linux/drivers/net/ethernet/agere/et131x.c
Eric Dumazet 6ad20165d3 drivers: net: generalize napi_complete_done()
napi_complete_done() allows to opt-in for gro_flush_timeout,
added back in linux-3.19, commit 3b47d30396
("net: gro: add a per device gro flush timer")

This allows for more efficient GRO aggregation without
sacrifying latencies.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-30 15:10:42 -05:00

4088 lines
118 KiB
C

/* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
* Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/phy.h>
#include "et131x.h"
MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
/* EEPROM defines */
#define MAX_NUM_REGISTER_POLLS 1000
#define MAX_NUM_WRITE_RETRIES 2
/* MAC defines */
#define COUNTER_WRAP_16_BIT 0x10000
#define COUNTER_WRAP_12_BIT 0x1000
/* PCI defines */
#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
/* ISR defines */
/* For interrupts, normal running is:
* rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
* watchdog_interrupt & txdma_xfer_done
*
* In both cases, when flow control is enabled for either Tx or bi-direction,
* we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
* buffer rings are running low.
*/
#define INT_MASK_DISABLE 0xffffffff
/* NOTE: Masking out MAC_STAT Interrupt for now...
* #define INT_MASK_ENABLE 0xfff6bf17
* #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
*/
#define INT_MASK_ENABLE 0xfffebf17
#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
/* General defines */
/* Packet and header sizes */
#define NIC_MIN_PACKET_SIZE 60
/* Multicast list size */
#define NIC_MAX_MCAST_LIST 128
/* Supported Filters */
#define ET131X_PACKET_TYPE_DIRECTED 0x0001
#define ET131X_PACKET_TYPE_MULTICAST 0x0002
#define ET131X_PACKET_TYPE_BROADCAST 0x0004
#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
/* Tx Timeout */
#define ET131X_TX_TIMEOUT (1 * HZ)
#define NIC_SEND_HANG_THRESHOLD 0
/* MP_ADAPTER flags */
#define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
/* MP_SHARED flags */
#define FMP_ADAPTER_LOWER_POWER 0x00200000
#define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
#define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
#define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
/* Some offsets in PCI config space that are actually used. */
#define ET1310_PCI_MAC_ADDRESS 0xA4
#define ET1310_PCI_EEPROM_STATUS 0xB2
#define ET1310_PCI_ACK_NACK 0xC0
#define ET1310_PCI_REPLAY 0xC2
#define ET1310_PCI_L0L1LATENCY 0xCF
/* PCI Product IDs */
#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
/* Define order of magnitude converter */
#define NANO_IN_A_MICRO 1000
#define PARM_RX_NUM_BUFS_DEF 4
#define PARM_RX_TIME_INT_DEF 10
#define PARM_RX_MEM_END_DEF 0x2bc
#define PARM_TX_TIME_INT_DEF 40
#define PARM_TX_NUM_BUFS_DEF 4
#define PARM_DMA_CACHE_DEF 0
/* RX defines */
#define FBR_CHUNKS 32
#define MAX_DESC_PER_RING_RX 1024
/* number of RFDs - default and min */
#define RFD_LOW_WATER_MARK 40
#define NIC_DEFAULT_NUM_RFD 1024
#define NUM_FBRS 2
#define MAX_PACKETS_HANDLED 256
#define ET131X_MIN_MTU 64
#define ET131X_MAX_MTU 9216
#define ALCATEL_MULTICAST_PKT 0x01000000
#define ALCATEL_BROADCAST_PKT 0x02000000
/* typedefs for Free Buffer Descriptors */
struct fbr_desc {
u32 addr_lo;
u32 addr_hi;
u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
};
/* Packet Status Ring Descriptors
*
* Word 0:
*
* top 16 bits are from the Alcatel Status Word as enumerated in
* PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
*
* 0: hp hash pass
* 1: ipa IP checksum assist
* 2: ipp IP checksum pass
* 3: tcpa TCP checksum assist
* 4: tcpp TCP checksum pass
* 5: wol WOL Event
* 6: rxmac_error RXMAC Error Indicator
* 7: drop Drop packet
* 8: ft Frame Truncated
* 9: jp Jumbo Packet
* 10: vp VLAN Packet
* 11-15: unused
* 16: asw_prev_pkt_dropped e.g. IFG too small on previous
* 17: asw_RX_DV_event short receive event detected
* 18: asw_false_carrier_event bad carrier since last good packet
* 19: asw_code_err one or more nibbles signalled as errors
* 20: asw_CRC_err CRC error
* 21: asw_len_chk_err frame length field incorrect
* 22: asw_too_long frame length > 1518 bytes
* 23: asw_OK valid CRC + no code error
* 24: asw_multicast has a multicast address
* 25: asw_broadcast has a broadcast address
* 26: asw_dribble_nibble spurious bits after EOP
* 27: asw_control_frame is a control frame
* 28: asw_pause_frame is a pause frame
* 29: asw_unsupported_op unsupported OP code
* 30: asw_VLAN_tag VLAN tag detected
* 31: asw_long_evt Rx long event
*
* Word 1:
* 0-15: length length in bytes
* 16-25: bi Buffer Index
* 26-27: ri Ring Index
* 28-31: reserved
*/
struct pkt_stat_desc {
u32 word0;
u32 word1;
};
/* Typedefs for the RX DMA status word */
/* rx status word 0 holds part of the status bits of the Rx DMA engine
* that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
* which contains the Free Buffer ring 0 and 1 available offset.
*
* bit 0-9 FBR1 offset
* bit 10 Wrap flag for FBR1
* bit 16-25 FBR0 offset
* bit 26 Wrap flag for FBR0
*/
/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
* that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
* which contains the Packet Status Ring available offset.
*
* bit 0-15 reserved
* bit 16-27 PSRoffset
* bit 28 PSRwrap
* bit 29-31 unused
*/
/* struct rx_status_block is a structure representing the status of the Rx
* DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
*/
struct rx_status_block {
u32 word0;
u32 word1;
};
/* Structure for look-up table holding free buffer ring pointers, addresses
* and state.
*/
struct fbr_lookup {
void *virt[MAX_DESC_PER_RING_RX];
u32 bus_high[MAX_DESC_PER_RING_RX];
u32 bus_low[MAX_DESC_PER_RING_RX];
void *ring_virtaddr;
dma_addr_t ring_physaddr;
void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
u32 local_full;
u32 num_entries;
dma_addr_t buffsize;
};
/* struct rx_ring is the structure representing the adaptor's local
* reference(s) to the rings
*/
struct rx_ring {
struct fbr_lookup *fbr[NUM_FBRS];
void *ps_ring_virtaddr;
dma_addr_t ps_ring_physaddr;
u32 local_psr_full;
u32 psr_entries;
struct rx_status_block *rx_status_block;
dma_addr_t rx_status_bus;
struct list_head recv_list;
u32 num_ready_recv;
u32 num_rfd;
bool unfinished_receives;
};
/* TX defines */
/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
*
* 0-15: length of packet
* 16-27: VLAN tag
* 28: VLAN CFI
* 29-31: VLAN priority
*
* word 3 of the control bits in the Tx Descriptor ring for the ET-1310
*
* 0: last packet in the sequence
* 1: first packet in the sequence
* 2: interrupt the processor when this pkt sent
* 3: Control word - no packet data
* 4: Issue half-duplex backpressure : XON/XOFF
* 5: send pause frame
* 6: Tx frame has error
* 7: append CRC
* 8: MAC override
* 9: pad packet
* 10: Packet is a Huge packet
* 11: append VLAN tag
* 12: IP checksum assist
* 13: TCP checksum assist
* 14: UDP checksum assist
*/
#define TXDESC_FLAG_LASTPKT 0x0001
#define TXDESC_FLAG_FIRSTPKT 0x0002
#define TXDESC_FLAG_INTPROC 0x0004
/* struct tx_desc represents each descriptor on the ring */
struct tx_desc {
u32 addr_hi;
u32 addr_lo;
u32 len_vlan; /* control words how to xmit the */
u32 flags; /* data (detailed above) */
};
/* The status of the Tx DMA engine it sits in free memory, and is pointed to
* by 0x101c / 0x1020. This is a DMA10 type
*/
/* TCB (Transmit Control Block: Host Side) */
struct tcb {
struct tcb *next; /* Next entry in ring */
u32 count; /* Used to spot stuck/lost packets */
u32 stale; /* Used to spot stuck/lost packets */
struct sk_buff *skb; /* Network skb we are tied to */
u32 index; /* Ring indexes */
u32 index_start;
};
/* Structure representing our local reference(s) to the ring */
struct tx_ring {
/* TCB (Transmit Control Block) memory and lists */
struct tcb *tcb_ring;
/* List of TCBs that are ready to be used */
struct tcb *tcb_qhead;
struct tcb *tcb_qtail;
/* list of TCBs that are currently being sent. */
struct tcb *send_head;
struct tcb *send_tail;
int used;
/* The actual descriptor ring */
struct tx_desc *tx_desc_ring;
dma_addr_t tx_desc_ring_pa;
/* send_idx indicates where we last wrote to in the descriptor ring. */
u32 send_idx;
/* The location of the write-back status block */
u32 *tx_status;
dma_addr_t tx_status_pa;
/* Packets since the last IRQ: used for interrupt coalescing */
int since_irq;
};
/* Do not change these values: if changed, then change also in respective
* TXdma and Rxdma engines
*/
#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
#define NUM_TCB 64
/* These values are all superseded by registry entries to facilitate tuning.
