride_c);
break;
}
}
static int fdp1_buf_prepare(struct vb2_buffer *vb)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
unsigned int i;
if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
bool field_valid = true;
/* Validate the buffer field. */
switch (q_data->format.field) {
case V4L2_FIELD_NONE:
if (vbuf->field != V4L2_FIELD_NONE)
field_valid = false;
break;
case V4L2_FIELD_ALTERNATE:
if (vbuf->field != V4L2_FIELD_TOP &&
vbuf->field != V4L2_FIELD_BOTTOM)
field_valid = false;
break;
case V4L2_FIELD_INTERLACED:
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
if (vbuf->field != q_data->format.field)
field_valid = false;
break;
}
if (!field_valid) {
dprintk(ctx->fdp1,
"buffer field %u invalid for format field %u\n",
vbuf->field, q_data->format.field);
return -EINVAL;
}
} else {
vbuf->field = V4L2_FIELD_NONE;
}
/* Validate the planes sizes. */
for (i = 0; i < q_data->format.num_planes; i++) {
unsigned long size = q_data->format.plane_fmt[i].sizeimage;
if (vb2_plane_size(vb, i) < size) {
dprintk(ctx->fdp1,
"data will not fit into plane [%u/%u] (%lu < %lu)\n",
i, q_data->format.num_planes,
vb2_plane_size(vb, i), size);
return -EINVAL;
}
/* We have known size formats all around */
vb2_set_plane_payload(vb, i, size);
}
buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
for (i = 0; i < buf->num_fields; ++i)
fdp1_buf_prepare_field(q_data, vbuf, i);
return 0;
}
static void fdp1_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
/*
* Force our deint_mode when we are progressive,
* ignoring any setting on the device from the user,
* Otherwise, lock in the requested de-interlace mode.
*/
if (q_data->format.field == V4L2_FIELD_NONE)
ctx->deint_mode = FDP1_PROGRESSIVE;
if (ctx->deint_mode == FDP1_ADAPT2D3D) {
u32 stride;
dma_addr_t smsk_base;
const u32 bpp = 2; /* bytes per pixel */
stride = round_up(q_data->format.width, 8);
ctx->smsk_size = bpp * stride * q_data->vsize;
ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
ctx->smsk_size, &smsk_base, GFP_KERNEL);
if (ctx->smsk_cpu == NULL) {
dprintk(ctx->fdp1, "Failed to alloc smsk\n");
return -ENOMEM;
}
ctx->smsk_addr[0] = smsk_base;
ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
}
}
return 0;
}
static void fdp1_stop_streaming(struct vb2_queue *q)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
struct vb2_v4l2_buffer *vbuf;
unsigned long flags;
while (1) {
if (V4L2_TYPE_IS_OUTPUT(q->type))
vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
else
vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
if (vbuf == NULL)
break;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
}
/* Empty Output queues */
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
/* Empty our internal queues */
struct fdp1_field_buffer *fbuf;
/* Free any queued buffers */
fbuf = fdp1_dequeue_field(ctx);
while (fbuf != NULL) {
fdp1_field_complete(ctx, fbuf);
fbuf = fdp1_dequeue_field(ctx);
}
/* Free smsk_data */
if (ctx->smsk_cpu) {
dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
ctx->smsk_cpu, ctx->smsk_addr[0]);
ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
ctx->smsk_cpu = NULL;
}
WARN(!list_empty(&ctx->fields_queue),
"Buffer queue not empty");
} else {
/* Empty Capture queues (Jobs) */
struct fdp1_job *job;
job = get_queued_job(ctx->fdp1);
while (job) {
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
fdp1_field_complete(ctx, job->previous);
else
fdp1_field_complete(ctx, job->active);
v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
job->dst = NULL;
job = get_queued_job(ctx->fdp1);
}
/* Free any held buffer in the ctx */
fdp1_field_complete(ctx, ctx->previous);
WARN(!list_empty(&ctx->fdp1->queued_job_list),
"Queued Job List not empty");
WARN(!list_empty(&ctx->fdp1->hw_job_list),
"HW Job list not empty");
}
}
static struct vb2_ops fdp1_qops = {
.queue_setup = fdp1_queue_setup,
.buf_prepare = fdp1_buf_prepare,
.buf_queue = fdp1_buf_queue,
.start_streaming = fdp1_start_streaming,
.stop_streaming = fdp1_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
struct fdp1_ctx *ctx = priv;
