mirror of
https://github.com/torvalds/linux.git
synced 2024-12-13 06:32:50 +00:00
3b7391de67
The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
640 lines
16 KiB
C
640 lines
16 KiB
C
/* Common capabilities, needed by capability.o and root_plug.o
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/security.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/sched.h>
|
|
|
|
/* Global security state */
|
|
|
|
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
|
|
EXPORT_SYMBOL(securebits);
|
|
|
|
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
NETLINK_CB(skb).eff_cap = current->cap_effective;
|
|
return 0;
|
|
}
|
|
|
|
int cap_netlink_recv(struct sk_buff *skb, int cap)
|
|
{
|
|
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cap_netlink_recv);
|
|
|
|
/*
|
|
* NOTE WELL: cap_capable() cannot be used like the kernel's capable()
|
|
* function. That is, it has the reverse semantics: cap_capable()
|
|
* returns 0 when a task has a capability, but the kernel's capable()
|
|
* returns 1 for this case.
|
|
*/
|
|
int cap_capable (struct task_struct *tsk, int cap)
|
|
{
|
|
/* Derived from include/linux/sched.h:capable. */
|
|
if (cap_raised(tsk->cap_effective, cap))
|
|
return 0;
|
|
return -EPERM;
|
|
}
|
|
|
|
int cap_settime(struct timespec *ts, struct timezone *tz)
|
|
{
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
int cap_ptrace (struct task_struct *parent, struct task_struct *child)
|
|
{
|
|
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
|
|
if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
|
|
!__capable(parent, CAP_SYS_PTRACE))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
{
|
|
/* Derived from kernel/capability.c:sys_capget. */
|
|
*effective = target->cap_effective;
|
|
*inheritable = target->cap_inheritable;
|
|
*permitted = target->cap_permitted;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
|
|
static inline int cap_block_setpcap(struct task_struct *target)
|
|
{
|
|
/*
|
|
* No support for remote process capability manipulation with
|
|
* filesystem capability support.
|
|
*/
|
|
return (target != current);
|
|
}
|
|
|
|
static inline int cap_inh_is_capped(void)
|
|
{
|
|
/*
|
|
* Return 1 if changes to the inheritable set are limited
|
|
* to the old permitted set. That is, if the current task
|
|
* does *not* possess the CAP_SETPCAP capability.
|
|
*/
|
|
return (cap_capable(current, CAP_SETPCAP) != 0);
|
|
}
|
|
|
|
#else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
|
|
|
|
static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
|
|
static inline int cap_inh_is_capped(void) { return 1; }
|
|
|
|
#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
|
|
|
|
int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
{
|
|
if (cap_block_setpcap(target)) {
|
|
return -EPERM;
|
|
}
|
|
if (cap_inh_is_capped()
|
|
&& !cap_issubset(*inheritable,
|
|
cap_combine(target->cap_inheritable,
|
|
current->cap_permitted))) {
|
|
/* incapable of using this inheritable set */
|
|
return -EPERM;
|
|
}
|
|
if (!cap_issubset(*inheritable,
|
|
cap_combine(target->cap_inheritable,
|
|
current->cap_bset))) {
|
|
/* no new pI capabilities outside bounding set */
|
|
return -EPERM;
|
|
}
|
|
|
|
/* verify restrictions on target's new Permitted set */
|
|
if (!cap_issubset (*permitted,
|
|
cap_combine (target->cap_permitted,
|
|
current->cap_permitted))) {
|
|
return -EPERM;
|
|
}
|
|
|
|
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
|
|
if (!cap_issubset (*effective, *permitted)) {
|
|
return -EPERM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
{
|
|
target->cap_effective = *effective;
|
|
target->cap_inheritable = *inheritable;