* Once the desired performance has been achieved, the optimal registry values
* should be re-populated to these #defines:
*/
#define TX_ERROR_PERIOD 1000
#define LO_MARK_PERCENT_FOR_PSR 15
#define LO_MARK_PERCENT_FOR_RX 15
/* RFD (Receive Frame Descriptor) */
struct rfd {
struct list_head list_node;
struct sk_buff *skb;
u32 len; /* total size of receive frame */
u16 bufferindex;
u8 ringindex;
};
/* Flow Control */
#define FLOW_BOTH 0
#define FLOW_TXONLY 1
#define FLOW_RXONLY 2
#define FLOW_NONE 3
/* Struct to define some device statistics */
struct ce_stats {
u32 multicast_pkts_rcvd;
u32 rcvd_pkts_dropped;
u32 tx_underflows;
u32 tx_collisions;
u32 tx_excessive_collisions;
u32 tx_first_collisions;
u32 tx_late_collisions;
u32 tx_max_pkt_errs;
u32 tx_deferred;
u32 rx_overflows;
u32 rx_length_errs;
u32 rx_align_errs;
u32 rx_crc_errs;
u32 rx_code_violations;
u32 rx_other_errs;
u32 interrupt_status;
};
/* The private adapter structure */
struct et131x_adapter {
struct net_device *netdev;
struct pci_dev *pdev;
struct mii_bus *mii_bus;
struct napi_struct napi;
/* Flags that indicate current state of the adapter */
u32 flags;
/* local link state, to determine if a state change has occurred */
int link;
/* Configuration */
u8 rom_addr[ETH_ALEN];
u8 addr[ETH_ALEN];
bool has_eeprom;
u8 eeprom_data[2];
spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
spinlock_t rcv_lock; /* protects the rx_ring receive list */
/* Packet Filter and look ahead size */
u32 packet_filter;
/* multicast list */
u32 multicast_addr_count;
u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
/* Pointer to the device's PCI register space */
struct address_map __iomem *regs;
/* Registry parameters */
u8 wanted_flow; /* Flow we want for 802.3x flow control */
u32 registry_jumbo_packet; /* Max supported ethernet packet size */
/* Derived from the registry: */
u8 flow; /* flow control validated by the far-end */
/* Minimize init-time */
struct timer_list error_timer;
/* variable putting the phy into coma mode when boot up with no cable
* plugged in after 5 seconds
*/
u8 boot_coma;
/* Tx Memory Variables */
struct tx_ring tx_ring;
/* Rx Memory Variables */
struct rx_ring rx_ring;
struct ce_stats stats;
};
static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
{
u32 reg;
int i;
/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
* bits 7,1:0 both equal to 1, at least once after reset.
* Subsequent operations need only to check that bits 1:0 are equal
* to 1 prior to starting a single byte read/write
*/
for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
return -EIO;
/* I2C idle and Phy Queue Avail both true */
if ((reg & 0x3000) == 0x3000) {
if (status)
*status = reg;
return reg & 0xFF;
}
}
return -ETIMEDOUT;
}
static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
{
struct pci_dev *pdev = adapter->pdev;
int index = 0;
int retries;
int err = 0;
int writeok = 0;
u32 status;
u32 val = 0;
/* For an EEPROM, an I2C single byte write is defined as a START
* condition followed by the device address, EEPROM address, one byte
* of data and a STOP condition. The STOP condition will trigger the
* EEPROM's internally timed write cycle to the nonvolatile memory.
* All inputs are disabled during this write cycle and the EEPROM will
* not respond to any access until the internal write is complete.
*/
err = eeprom_wait_ready(pdev, NULL);
if (err < 0)
return err;
/* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
* and bits 1:0 both =0. Bit 5 should be set according to the
* type of EEPROM being accessed (1=two byte addressing, 0=one
* byte addressing).
*/
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE |
LBCIF_CONTROL_I2C_WRITE))
return -EIO;
/* Prepare EEPROM address for Step 3 */
for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
break;
/* Write the data to the LBCIF Data Register (the I2C write
* will begin).
*/
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
break;
/* Monitor bit 1:0 of the LBCIF Status Register. When bits
* 1:0 are both equal to 1, the I2C write has completed and the
* internal write cycle of the EEPROM is about to start.
* (bits 1:0 = 01 is a legal state while waiting from both
* equal to 1, but bits 1:0 = 10 is invalid and implies that
* something is broken).
*/
err = eeprom_wait_ready(pdev, &status);
if (err < 0)
return 0;
/* Check bit 3 of the LBCIF Status Register. If equal to 1,
* an error has occurred.Don't break here if we are revision
* 1, this is so we do a blind write for load bug.
*/
if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
adapter->pdev->revision == 0)
break;
/* Check bit 2 of the LBCIF Status Register. If equal to 1 an
* ACK error has occurred on the address phase of the write.
* This could be due to an actual hardware failure or the
* EEPROM may still be in its internal write cycle from a
* previous write. This write operation was ignored and must be
*repeated later.
*/
if (status & LBCIF_STATUS_ACK_ERROR) {
/* This could be due to an actual hardware failure
* or the EEPROM may still be in its internal write
* cycle from a previous write. This write operation
* was ignored and must be repeated later.
*/
udelay(10);
continue;
}
writeok = 1;
break;
}
udelay(10);
while (1) {
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE))
writeok = 0;
/* Do read until internal ACK_ERROR goes away meaning write
* completed
*/
do {
pci_write_config_dword(pdev,
LBCIF_ADDRESS_REGISTER,
addr);
do {
pci_read_config_dword(pdev,
LBCIF_DATA_REGISTER,
&val);
} while ((val & 0x00010000) == 0);
} while (val & 0x00040000);
if ((val & 0xFF00) != 0xC000 || index == 10000)
break;
index++;
}
return writeok ? 0 : -EIO;
}
static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
{
struct pci_dev *pdev = adapter->pdev;
int err;
u32 status;
/* A single byte read is similar to the single byte write, with the
* exception of the data flow:
*/
err = eeprom_wait_ready(pdev, NULL);
if (err < 0)
return err;
/* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
* and bits 1:0 both =0. Bit 5 should be set according to the type
* of EEPROM being accessed (1=two byte addressing, 0=one byte
* addressing).
*/
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
LBCIF_CONTROL_LBCIF_ENABLE))
return -EIO;
/* Write the address to the LBCIF Address Register (I2C read will
* begin).
*/
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
return -EIO;
/* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
* is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
* has occurred).
*/
err = eeprom_wait_ready(pdev, &status);
if (err < 0)
return err;
/* Regardless of error status, read data byte from LBCIF Data
* Register.
*/
*pdata = err;
return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
}
static int et131x_init_eeprom(struct et131x_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
u8 eestatus;
pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
/* THIS IS A WORKAROUND:
* I need to call this function twice to get my card in a
* LG M1 Express Dual running. I tried also a msleep before this
* function, because I thought there could be some time conditions
* but it didn't work. Call the whole function twice also work.
*/
if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
dev_err(&pdev->dev,
"Could not read PCI config space for EEPROM Status\n");
return -EIO;
}
/* Determine if the error(s) we care about are present. If they are
* present we need to fail.