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
src_vq->drv_priv = ctx;
src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
src_vq->ops = &fdp1_qops;
src_vq->mem_ops = &vb2_dma_contig_memops;
src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
src_vq->lock = &ctx->fdp1->dev_mutex;
src_vq->dev = ctx->fdp1->dev;
ret = vb2_queue_init(src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
dst_vq->drv_priv = ctx;
dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
dst_vq->ops = &fdp1_qops;
dst_vq->mem_ops = &vb2_dma_contig_memops;
dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
dst_vq->lock = &ctx->fdp1->dev_mutex;
dst_vq->dev = ctx->fdp1->dev;
return vb2_queue_init(dst_vq);
}
/*
* File operations
*/
static int fdp1_open(struct file *file)
{
struct fdp1_dev *fdp1 = video_drvdata(file);
struct v4l2_pix_format_mplane format;
struct fdp1_ctx *ctx = NULL;
struct v4l2_ctrl *ctrl;
int ret = 0;
if (mutex_lock_interruptible(&fdp1->dev_mutex))
return -ERESTARTSYS;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
ret = -ENOMEM;
goto done;
}
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
ctx->fdp1 = fdp1;
/* Initialise Queues */
INIT_LIST_HEAD(&ctx->fields_queue);
ctx->translen = 1;
ctx->sequence = 0;
/* Initialise controls */
v4l2_ctrl_handler_init(&ctx->hdl, 3);
v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_DEINTERLACING_MODE,
FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
fdp1_ctrl_deint_menu);
ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
if (ctx->hdl.error) {
ret = ctx->hdl.error;
v4l2_ctrl_handler_free(&ctx->hdl);
goto done;
}
ctx->fh.ctrl_handler = &ctx->hdl;
v4l2_ctrl_handler_setup(&ctx->hdl);
/* Configure default parameters. */
memset(&format, 0, sizeof(format));
fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
v4l2_ctrl_handler_free(&ctx->hdl);
kfree(ctx);
goto done;
}
/* Perform any power management required */
pm_runtime_get_sync(fdp1->dev);
v4l2_fh_add(&ctx->fh);
dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
ctx, ctx->fh.m2m_ctx);
done:
mutex_unlock(&fdp1->dev_mutex);
return ret;
}
static int fdp1_release(struct file *file)
{
struct fdp1_dev *fdp1 = video_drvdata(file);
struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
dprintk(fdp1, "Releasing instance %p\n", ctx);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
v4l2_ctrl_handler_free(&ctx->hdl);
mutex_lock(&fdp1->dev_mutex);
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
mutex_unlock(&fdp1->dev_mutex);
kfree(ctx);
pm_runtime_put(fdp1->dev);
return 0;
}
static const struct v4l2_file_operations fdp1_fops = {
.owner = THIS_MODULE,
.open = fdp1_open,
.release = fdp1_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static const struct video_device fdp1_videodev = {
.name = DRIVER_NAME,
.vfl_dir = VFL_DIR_M2M,
.fops = &fdp1_fops,
.device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
.ioctl_ops = &fdp1_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
};
static const struct v4l2_m2m_ops m2m_ops = {
.device_run = fdp1_m2m_device_run,
.job_ready = fdp1_m2m_job_ready,
.job_abort = fdp1_m2m_job_abort,
};
static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
{
struct fdp1_dev *fdp1 = dev_id;
u32 int_status;
u32 ctl_status;
u32 vint_cnt;
u32 cycles;
int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
FD1_CTL_STATUS_VINT_CNT_SHIFT;
/* Clear interrupts */
fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
if (debug >= 2) {
dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
dprintk(fdp1, "CycleStatus = %d (%dms)\n",
cycles, cycles/(fdp1->clk_rate/1000));
dprintk(fdp1,
"Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
ctl_status, vint_cnt,
ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
dprintk(fdp1, "***********************************\n");
}
/* Spurious interrupt */
if (!(FD1_CTL_IRQ_MASK & int_status))
return IRQ_NONE;
/* Work completed, release the frame */
if (FD1_CTL_IRQ_VERE & int_status)
device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
else if (FD1_CTL_IRQ_FREE & int_status)
device_frame_end(fdp1, VB2_BUF_STATE_DONE);