|
|
target->cap_permitted = *permitted;
|
|
}
|
|
|
|
static inline void bprm_clear_caps(struct linux_binprm *bprm)
|
|
{
|
|
cap_clear(bprm->cap_inheritable);
|
|
cap_clear(bprm->cap_permitted);
|
|
bprm->cap_effective = false;
|
|
}
|
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
|
|
int cap_inode_need_killpriv(struct dentry *dentry)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
int error;
|
|
|
|
if (!inode->i_op || !inode->i_op->getxattr)
|
|
return 0;
|
|
|
|
error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
|
|
if (error <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int cap_inode_killpriv(struct dentry *dentry)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
if (!inode->i_op || !inode->i_op->removexattr)
|
|
return 0;
|
|
|
|
return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
|
|
}
|
|
|
|
static inline int cap_from_disk(struct vfs_cap_data *caps,
|
|
struct linux_binprm *bprm, unsigned size)
|
|
{
|
|
__u32 magic_etc;
|
|
unsigned tocopy, i;
|
|
|
|
if (size < sizeof(magic_etc))
|
|
return -EINVAL;
|
|
|
|
magic_etc = le32_to_cpu(caps->magic_etc);
|
|
|
|
switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
|
|
case VFS_CAP_REVISION_1:
|
|
if (size != XATTR_CAPS_SZ_1)
|
|
return -EINVAL;
|
|
tocopy = VFS_CAP_U32_1;
|
|
break;
|
|
case VFS_CAP_REVISION_2:
|
|
if (size != XATTR_CAPS_SZ_2)
|
|
return -EINVAL;
|
|
tocopy = VFS_CAP_U32_2;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
|
|
bprm->cap_effective = true;
|
|
} else {
|
|
bprm->cap_effective = false;
|
|
}
|
|
|
|
for (i = 0; i < tocopy; ++i) {
|
|
bprm->cap_permitted.cap[i] =
|
|
le32_to_cpu(caps->data[i].permitted);
|
|
bprm->cap_inheritable.cap[i] =
|
|
le32_to_cpu(caps->data[i].inheritable);
|
|
}
|
|
while (i < VFS_CAP_U32) {
|
|
bprm->cap_permitted.cap[i] = 0;
|
|
bprm->cap_inheritable.cap[i] = 0;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Locate any VFS capabilities: */
|
|
static int get_file_caps(struct linux_binprm *bprm)
|
|
{
|
|
struct dentry *dentry;
|
|
int rc = 0;
|
|
struct vfs_cap_data vcaps;
|
|
struct inode *inode;
|
|
|
|
if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
|
|
bprm_clear_caps(bprm);
|
|
return 0;
|
|
}
|
|
|
|
dentry = dget(bprm->file->f_dentry);
|
|
inode = dentry->d_inode;
|
|
if (!inode->i_op || !inode->i_op->getxattr)
|
|
goto out;
|
|
|
|
rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
|
|
XATTR_CAPS_SZ);
|
|
if (rc == -ENODATA || rc == -EOPNOTSUPP) {
|
|
/* no data, that's ok */
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = cap_from_disk(&vcaps, bprm, rc);
|
|
if (rc)
|
|
printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
|
|
__FUNCTION__, rc, bprm->filename);
|
|
|
|
out:
|
|
dput(dentry);
|
|
if (rc)
|
|
bprm_clear_caps(bprm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#else
|
|
int cap_inode_need_killpriv(struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int cap_inode_killpriv(struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int get_file_caps(struct linux_binprm *bprm)
|
|
{
|
|
bprm_clear_caps(bprm);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int cap_bprm_set_security (struct linux_binprm *bprm)
|
|
{
|
|
int ret;
|
|
|
|
ret = get_file_caps(bprm);
|
|
if (ret)
|
|
printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
|
|
__FUNCTION__, ret, bprm->filename);
|
|
|
|
/* To support inheritance of root-permissions and suid-root
|
|
* executables under compatibility mode, we raise all three
|
|
* capability sets for the file.
|
|
*
|
|
* If only the real uid is 0, we only raise the inheritable
|
|
* and permitted sets of the executable file.