*/
if (eestatus & 0x4C) {
int write_failed = 0;
if (pdev->revision == 0x01) {
int i;
static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
/* Re-write the first 4 bytes if we have an eeprom
* present and the revision id is 1, this fixes the
* corruption seen with 1310 B Silicon
*/
for (i = 0; i < 3; i++)
if (eeprom_write(adapter, i, eedata[i]) < 0)
write_failed = 1;
}
if (pdev->revision != 0x01 || write_failed) {
dev_err(&pdev->dev,
"Fatal EEPROM Status Error - 0x%04x\n",
eestatus);
/* This error could mean that there was an error
* reading the eeprom or that the eeprom doesn't exist.
* We will treat each case the same and not try to
* gather additional information that normally would
* come from the eeprom, like MAC Address
*/
adapter->has_eeprom = 0;
return -EIO;
}
}
adapter->has_eeprom = 1;
/* Read the EEPROM for information regarding LED behavior. Refer to
* et131x_xcvr_init() for its use.
*/
eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
if (adapter->eeprom_data[0] != 0xcd)
/* Disable all optional features */
adapter->eeprom_data[1] = 0x00;
return 0;
}
static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
{
/* Setup the receive dma configuration register for normal operation */
u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
struct rx_ring *rx_ring = &adapter->rx_ring;
if (rx_ring->fbr[1]->buffsize == 4096)
csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
else if (rx_ring->fbr[1]->buffsize == 8192)
csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
else if (rx_ring->fbr[1]->buffsize == 16384)
csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
csr |= ET_RXDMA_CSR_FBR0_ENABLE;
if (rx_ring->fbr[0]->buffsize == 256)
csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
else if (rx_ring->fbr[0]->buffsize == 512)
csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
else if (rx_ring->fbr[0]->buffsize == 1024)
csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
writel(csr, &adapter->regs->rxdma.csr);
csr = readl(&adapter->regs->rxdma.csr);
if (csr & ET_RXDMA_CSR_HALT_STATUS) {
udelay(5);
csr = readl(&adapter->regs->rxdma.csr);
if (csr & ET_RXDMA_CSR_HALT_STATUS) {
dev_err(&adapter->pdev->dev,
"RX Dma failed to exit halt state. CSR 0x%08x\n",
csr);
}
}
}
static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
{
u32 csr;
/* Setup the receive dma configuration register */
writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
&adapter->regs->rxdma.csr);
csr = readl(&adapter->regs->rxdma.csr);
if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
udelay(5);
csr = readl(&adapter->regs->rxdma.csr);
if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
dev_err(&adapter->pdev->dev,
"RX Dma failed to enter halt state. CSR 0x%08x\n",
csr);
}
}
static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
{
/* Setup the transmit dma configuration register for normal
* operation
*/
writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
&adapter->regs->txdma.csr);
}
static inline void add_10bit(u32 *v, int n)
{
*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
}
static inline void add_12bit(u32 *v, int n)
{
*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
}
static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
{
struct mac_regs __iomem *macregs = &adapter->regs->mac;
u32 station1;
u32 station2;
u32 ipg;
/* First we need to reset everything. Write to MAC configuration
* register 1 to perform reset.
*/
writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
&macregs->cfg1);
/* Next lets configure the MAC Inter-packet gap register */
ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
ipg |= 0x50 << 8; /* ifg enforce 0x50 */
writel(ipg, &macregs->ipg);
/* Next lets configure the MAC Half Duplex register */
/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
writel(0x00A1F037, &macregs->hfdp);
/* Next lets configure the MAC Interface Control register */
writel(0, &macregs->if_ctrl);
writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
/* Next lets configure the MAC Station Address register. These
* values are read from the EEPROM during initialization and stored
* in the adapter structure. We write what is stored in the adapter
* structure to the MAC Station Address registers high and low. This
* station address is used for generating and checking pause control
* packets.
*/
station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
(adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
(adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
(adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
adapter->addr[2];
writel(station1, &macregs->station_addr_1);
writel(station2, &macregs->station_addr_2);
/* Max ethernet packet in bytes that will be passed by the mac without
* being truncated. Allow the MAC to pass 4 more than our max packet
* size. This is 4 for the Ethernet CRC.
*
* Packets larger than (registry_jumbo_packet) that do not contain a
* VLAN ID will be dropped by the Rx function.
*/
writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
/* clear out MAC config reset */
writel(0, &macregs->cfg1);
}
static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
{
int32_t delay = 0;
struct mac_regs __iomem *mac = &adapter->regs->mac;
struct phy_device *phydev = adapter->netdev->phydev;
u32 cfg1;
u32 cfg2;
u32 ifctrl;
u32 ctl;
ctl = readl(&adapter->regs->txmac.ctl);
cfg1 = readl(&mac->cfg1);
cfg2 = readl(&mac->cfg2);
ifctrl = readl(&mac->if_ctrl);
/* Set up the if mode bits */
cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
if (phydev->speed == SPEED_1000) {
cfg2 |= ET_MAC_CFG2_IFMODE_1000;
ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
} else {
cfg2 |= ET_MAC_CFG2_IFMODE_100;
ifctrl |= ET_MAC_IFCTRL_PHYMODE;
}
cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
ET_MAC_CFG1_TX_FLOW;
cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
cfg1 |= ET_MAC_CFG1_RX_FLOW;
writel(cfg1, &mac->cfg1);
/* Now we need to initialize the MAC Configuration 2 register */
/* preamble 7, check length, huge frame off, pad crc, crc enable
* full duplex off
*/
cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
if (phydev->duplex == DUPLEX_FULL)
cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
if (phydev->duplex == DUPLEX_HALF)
ifctrl |= ET_MAC_IFCTRL_GHDMODE;
writel(ifctrl, &mac->if_ctrl);
writel(cfg2, &mac->cfg2);
do {
udelay(10);
delay++;
cfg1 = readl(&mac->cfg1);
} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
if (delay == 100) {
dev_warn(&adapter->pdev->dev,
"Syncd bits did not respond correctly cfg1 word 0x%08x\n",
cfg1);
}
ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
writel(ctl, &adapter->regs->txmac.ctl);
if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
et131x_rx_dma_enable(adapter);
et131x_tx_dma_enable(adapter);
}
}
static int et1310_in_phy_coma(struct et131x_adapter *adapter)
{
u32 pmcsr = readl(&adapter->regs->global.pm_csr);
return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
}
static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
u32 hash1 = 0;
u32 hash2 = 0;
u32 hash3 = 0;
u32 hash4 = 0;
u32 pm_csr;
/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
* the multi-cast LIST. If it is NOT specified, (and "ALL" is not
* specified) then we should pass NO multi-cast addresses to the
* driver.
*/
if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
int i;
/* Loop through our multicast array and set up the device */
for (i = 0; i < adapter->multicast_addr_count; i++) {
u32 result;
result = ether_crc(6, adapter->multicast_list[i]);
result = (result & 0x3F800000) >> 23;
if (result < 32) {
hash1 |= (1 << result);
} else if ((31 < result) && (result < 64)) {
result -= 32;
hash2 |= (1 << result);
} else if ((63 < result) && (result < 96)) {
result -= 64;
hash3 |= (1 << result);
} else {
result -= 96;
hash4 |= (1 << result);
}
}
}
/* Write out the new hash to the device */
pm_csr = readl(&adapter->regs->global.pm_csr);
if (!et1310_in_phy_coma(adapter)) {
writel(hash1, &rxmac->multi_hash1);
writel(hash2, &rxmac->multi_hash2);
writel(hash3, &rxmac->multi_hash3);
writel(hash4, &rxmac->multi_hash4);
}
}
static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
u32 uni_pf1;
u32 uni_pf2;
u32 uni_pf3;
u32 pm_csr;
/* Set up unicast packet filter reg 3 to be the first two octets of
* the MAC address for both address
*
* Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
* MAC address for second address
*
* Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
* MAC address for first address
*/
uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
(adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
(adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
adapter->addr[1];
uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
(adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
(adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
adapter->addr[5];
uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
(adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
(adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
adapter->addr[5];
pm_csr = readl(&adapter->regs->global.pm_csr);
if (!et1310_in_phy_coma(adapter)) {
writel(uni_pf1, &rxmac->uni_pf_addr1);
writel(uni_pf2, &rxmac->uni_pf_addr2);
writel(uni_pf3, &rxmac->uni_pf_addr3);
}
}
static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
{
struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
struct phy_device *phydev = adapter->netdev->phydev;
u32 sa_lo;
u32 sa_hi = 0;
u32 pf_ctrl = 0;
u32 __iomem *wolw;
/* Disable the MAC while it is being configured (also disable WOL) */
writel(0x8, &rxmac->ctrl);
/* Initialize WOL to disabled. */
writel(0, &rxmac->crc0);
writel(0, &rxmac->crc12);
writel(0, &rxmac->crc34);
/* We need to set the WOL mask0 - mask4 next. We initialize it to
* its default Values of 0x00000000 because there are not WOL masks
* as of this time.