return IRQ_HANDLED;
}
static int fdp1_probe(struct platform_device *pdev)
{
struct fdp1_dev *fdp1;
struct video_device *vfd;
struct device_node *fcp_node;
struct resource *res;
struct clk *clk;
unsigned int i;
int ret;
int hw_version;
fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
if (!fdp1)
return -ENOMEM;
INIT_LIST_HEAD(&fdp1->free_job_list);
INIT_LIST_HEAD(&fdp1->queued_job_list);
INIT_LIST_HEAD(&fdp1->hw_job_list);
/* Initialise the jobs on the free list */
for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
mutex_init(&fdp1->dev_mutex);
spin_lock_init(&fdp1->irqlock);
spin_lock_init(&fdp1->device_process_lock);
fdp1->dev = &pdev->dev;
platform_set_drvdata(pdev, fdp1);
/* Memory-mapped registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fdp1->regs))
return PTR_ERR(fdp1->regs);
/* Interrupt service routine registration */
fdp1->irq = ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(&pdev->dev, "cannot find IRQ\n");
return ret;
}
ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
dev_name(&pdev->dev), fdp1);
if (ret) {
dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
return ret;
}
/* FCP */
fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
if (fcp_node) {
fdp1->fcp = rcar_fcp_get(fcp_node);
of_node_put(fcp_node);
if (IS_ERR(fdp1->fcp)) {
dev_err(&pdev->dev, "FCP not found (%ld)\n",
PTR_ERR(fdp1->fcp));
return PTR_ERR(fdp1->fcp);
}
}
/* Determine our clock rate */
clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
fdp1->clk_rate = clk_get_rate(clk);
clk_put(clk);
/* V4L2 device registration */
ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
if (ret) {
v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
return ret;
}
/* M2M registration */
fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
if (IS_ERR(fdp1->m2m_dev)) {
v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
ret = PTR_ERR(fdp1->m2m_dev);
goto unreg_dev;
}
/* Video registration */
fdp1->vfd = fdp1_videodev;
vfd = &fdp1->vfd;
vfd->lock = &fdp1->dev_mutex;
vfd->v4l2_dev = &fdp1->v4l2_dev;
video_set_drvdata(vfd, fdp1);
strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
goto release_m2m;
}
v4l2_info(&fdp1->v4l2_dev,
"Device registered as /dev/video%d\n", vfd->num);
/* Power up the cells to read HW */
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(fdp1->dev);
hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
switch (hw_version) {
case FD1_IP_H3_ES1:
dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
break;
case FD1_IP_M3W:
dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
break;
case FD1_IP_H3:
dprintk(fdp1, "FDP1 Version R-Car H3\n");
break;
default:
dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
hw_version);
}
/* Allow the hw to sleep until an open call puts it to use */
pm_runtime_put(fdp1->dev);
return 0;
release_m2m:
v4l2_m2m_release(fdp1->m2m_dev);
unreg_dev:
v4l2_device_unregister(&fdp1->v4l2_dev);
return ret;
}
static int fdp1_remove(struct platform_device *pdev)
{
struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
v4l2_m2m_release(fdp1->m2m_dev);
video_unregister_device(&fdp1->vfd);
v4l2_device_unregister(&fdp1->v4l2_dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
{
struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
rcar_fcp_disable(fdp1->fcp);
return 0;
}
static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
{
struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
/* Program in the static LUTs */
fdp1_set_lut(fdp1);
return rcar_fcp_enable(fdp1->fcp);
}
static const struct dev_pm_ops fdp1_pm_ops = {
SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
fdp1_pm_runtime_resume,
NULL)
};
static const struct of_device_id fdp1_dt_ids[] = {
{ .compatible = "renesas,fdp1" },
{ },
};
MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
static struct platform_driver fdp1_pdrv = {
.probe = fdp1_probe,
.remove = fdp1_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = fdp1_dt_ids,
.pm = &fdp1_pm_ops,
},
};
module_platform_driver(fdp1_pdrv);
MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);