|
|
*/
|
|
|
|
if (!issecure (SECURE_NOROOT)) {
|
|
if (bprm->e_uid == 0 || current->uid == 0) {
|
|
cap_set_full (bprm->cap_inheritable);
|
|
cap_set_full (bprm->cap_permitted);
|
|
}
|
|
if (bprm->e_uid == 0)
|
|
bprm->cap_effective = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
|
|
{
|
|
/* Derived from fs/exec.c:compute_creds. */
|
|
kernel_cap_t new_permitted, working;
|
|
|
|
new_permitted = cap_intersect(bprm->cap_permitted,
|
|
current->cap_bset);
|
|
working = cap_intersect(bprm->cap_inheritable,
|
|
current->cap_inheritable);
|
|
new_permitted = cap_combine(new_permitted, working);
|
|
|
|
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
|
|
!cap_issubset (new_permitted, current->cap_permitted)) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
current->pdeath_signal = 0;
|
|
|
|
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
|
|
if (!capable(CAP_SETUID)) {
|
|
bprm->e_uid = current->uid;
|
|
bprm->e_gid = current->gid;
|
|
}
|
|
if (!capable (CAP_SETPCAP)) {
|
|
new_permitted = cap_intersect (new_permitted,
|
|
current->cap_permitted);
|
|
}
|
|
}
|
|
}
|
|
|
|
current->suid = current->euid = current->fsuid = bprm->e_uid;
|
|
current->sgid = current->egid = current->fsgid = bprm->e_gid;
|
|
|
|
/* For init, we want to retain the capabilities set
|
|
* in the init_task struct. Thus we skip the usual
|
|
* capability rules */
|
|
if (!is_global_init(current)) {
|
|
current->cap_permitted = new_permitted;
|
|
if (bprm->cap_effective)
|
|
current->cap_effective = new_permitted;
|
|
else
|
|
cap_clear(current->cap_effective);
|
|
}
|
|
|
|
/* AUD: Audit candidate if current->cap_effective is set */
|
|
|
|
current->keep_capabilities = 0;
|
|
}
|
|
|
|
int cap_bprm_secureexec (struct linux_binprm *bprm)
|
|
{
|
|
if (current->uid != 0) {
|
|
if (bprm->cap_effective)
|
|
return 1;
|
|
if (!cap_isclear(bprm->cap_permitted))
|
|
return 1;
|
|
if (!cap_isclear(bprm->cap_inheritable))
|
|
return 1;
|
|
}
|
|
|
|
return (current->euid != current->uid ||
|
|
current->egid != current->gid);
|
|
}
|
|
|
|
int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
|
|
size_t size, int flags)
|
|
{
|
|
if (!strcmp(name, XATTR_NAME_CAPS)) {
|
|
if (!capable(CAP_SETFCAP))
|
|
return -EPERM;
|
|
return 0;
|
|
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
|
|
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
|
|
!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
int cap_inode_removexattr(struct dentry *dentry, char *name)
|
|
{
|
|
if (!strcmp(name, XATTR_NAME_CAPS)) {
|
|
if (!capable(CAP_SETFCAP))
|
|
return -EPERM;
|
|
return 0;
|
|
} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
|
|
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
|
|
!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/* moved from kernel/sys.c. */
|
|
/*
|
|
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
|
|
* a process after a call to setuid, setreuid, or setresuid.
|
|
*
|
|
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
|
|
* {r,e,s}uid != 0, the permitted and effective capabilities are
|
|
* cleared.
|
|
*
|
|
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
|
|
* capabilities of the process are cleared.
|
|
*
|
|
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
|
|
* capabilities are set to the permitted capabilities.
|
|
*
|
|
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
|
|
* never happen.
|
|
*
|
|
* -astor
|
|
*
|
|
* cevans - New behaviour, Oct '99
|
|
* A process may, via prctl(), elect to keep its capabilities when it
|
|
* calls setuid() and switches away from uid==0. Both permitted and
|
|
* effective sets will be retained.
|
|
* Without this change, it was impossible for a daemon to drop only some
|
|
* of its privilege. The call to setuid(!=0) would drop all privileges!
|
|
* Keeping uid 0 is not an option because uid 0 owns too many vital
|
|
* files..
|
|
* Thanks to Olaf Kirch and Peter Benie for spotting this.
|
|
*/
|
|
static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
|
|
int old_suid)
|
|
{
|
|
if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
|
|
(current->uid != 0 && current->euid != 0 && current->suid != 0) &&
|
|
!current->keep_capabilities) {
|
|
cap_clear (current->cap_permitted);
|
|
cap_clear (current->cap_effective);
|
|
}
|
|
if (old_euid == 0 && current->euid != 0) {
|
|
cap_clear (current->cap_effective);
|
|
}
|
|
if (old_euid != 0 && current->euid == 0) {
|
|
current->cap_effective = current->cap_permitted;
|
|
}
|
|
}
|
|
|
|
int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
|
|
int flags)
|
|
{
|
|
switch (flags) {
|
|
case LSM_SETID_RE:
|
|
case LSM_SETID_ID:
|
|
case LSM_SETID_RES:
|
|
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
|
|
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
|
|
cap_emulate_setxuid (old_ruid, old_euid, old_suid);
|
|
}
|
|
break;
|
|
case LSM_SETID_FS:
|
|
{
|
|
uid_t old_fsuid = old_ruid;
|
|
|
|
/* Copied from kernel/sys.c:setfsuid. */
|
|
|
|
/*
|
|
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
|
|
* if not, we might be a bit too harsh here.