*/
for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
writel(0, wolw);
/* Lets setup the WOL Source Address */
sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
adapter->addr[5];
writel(sa_lo, &rxmac->sa_lo);
sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
adapter->addr[1];
writel(sa_hi, &rxmac->sa_hi);
/* Disable all Packet Filtering */
writel(0, &rxmac->pf_ctrl);
/* Let's initialize the Unicast Packet filtering address */
if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
et1310_setup_device_for_unicast(adapter);
pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
} else {
writel(0, &rxmac->uni_pf_addr1);
writel(0, &rxmac->uni_pf_addr2);
writel(0, &rxmac->uni_pf_addr3);
}
/* Let's initialize the Multicast hash */
if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
et1310_setup_device_for_multicast(adapter);
}
/* Runt packet filtering. Didn't work in version A silicon. */
pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
if (adapter->registry_jumbo_packet > 8192)
/* In order to transmit jumbo packets greater than 8k, the
* FIFO between RxMAC and RxDMA needs to be reduced in size
* to (16k - Jumbo packet size). In order to implement this,
* we must use "cut through" mode in the RxMAC, which chops
* packets down into segments which are (max_size * 16). In
* this case we selected 256 bytes, since this is the size of
* the PCI-Express TLP's that the 1310 uses.
*
* seg_en on, fc_en off, size 0x10
*/
writel(0x41, &rxmac->mcif_ctrl_max_seg);
else
writel(0, &rxmac->mcif_ctrl_max_seg);
writel(0, &rxmac->mcif_water_mark);
writel(0, &rxmac->mif_ctrl);
writel(0, &rxmac->space_avail);
/* Initialize the the mif_ctrl register
* bit 3: Receive code error. One or more nibbles were signaled as
* errors during the reception of the packet. Clear this
* bit in Gigabit, set it in 100Mbit. This was derived
* experimentally at UNH.
* bit 4: Receive CRC error. The packet's CRC did not match the
* internally generated CRC.
* bit 5: Receive length check error. Indicates that frame length
* field value in the packet does not match the actual data
* byte length and is not a type field.
* bit 16: Receive frame truncated.
* bit 17: Drop packet enable
*/
if (phydev && phydev->speed == SPEED_100)
writel(0x30038, &rxmac->mif_ctrl);
else
writel(0x30030, &rxmac->mif_ctrl);
/* Finally we initialize RxMac to be enabled & WOL disabled. Packet
* filter is always enabled since it is where the runt packets are
* supposed to be dropped. For version A silicon, runt packet
* dropping doesn't work, so it is disabled in the pf_ctrl register,
* but we still leave the packet filter on.
*/
writel(pf_ctrl, &rxmac->pf_ctrl);
writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
}
static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
{
struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
/* We need to update the Control Frame Parameters
* cfpt - control frame pause timer set to 64 (0x40)
* cfep - control frame extended pause timer set to 0x0
*/
if (adapter->flow == FLOW_NONE)
writel(0, &txmac->cf_param);
else
writel(0x40, &txmac->cf_param);
}
static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
{
struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
u32 __iomem *reg;
/* initialize all the macstat registers to zero on the device */
for (reg = &macstat->txrx_0_64_byte_frames;
reg <= &macstat->carry_reg2; reg++)
writel(0, reg);
/* Unmask any counters that we want to track the overflow of.
* Initially this will be all counters. It may become clear later
* that we do not need to track all counters.
*/
writel(0xFFFFBE32, &macstat->carry_reg1_mask);
writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
}
static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
u8 reg, u16 *value)
{
struct mac_regs __iomem *mac = &adapter->regs->mac;
int status = 0;
u32 delay = 0;
u32 mii_addr;
u32 mii_cmd;
u32 mii_indicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
mii_addr = readl(&mac->mii_mgmt_addr);
mii_cmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to read from on the correct PHY */
writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
writel(0x1, &mac->mii_mgmt_cmd);
do {
udelay(50);
delay++;
mii_indicator = readl(&mac->mii_mgmt_indicator);
} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
/* If we hit the max delay, we could not read the register */
if (delay == 50) {
dev_warn(&adapter->pdev->dev,
"reg 0x%08x could not be read\n", reg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
mii_indicator);
status = -EIO;
goto out;
}
/* If we hit here we were able to read the register and we need to
* return the value to the caller
*/
*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
out:
/* Stop the read operation */
writel(0, &mac->mii_mgmt_cmd);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(mii_addr, &mac->mii_mgmt_addr);
writel(mii_cmd, &mac->mii_mgmt_cmd);
return status;
}
static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
{
struct phy_device *phydev = adapter->netdev->phydev;
if (!phydev)
return -EIO;
return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
}
static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
u16 value)
{
struct mac_regs __iomem *mac = &adapter->regs->mac;
int status = 0;
u32 delay = 0;
u32 mii_addr;
u32 mii_cmd;
u32 mii_indicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
mii_addr = readl(&mac->mii_mgmt_addr);
mii_cmd = readl(&mac->mii_mgmt_cmd);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd);
/* Set up the register we need to write to on the correct PHY */
writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
/* Add the value to write to the registers to the mac */
writel(value, &mac->mii_mgmt_ctrl);
do {
udelay(50);
delay++;
mii_indicator = readl(&mac->mii_mgmt_indicator);
} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
/* If we hit the max delay, we could not write the register */
if (delay == 100) {
u16 tmp;
dev_warn(&adapter->pdev->dev,
"reg 0x%08x could not be written", reg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
mii_indicator);
dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
readl(&mac->mii_mgmt_cmd));
et131x_mii_read(adapter, reg, &tmp);
status = -EIO;
}
/* Stop the write operation */
writel(0, &mac->mii_mgmt_cmd);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(mii_addr, &mac->mii_mgmt_addr);
writel(mii_cmd, &mac->mii_mgmt_cmd);
return status;
}
static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
u16 regnum,
u16 bitnum,
u8 *value)
{
u16 reg;
u16 mask = 1 << bitnum;
et131x_mii_read(adapter, regnum, &reg);
*value = (reg & mask) >> bitnum;
}
static void et1310_config_flow_control(struct et131x_adapter *adapter)
{
struct phy_device *phydev = adapter->netdev->phydev;
if (phydev->duplex == DUPLEX_HALF) {
adapter->flow = FLOW_NONE;
} else {
char remote_pause, remote_async_pause;
et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
if (remote_pause && remote_async_pause) {
adapter->flow = adapter->wanted_flow;
} else if (remote_pause && !remote_async_pause) {
if (adapter->wanted_flow == FLOW_BOTH)
adapter->flow = FLOW_BOTH;
else
adapter->flow = FLOW_NONE;
} else if (!remote_pause && !remote_async_pause) {
adapter->flow = FLOW_NONE;
} else {
if (adapter->wanted_flow == FLOW_BOTH)
adapter->flow = FLOW_RXONLY;
else
adapter->flow = FLOW_NONE;
}
}
}
/* et1310_update_macstat_host_counters - Update local copy of the statistics */
static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
{
struct ce_stats *stats = &adapter->stats;
struct macstat_regs __iomem *macstat =
&adapter->regs->macstat;
stats->tx_collisions += readl(&macstat->tx_total_collisions);
stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
stats->tx_deferred += readl(&macstat->tx_deferred);
stats->tx_excessive_collisions +=
readl(&macstat->tx_multiple_collisions);
stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
stats->tx_underflows += readl(&macstat->tx_undersize_frames);
stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
stats->rx_align_errs += readl(&macstat->rx_align_errs);
stats->rx_crc_errs += readl(&macstat->rx_code_errs);
stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
stats->rx_overflows += readl(&macstat->rx_oversize_packets);
stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
}
/* et1310_handle_macstat_interrupt
*
* One of the MACSTAT counters has wrapped. Update the local copy of
* the statistics held in the adapter structure, checking the "wrap"
* bit for each counter.
*/
static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
{
u32 carry_reg1;
u32 carry_reg2;
/* Read the interrupt bits from the register(s). These are Clear On
* Write.