|
|
*/
|
|
|
|
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
|
|
if (old_fsuid == 0 && current->fsuid != 0) {
|
|
current->cap_effective =
|
|
cap_drop_fs_set(
|
|
current->cap_effective);
|
|
}
|
|
if (old_fsuid != 0 && current->fsuid == 0) {
|
|
current->cap_effective =
|
|
cap_raise_fs_set(
|
|
current->cap_effective,
|
|
current->cap_permitted);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
|
|
/*
|
|
* Rationale: code calling task_setscheduler, task_setioprio, and
|
|
* task_setnice, assumes that
|
|
* . if capable(cap_sys_nice), then those actions should be allowed
|
|
* . if not capable(cap_sys_nice), but acting on your own processes,
|
|
* then those actions should be allowed
|
|
* This is insufficient now since you can call code without suid, but
|
|
* yet with increased caps.
|
|
* So we check for increased caps on the target process.
|
|
*/
|
|
static inline int cap_safe_nice(struct task_struct *p)
|
|
{
|
|
if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
|
|
!__capable(current, CAP_SYS_NICE))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
int cap_task_setscheduler (struct task_struct *p, int policy,
|
|
struct sched_param *lp)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
int cap_task_setioprio (struct task_struct *p, int ioprio)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
int cap_task_setnice (struct task_struct *p, int nice)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
int cap_task_kill(struct task_struct *p, struct siginfo *info,
|
|
int sig, u32 secid)
|
|
{
|
|
if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
|
|
return 0;
|
|
|
|
/*
|
|
* Running a setuid root program raises your capabilities.
|
|
* Killing your own setuid root processes was previously
|
|
* allowed.
|
|
* We must preserve legacy signal behavior in this case.
|
|
*/
|
|
if (p->euid == 0 && p->uid == current->uid)
|
|
return 0;
|
|
|
|
/* sigcont is permitted within same session */
|
|
if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
|
|
return 0;
|
|
|
|
if (secid)
|
|
/*
|
|
* Signal sent as a particular user.
|
|
* Capabilities are ignored. May be wrong, but it's the
|
|
* only thing we can do at the moment.
|
|
* Used only by usb drivers?
|
|
*/
|
|
return 0;
|
|
if (cap_issubset(p->cap_permitted, current->cap_permitted))
|
|
return 0;
|
|
if (capable(CAP_KILL))
|
|
return 0;
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* called from kernel/sys.c for prctl(PR_CABSET_DROP)
|
|
* done without task_capability_lock() because it introduces
|
|
* no new races - i.e. only another task doing capget() on
|
|
* this task could get inconsistent info. There can be no
|
|
* racing writer bc a task can only change its own caps.
|
|
*/
|
|
long cap_prctl_drop(unsigned long cap)
|
|
{
|
|
if (!capable(CAP_SETPCAP))
|
|
return -EPERM;
|
|
if (!cap_valid(cap))
|
|
return -EINVAL;
|
|
cap_lower(current->cap_bset, cap);
|
|
return 0;
|
|
}
|
|
#else
|
|
int cap_task_setscheduler (struct task_struct *p, int policy,
|
|
struct sched_param *lp)
|
|
{
|
|
return 0;
|
|
}
|
|
int cap_task_setioprio (struct task_struct *p, int ioprio)
|
|
{
|
|
return 0;
|
|
}
|
|
int cap_task_setnice (struct task_struct *p, int nice)
|
|
{
|
|
return 0;
|
|
}
|
|
int cap_task_kill(struct task_struct *p, struct siginfo *info,
|
|
int sig, u32 secid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void cap_task_reparent_to_init (struct task_struct *p)
|
|
{
|
|
cap_set_init_eff(p->cap_effective);
|
|
cap_clear(p->cap_inheritable);
|
|
cap_set_full(p->cap_permitted);
|
|
p->keep_capabilities = 0;
|
|
return;
|
|
}
|
|
|
|
int cap_syslog (int type)
|
|
{
|
|
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
|
|
{
|
|
int cap_sys_admin = 0;
|
|
|
|
if (cap_capable(current, CAP_SYS_ADMIN) == 0)
|
|
cap_sys_admin = 1;
|
|
return __vm_enough_memory(mm, pages, cap_sys_admin);
|
|
}
|
|
|