*/
carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
/* We need to do update the host copy of all the MAC_STAT counters.
* For each counter, check it's overflow bit. If the overflow bit is
* set, then increment the host version of the count by one complete
* revolution of the counter. This routine is called when the counter
* block indicates that one of the counters has wrapped.
*/
if (carry_reg1 & (1 << 14))
adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 8))
adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
if (carry_reg1 & (1 << 7))
adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 2))
adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 6))
adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 3))
adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
if (carry_reg1 & (1 << 0))
adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
if (carry_reg2 & (1 << 16))
adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 15))
adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 6))
adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 8))
adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 5))
adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 4))
adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
if (carry_reg2 & (1 << 2))
adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
}
static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
{
struct net_device *netdev = bus->priv;
struct et131x_adapter *adapter = netdev_priv(netdev);
u16 value;
int ret;
ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
if (ret < 0)
return ret;
return value;
}
static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
int reg, u16 value)
{
struct net_device *netdev = bus->priv;
struct et131x_adapter *adapter = netdev_priv(netdev);
return et131x_mii_write(adapter, phy_addr, reg, value);
}
/* et1310_phy_power_switch - PHY power control
* @adapter: device to control
* @down: true for off/false for back on
*
* one hundred, ten, one thousand megs
* How would you like to have your LAN accessed
* Can't you see that this code processed
* Phy power, phy power..
*/
static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
{
u16 data;
struct phy_device *phydev = adapter->netdev->phydev;
et131x_mii_read(adapter, MII_BMCR, &data);
data &= ~BMCR_PDOWN;
if (down)
data |= BMCR_PDOWN;
et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
}
/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
static void et131x_xcvr_init(struct et131x_adapter *adapter)
{
u16 lcr2;
struct phy_device *phydev = adapter->netdev->phydev;
/* Set the LED behavior such that LED 1 indicates speed (off =
* 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
* link and activity (on for link, blink off for activity).
*
* NOTE: Some customizations have been added here for specific
* vendors; The LED behavior is now determined by vendor data in the
* EEPROM. However, the above description is the default.
*/
if ((adapter->eeprom_data[1] & 0x4) == 0) {
et131x_mii_read(adapter, PHY_LED_2, &lcr2);
lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
if ((adapter->eeprom_data[1] & 0x8) == 0)
lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
else
lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
}
}
/* et131x_configure_global_regs - configure JAGCore global regs */
static void et131x_configure_global_regs(struct et131x_adapter *adapter)
{
struct global_regs __iomem *regs = &adapter->regs->global;
writel(0, &regs->rxq_start_addr);
writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
if (adapter->registry_jumbo_packet < 2048) {
/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
* block of RAM that the driver can split between Tx
* and Rx as it desires. Our default is to split it
* 50/50:
*/
writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
} else if (adapter->registry_jumbo_packet < 8192) {
/* For jumbo packets > 2k but < 8k, split 50-50. */
writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
} else {
/* 9216 is the only packet size greater than 8k that
* is available. The Tx buffer has to be big enough
* for one whole packet on the Tx side. We'll make
* the Tx 9408, and give the rest to Rx
*/
writel(0x01b3, &regs->rxq_end_addr);
writel(0x01b4, &regs->txq_start_addr);
}
/* Initialize the loopback register. Disable all loopbacks. */
writel(0, &regs->loopback);
writel(0, &regs->msi_config);
/* By default, disable the watchdog timer. It will be enabled when
* a packet is queued.
*/
writel(0, &regs->watchdog_timer);
}
/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
{
struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
struct rx_ring *rx_local = &adapter->rx_ring;
struct fbr_desc *fbr_entry;
u32 entry;
u32 psr_num_des;
unsigned long flags;
u8 id;
et131x_rx_dma_disable(adapter);
/* Load the completion writeback physical address */
writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
/* Set the address and parameters of the packet status ring */
writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
writel(0, &rx_dma->psr_full_offset);
psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
&rx_dma->psr_min_des);
spin_lock_irqsave(&adapter->rcv_lock, flags);
/* These local variables track the PSR in the adapter structure */
rx_local->local_psr_full = 0;
for (id = 0; id < NUM_FBRS; id++) {
u32 __iomem *num_des;
u32 __iomem *full_offset;
u32 __iomem *min_des;
u32 __iomem *base_hi;
u32 __iomem *base_lo;
struct fbr_lookup *fbr = rx_local->fbr[id];
if (id == 0) {
num_des = &rx_dma->fbr0_num_des;
full_offset = &rx_dma->fbr0_full_offset;
min_des = &rx_dma->fbr0_min_des;
base_hi = &rx_dma->fbr0_base_hi;
base_lo = &rx_dma->fbr0_base_lo;
} else {
num_des = &rx_dma->fbr1_num_des;
full_offset = &rx_dma->fbr1_full_offset;
min_des = &rx_dma->fbr1_min_des;
base_hi = &rx_dma->fbr1_base_hi;
base_lo = &rx_dma->fbr1_base_lo;
}
/* Now's the best time to initialize FBR contents */
fbr_entry = fbr->ring_virtaddr;
for (entry = 0; entry < fbr->num_entries; entry++) {
fbr_entry->addr_hi = fbr->bus_high[entry];
fbr_entry->addr_lo = fbr->bus_low[entry];
fbr_entry->word2 = entry;
fbr_entry++;
}
/* Set the address and parameters of Free buffer ring 1 and 0 */
writel(upper_32_bits(fbr->ring_physaddr), base_hi);
writel(lower_32_bits(fbr->ring_physaddr), base_lo);
writel(fbr->num_entries - 1, num_des);
writel(ET_DMA10_WRAP, full_offset);
/* This variable tracks the free buffer ring 1 full position,
* so it has to match the above.
*/
fbr->local_full = ET_DMA10_WRAP;
writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
min_des);
}
/* Program the number of packets we will receive before generating an
* interrupt.
* For version B silicon, this value gets updated once autoneg is
*complete.
*/
writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
/* The "time_done" is not working correctly to coalesce interrupts
* after a given time period, but rather is giving us an interrupt
* regardless of whether we have received packets.
* This value gets updated once autoneg is complete.
*/
writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
}
/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
*
* Configure the transmit engine with the ring buffers we have created
* and prepare it for use.
*/
static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
{
struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* Load the hardware with the start of the transmit descriptor ring. */
writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
/* Initialise the transmit DMA engine */
writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
/* Load the completion writeback physical address */
writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
*tx_ring->tx_status = 0;
writel(0, &txdma->service_request);
tx_ring->send_idx = 0;
}
/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
static void et131x_adapter_setup(struct et131x_adapter *adapter)
{
et131x_configure_global_regs(adapter);
et1310_config_mac_regs1(adapter);
/* Configure the MMC registers */
/* All we need to do is initialize the Memory Control Register */
writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
et1310_config_rxmac_regs(adapter);
et1310_config_txmac_regs(adapter);
et131x_config_rx_dma_regs(adapter);
et131x_config_tx_dma_regs(adapter);
et1310_config_macstat_regs(adapter);
et1310_phy_power_switch(adapter, 0);
et131x_xcvr_init(adapter);
}
/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
static void et131x_soft_reset(struct et131x_adapter *adapter)
{
u32 reg;
/* Disable MAC Core */
reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
writel(reg, &adapter->regs->mac.cfg1);
reg = ET_RESET_ALL;
writel(reg, &adapter->regs->global.sw_reset);
reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
writel(reg, &adapter->regs->mac.cfg1);
writel(0, &adapter->regs->mac.cfg1);
}
static void et131x_enable_interrupts(struct et131x_adapter *adapter)
{
u32 mask;
if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
mask = INT_MASK_ENABLE;
else
mask = INT_MASK_ENABLE_NO_FLOW;
writel(mask, &adapter->regs->global.int_mask);
}
static void et131x_disable_interrupts(struct et131x_adapter *adapter)
{
writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
}
static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
{
/* Setup the transmit dma configuration register */
writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
&adapter->regs->txdma.csr);
}
static void et131x_enable_txrx(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
et131x_rx_dma_enable(adapter);
et131x_tx_dma_enable(adapter);
if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
et131x_enable_interrupts(adapter);
netif_start_queue(netdev);
}
static void et131x_disable_txrx(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
netif_stop_queue(netdev);
et131x_rx_dma_disable(adapter);
et131x_tx_dma_disable(adapter);
et131x_disable_interrupts(adapter);
}
static void et131x_init_send(struct et131x_adapter *adapter)
{
int i;
struct tx_ring *tx_ring = &adapter->tx_ring;
struct tcb *tcb = tx_ring->tcb_ring;
tx_ring->tcb_qhead = tcb;
memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
for (i = 0; i < NUM_TCB; i++) {
tcb->next = tcb + 1;
tcb++;
}
tcb--;
tx_ring->tcb_qtail = tcb;
tcb->next = NULL;
/* Curr send queue should now be empty */
tx_ring->send_head = NULL;
tx_ring->send_tail = NULL;
}
/* et1310_enable_phy_coma
*
* driver receive an phy status change interrupt while in D0 and check that
* phy_status is down.
*
* -- gate off JAGCore;
* -- set gigE PHY in Coma mode
* -- wake on phy_interrupt; Perform software reset JAGCore,
* re-initialize jagcore and gigE PHY
*/
static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
{
u32 pmcsr = readl(&adapter->regs->global.pm_csr);
/* Stop sending packets. */
adapter->flags |= FMP_ADAPTER_LOWER_POWER;
/* Wait for outstanding Receive packets */
et131x_disable_txrx(adapter->netdev);
/* Gate off JAGCore 3 clock domains */
pmcsr &= ~ET_PMCSR_INIT;
writel(pmcsr, &adapter->regs->global.pm_csr);
/* Program gigE PHY in to Coma mode */
pmcsr |= ET_PM_PHY_SW_COMA;
writel(pmcsr, &adapter->regs->global.pm_csr);
}
static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
{
u32 pmcsr;
pmcsr = readl(&adapter->regs->global.pm_csr);
/* Disable phy_sw_coma register and re-enable JAGCore clocks */
pmcsr |= ET_PMCSR_INIT;
pmcsr &= ~ET_PM_PHY_SW_COMA;
writel(pmcsr, &adapter->regs->global.pm_csr);
/* Restore the GbE PHY speed and duplex modes;
* Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
*/
/* Re-initialize the send structures */
et131x_init_send(adapter);
/* Bring the device back to the state it was during init prior to
* autonegotiation being complete. This way, when we get the auto-neg
* complete interrupt, we can complete init by calling ConfigMacREGS2.
*/
et131x_soft_reset(adapter);
et131x_adapter_setup(adapter);
/* Allow Tx to restart */
adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
et131x_enable_txrx(adapter->netdev);
}
static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
{
u32 tmp_free_buff_ring = *free_buff_ring;
tmp_free_buff_ring++;
/* This works for all cases where limit < 1024. The 1023 case
* works because 1023++ is 1024 which means the if condition is not
* taken but the carry of the bit into the wrap bit toggles the wrap
* value correctly
*/
if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
tmp_free_buff_ring &= ~ET_DMA10_MASK;
tmp_free_buff_ring ^= ET_DMA10_WRAP;
}
/* For the 1023 case */
tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
*free_buff_ring = tmp_free_buff_ring;
return tmp_free_buff_ring;
}
/* et131x_rx_dma_memory_alloc
*
* Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
* and the Packet Status Ring.
*/
static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
{
u8 id;
u32 i, j;
u32 bufsize;
u32 psr_size;
u32 fbr_chunksize;
struct rx_ring *rx_ring = &adapter->rx_ring;
struct fbr_lookup *fbr;
/* Alloc memory for the lookup table */
rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
if (rx_ring->fbr[0] == NULL)
return -ENOMEM;
rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
if (rx_ring->fbr[1] == NULL)
return -ENOMEM;
/* The first thing we will do is configure the sizes of the buffer
* rings. These will change based on jumbo packet support. Larger
* jumbo packets increases the size of each entry in FBR0, and the
* number of entries in FBR0, while at the same time decreasing the
* number of entries in FBR1.
*
* FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
* entries are huge in order to accommodate a "jumbo" frame, then it
* will have less entries. Conversely, FBR1 will now be relied upon
* to carry more "normal" frames, thus it's entry size also increases
* and the number of entries goes up too (since it now carries
* "small" + "regular" packets.
*
* In this scheme, we try to maintain 512 entries between the two
* rings. Also, FBR1 remains a constant size - when it's size doubles
* the number of entries halves. FBR0 increases in size, however.
*/
if (adapter->registry_jumbo_packet < 2048) {
rx_ring->fbr[0]->buffsize = 256;
rx_ring->fbr[0]->num_entries = 512;
rx_ring->fbr[1]->buffsize = 2048;
rx_ring->fbr[1]->num_entries = 512;
} else if (adapter->registry_jumbo_packet < 4096) {
rx_ring->fbr[0]->buffsize = 512;
rx_ring->fbr[0]->num_entries = 1024;
rx_ring->fbr[1]->buffsize = 4096;
rx_ring->fbr[1]->num_entries = 512;
} else {
rx_ring->fbr[0]->buffsize = 1024;
rx_ring->fbr[0]->num_entries = 768;
rx_ring->fbr[1]->buffsize = 16384;
rx_ring->fbr[1]->num_entries = 128;
}
rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
rx_ring->fbr[1]->num_entries;
for (id = 0; id < NUM_FBRS; id++) {
fbr = rx_ring->fbr[id];
/* Allocate an area of memory for Free Buffer Ring */
bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
bufsize,
&fbr->ring_physaddr,
GFP_KERNEL);
if (!fbr->ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Free Buffer Ring %d\n",
id);
return -ENOMEM;
}
}
for (id = 0; id < NUM_FBRS; id++) {
fbr = rx_ring->fbr[id];
fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
dma_addr_t fbr_physaddr;
fbr->mem_virtaddrs[i] = dma_alloc_coherent(
&adapter->pdev->dev, fbr_chunksize,
&fbr->mem_physaddrs[i],
GFP_KERNEL);
if (!fbr->mem_virtaddrs[i]) {
dev_err(&adapter->pdev->dev,
"Could not alloc memory\n");
return -ENOMEM;
}
/* See NOTE in "Save Physical Address" comment above */
fbr_physaddr = fbr->mem_physaddrs[i];
for (j = 0; j < FBR_CHUNKS; j++) {
u32 k = (i * FBR_CHUNKS) + j;
/* Save the Virtual address of this index for
* quick access later
*/
fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
(j * fbr->buffsize);
/* now store the physical address in the
* descriptor so the device can access it
*/
fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
fbr_physaddr += fbr->buffsize;
}
}
}
/* Allocate an area of memory for FIFO of Packet Status ring entries */
psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
psr_size,
&rx_ring->ps_ring_physaddr,
GFP_KERNEL);
if (!rx_ring->ps_ring_virtaddr) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Packet Status Ring\n");
return -ENOMEM;
}
/* Allocate an area of memory for writeback of status information */
rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
sizeof(struct rx_status_block),
&rx_ring->rx_status_bus,
GFP_KERNEL);
if (!rx_ring->rx_status_block) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Status Block\n");
return -ENOMEM;
}
rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
/* The RFDs are going to be put on lists later on, so initialize the
* lists now.
*/
INIT_LIST_HEAD(&rx_ring->recv_list);
return 0;
}
static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
{
u8 id;
u32 ii;
u32 bufsize;
u32 psr_size;
struct rfd *rfd;
struct rx_ring *rx_ring = &adapter->rx_ring;
struct fbr_lookup *fbr;
/* Free RFDs and associated packet descriptors */
WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
while (!list_empty(&rx_ring->recv_list)) {
rfd = list_entry(rx_ring->recv_list.next,
struct rfd, list_node);
list_del(&rfd->list_node);
rfd->skb = NULL;
kfree(rfd);
}
/* Free Free Buffer Rings */
for (id = 0; id < NUM_FBRS; id++) {
fbr = rx_ring->fbr[id];
if (!fbr || !fbr->ring_virtaddr)
continue;
/* First the packet memory */
for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
if (fbr->mem_virtaddrs[ii]) {
bufsize = fbr->buffsize * FBR_CHUNKS;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
fbr->mem_virtaddrs[ii],
fbr->mem_physaddrs[ii]);
fbr->mem_virtaddrs[ii] = NULL;
}
}
bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
dma_free_coherent(&adapter->pdev->dev,
bufsize,
fbr->ring_virtaddr,
fbr->ring_physaddr);
fbr->ring_virtaddr = NULL;
}
/* Free Packet Status Ring */
if (rx_ring->ps_ring_virtaddr) {
psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
dma_free_coherent(&adapter->pdev->dev, psr_size,
rx_ring->ps_ring_virtaddr,
rx_ring->ps_ring_physaddr);
rx_ring->ps_ring_virtaddr = NULL;
}
/* Free area of memory for the writeback of status information */
if (rx_ring->rx_status_block) {
dma_free_coherent(&adapter->pdev->dev,
sizeof(struct rx_status_block),
rx_ring->rx_status_block,
rx_ring->rx_status_bus);
rx_ring->rx_status_block = NULL;
}
/* Free the FBR Lookup Table */
kfree(rx_ring->fbr[0]);
kfree(rx_ring->fbr[1]);
/* Reset Counters */
rx_ring->num_ready_recv = 0;
}
/* et131x_init_recv - Initialize receive data structures */
static int et131x_init_recv(struct et131x_adapter *adapter)
{
struct rfd *rfd;
u32 rfdct;
struct rx_ring *rx_ring = &adapter->rx_ring;
/* Setup each RFD */
for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
if (!rfd)
return -ENOMEM;
rfd->skb = NULL;
/* Add this RFD to the recv_list */
list_add_tail(&rfd->list_node, &rx_ring->recv_list);
/* Increment the available RFD's */
rx_ring->num_ready_recv++;
}
return 0;
}
/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
{
struct phy_device *phydev = adapter->netdev->phydev;
/* For version B silicon, we do not use the RxDMA timer for 10 and 100
* Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
*/
if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
writel(0, &adapter->regs->rxdma.max_pkt_time);
writel(1, &adapter->regs->rxdma.num_pkt_done);
}
}
/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
{
struct rx_ring *rx_local = &adapter->rx_ring;
struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
u16 buff_index = rfd->bufferindex;
u8 ring_index = rfd->ringindex;
unsigned long flags;
struct fbr_lookup *fbr = rx_local->fbr[ring_index];
/* We don't use any of the OOB data besides status. Otherwise, we
* need to clean up OOB data
*/
if (buff_index < fbr->num_entries) {
u32 free_buff_ring;
u32 __iomem *offset;
struct fbr_desc *next;
if (ring_index == 0)
offset = &rx_dma->fbr0_full_offset;
else
offset = &rx_dma->fbr1_full_offset;
next = (struct fbr_desc *)(fbr->ring_virtaddr) +
INDEX10(fbr->local_full);
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
next->addr_hi = fbr->bus_high[buff_index];
next->addr_lo = fbr->bus_low[buff_index];
next->word2 = buff_index;
free_buff_ring = bump_free_buff_ring(&fbr->local_full,
fbr->num_entries - 1);
writel(free_buff_ring, offset);
} else {
dev_err(&adapter->pdev->dev,
"%s illegal Buffer Index returned\n", __func__);
}
/* The processing on this RFD is done, so put it back on the tail of
* our list
*/
spin_lock_irqsave(&adapter->rcv_lock, flags);
list_add_tail(&rfd->list_node, &rx_local->recv_list);
rx_local->num_ready_recv++;
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
}
/* nic_rx_pkts - Checks the hardware for available packets
*
* Checks the hardware for available packets, using completion ring
* If packets are available, it gets an RFD from the recv_list, attaches
* the packet to it, puts the RFD in the RecvPendList, and also returns
* the pointer to the RFD.
*/
static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
{
struct rx_ring *rx_local = &adapter->rx_ring;
struct rx_status_block *status;
struct pkt_stat_desc *psr;
struct rfd *rfd;
unsigned long flags;
struct list_head *element;
u8 ring_index;
u16 buff_index;
u32 len;
u32 word0;
u32 word1;
struct sk_buff *skb;
struct fbr_lookup *fbr;
/* RX Status block is written by the DMA engine prior to every
* interrupt. It contains the next to be used entry in the Packet
* Status Ring, and also the two Free Buffer rings.
*/
status = rx_local->rx_status_block;
word1 = status->word1 >> 16;
/* Check the PSR and wrap bits do not match */
if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
return NULL; /* Looks like this ring is not updated yet */
/* The packet status ring indicates that data is available. */
psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
(rx_local->local_psr_full & 0xFFF);
/* Grab any information that is required once the PSR is advanced,
* since we can no longer rely on the memory being accurate
*/
len = psr->word1 & 0xFFFF;
ring_index = (psr->word1 >> 26) & 0x03;
fbr = rx_local->fbr[ring_index];
buff_index = (psr->word1 >> 16) & 0x3FF;
word0 = psr->word0;
/* Indicate that we have used this PSR entry. */
/* FIXME wrap 12 */
add_12bit(&rx_local->local_psr_full, 1);
if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
/* Clear psr full and toggle the wrap bit */
rx_local->local_psr_full &= ~0xFFF;
rx_local->local_psr_full ^= 0x1000;
}
writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
/* Illegal buffer or ring index cannot be used by S/W*/
dev_err(&adapter->pdev->dev,
"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
rx_local->local_psr_full & 0xFFF, len, buff_index);
return NULL;
}
/* Get and fill the RFD. */
spin_lock_irqsave(&adapter->rcv_lock, flags);
element = rx_local->recv_list.next;
rfd = list_entry(element, struct rfd, list_node);
if (!rfd) {
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
return NULL;
}
list_del(&rfd->list_node);
rx_local->num_ready_recv--;
spin_unlock_irqrestore(&adapter->rcv_lock, flags);
rfd->bufferindex = buff_index;
rfd->ringindex = ring_index;
/* In V1 silicon, there is a bug which screws up filtering of runt
* packets. Therefore runt packet filtering is disabled in the MAC and
* the packets are dropped here. They are also counted here.
*/
if (len < (NIC_MIN_PACKET_SIZE + 4)) {
adapter->stats.rx_other_errs++;
rfd->len = 0;
goto out;
}
if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
adapter->stats.multicast_pkts_rcvd++;
rfd->len = len;
skb = dev_alloc_skb(rfd->len + 2);
if (!skb)
return NULL;
adapter->netdev->stats.rx_bytes += rfd->len;
memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
skb->protocol = eth_type_trans(skb, adapter->netdev);
skb->ip_summed = CHECKSUM_NONE;
netif_receive_skb(skb);
out:
nic_return_rfd(adapter, rfd);
return rfd;
}
static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
{
struct rfd *rfd = NULL;
int count = 0;
int limit = budget;
bool done = true;
struct rx_ring *rx_ring = &adapter->rx_ring;
if (budget > MAX_PACKETS_HANDLED)
limit = MAX_PACKETS_HANDLED;
/* Process up to available RFD's */
while (count < limit) {
if (list_empty(&rx_ring->recv_list)) {
WARN_ON(rx_ring->num_ready_recv != 0);
done = false;
break;
}
rfd = nic_rx_pkts(adapter);
if (rfd == NULL)
break;
/* Do not receive any packets until a filter has been set.
* Do not receive any packets until we have link.
* If length is zero, return the RFD in order to advance the
* Free buffer ring.
*/
if (!adapter->packet_filter ||
!netif_carrier_ok(adapter->netdev) ||
rfd->len == 0)
continue;
adapter->netdev->stats.rx_packets++;
if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
count++;
}
if (count == limit || !done) {
rx_ring->unfinished_receives = true;
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&adapter->regs->global.watchdog_timer);
} else {
/* Watchdog timer will disable itself if appropriate. */
rx_ring->unfinished_receives = false;
}
return count;
}
/* et131x_tx_dma_memory_alloc
*
* Allocates memory that will be visible both to the device and to the CPU.
* The OS will pass us packets, pointers to which we will insert in the Tx
* Descriptor queue. The device will read this queue to find the packets in
* memory. The device will update the "status" in memory each time it xmits a
* packet.
*/
static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
{
int desc_size = 0;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* Allocate memory for the TCB's (Transmit Control Block) */
tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
GFP_ATOMIC | GFP_DMA);
if (!tx_ring->tcb_ring)
return -ENOMEM;
desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
desc_size,
&tx_ring->tx_desc_ring_pa,
GFP_KERNEL);
if (!tx_ring->tx_desc_ring) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Tx Ring\n");
return -ENOMEM;
}
tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
sizeof(u32),
&tx_ring->tx_status_pa,
GFP_KERNEL);
if (!tx_ring->tx_status) {
dev_err(&adapter->pdev->dev,
"Cannot alloc memory for Tx status block\n");
return -ENOMEM;
}
return 0;
}
static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
{
int desc_size = 0;
struct tx_ring *tx_ring = &adapter->tx_ring;
if (tx_ring->tx_desc_ring) {
/* Free memory relating to Tx rings here */
desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
dma_free_coherent(&adapter->pdev->dev,
desc_size,
tx_ring->tx_desc_ring,
tx_ring->tx_desc_ring_pa);
tx_ring->tx_desc_ring = NULL;
}
/* Free memory for the Tx status block */
if (tx_ring->tx_status) {
dma_free_coherent(&adapter->pdev->dev,
sizeof(u32),
tx_ring->tx_status,
tx_ring->tx_status_pa);
tx_ring->tx_status = NULL;
}
/* Free the memory for the tcb structures */
kfree(tx_ring->tcb_ring);
}
/* nic_send_packet - NIC specific send handler for version B silicon. */
static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
{
u32 i;
struct tx_desc desc[24];
u32 frag = 0;
u32 thiscopy, remainder;
struct sk_buff *skb = tcb->skb;
u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
struct phy_device *phydev = adapter->netdev->phydev;
dma_addr_t dma_addr;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* Part of the optimizations of this send routine restrict us to
* sending 24 fragments at a pass. In practice we should never see
* more than 5 fragments.
*/
/* nr_frags should be no more than 18. */
BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
for (i = 0; i < nr_frags; i++) {
/* If there is something in this element, lets get a
* descriptor from the ring and get the necessary data
*/
if (i == 0) {
/* If the fragments are smaller than a standard MTU,
* then map them to a single descriptor in the Tx
* Desc ring. However, if they're larger, as is
* possible with support for jumbo packets, then
* split them each across 2 descriptors.
*
* This will work until we determine why the hardware
* doesn't seem to like large fragments.
*/
if (skb_headlen(skb) <= 1514) {
/* Low 16bits are length, high is vlan and
* unused currently so zero
*/
desc[frag].len_vlan = skb_headlen(skb);
dma_addr = dma_map_single(&adapter->pdev->dev,
skb->data,
skb_headlen(skb),
DMA_TO_DEVICE);
desc[frag].addr_lo = lower_32_bits(dma_addr);
desc[frag].addr_hi = upper_32_bits(dma_addr);
frag++;
} else {
desc[frag].len_vlan = skb_headlen(skb) / 2;
dma_addr = dma_map_single(&adapter->pdev->dev,
skb->data,
skb_headlen(skb) / 2,
DMA_TO_DEVICE);
desc[frag].addr_lo = lower_32_bits(dma_addr);
desc[frag].addr_hi = upper_32_bits(dma_addr);
frag++;
desc[frag].len_vlan = skb_headlen(skb) / 2;
dma_addr = dma_map_single(&adapter->pdev->dev,
skb->data +
skb_headlen(skb) / 2,
skb_headlen(skb) / 2,
DMA_TO_DEVICE);
desc[frag].addr_lo = lower_32_bits(dma_addr);
desc[frag].addr_hi = upper_32_bits(dma_addr);
frag++;
}
} else {
desc[frag].len_vlan = frags[i - 1].size;
dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
&frags[i - 1],
0,
frags[i - 1].size,
DMA_TO_DEVICE);
desc[frag].addr_lo = lower_32_bits(dma_addr);
desc[frag].addr_hi = upper_32_bits(dma_addr);
frag++;
}
}
if (phydev && phydev->speed == SPEED_1000) {
if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
/* Last element & Interrupt flag */
desc[frag - 1].flags =
TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
tx_ring->since_irq = 0;
} else { /* Last element */
desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
}
} else {
desc[frag - 1].flags =
TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
}
desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
tcb->index_start = tx_ring->send_idx;
tcb->stale = 0;
thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
if (thiscopy >= frag) {
remainder = 0;
thiscopy = frag;
} else {
remainder = frag - thiscopy;
}
memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
desc,
sizeof(struct tx_desc) * thiscopy);
add_10bit(&tx_ring->send_idx, thiscopy);
if (INDEX10(tx_ring->send_idx) == 0 ||
INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
tx_ring->send_idx &= ~ET_DMA10_MASK;
tx_ring->send_idx ^= ET_DMA10_WRAP;
}
if (remainder) {
memcpy(tx_ring->tx_desc_ring,
desc + thiscopy,
sizeof(struct tx_desc) * remainder);
add_10bit(&tx_ring->send_idx, remainder);
}
if (INDEX10(tx_ring->send_idx) == 0) {
if (tx_ring->send_idx)
tcb->index = NUM_DESC_PER_RING_TX - 1;
else
tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
} else {
tcb->index = tx_ring->send_idx - 1;
}
spin_lock(&adapter->tcb_send_qlock);
if (tx_ring->send_tail)
tx_ring->send_tail->next = tcb;
else
tx_ring->send_head = tcb;
tx_ring->send_tail = tcb;
WARN_ON(tcb->next != NULL);
tx_ring->used++;
spin_unlock(&adapter->tcb_send_qlock);
/* Write the new write pointer back to the device. */
writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
/* For Gig only, we use Tx Interrupt coalescing. Enable the software
* timer to wake us up if this packet isn't followed by N more.
*/
if (phydev && phydev->speed == SPEED_1000) {
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&adapter->regs->global.watchdog_timer);
}
return 0;
}
static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
{
int status;
struct tcb *tcb;
unsigned long flags;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* All packets must have at least a MAC address and a protocol type */
if (skb->len < ETH_HLEN)
return -EIO;
spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
tcb = tx_ring->tcb_qhead;
if (tcb == NULL) {
spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
return -ENOMEM;
}
tx_ring->tcb_qhead = tcb->next;
if (tx_ring->tcb_qhead == NULL)
tx_ring->tcb_qtail = NULL;
spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
tcb->skb = skb;
tcb->next = NULL;
status = nic_send_packet(adapter, tcb);
if (status != 0) {
spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
if (tx_ring->tcb_qtail)
tx_ring->tcb_qtail->next = tcb;
else
/* Apparently ready Q is empty. */
tx_ring->tcb_qhead = tcb;
tx_ring->tcb_qtail = tcb;
spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
return status;
}
WARN_ON(tx_ring->used > NUM_TCB);
return 0;
}
/* free_send_packet - Recycle a struct tcb */
static inline void free_send_packet(struct et131x_adapter *adapter,
struct tcb *tcb)
{
unsigned long flags;
struct tx_desc *desc = NULL;
struct net_device_stats *stats = &adapter->netdev->stats;
struct tx_ring *tx_ring = &adapter->tx_ring;
u64 dma_addr;
if (tcb->skb) {
stats->tx_bytes += tcb->skb->len;
/* Iterate through the TX descriptors on the ring
* corresponding to this packet and umap the fragments
* they point to
*/
do {
desc = tx_ring->tx_desc_ring +
INDEX10(tcb->index_start);
dma_addr = desc->addr_lo;
dma_addr |= (u64)desc->addr_hi << 32;
dma_unmap_single(&adapter->pdev->dev,
dma_addr,
desc->len_vlan, DMA_TO_DEVICE);
add_10bit(&tcb->index_start, 1);
if (INDEX10(tcb->index_start) >=
NUM_DESC_PER_RING_TX) {
tcb->index_start &= ~ET_DMA10_MASK;
tcb->index_start ^= ET_DMA10_WRAP;
}
} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
dev_kfree_skb_any(tcb->skb);
}
memset(tcb, 0, sizeof(struct tcb));
/* Add the TCB to the Ready Q */
spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
stats->tx_packets++;
if (tx_ring->tcb_qtail)
tx_ring->tcb_qtail->next = tcb;
else /* Apparently ready Q is empty. */
tx_ring->tcb_qhead = tcb;
tx_ring->tcb_qtail = tcb;
spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
WARN_ON(tx_ring->used < 0);
}
/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
{
struct tcb *tcb;
unsigned long flags;
u32 freed = 0;
struct tx_ring *tx_ring = &adapter->tx_ring;
/* Any packets being sent? Check the first TCB on the send list */
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
tcb = tx_ring->send_head;
while (tcb != NULL && freed < NUM_TCB) {
struct tcb *next = tcb->next;
tx_ring->send_head = next;
if (next == NULL)
tx_ring->send_tail = NULL;
tx_ring->used--;
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
freed++;
free_send_packet(adapter, tcb);
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
tcb = tx_ring->send_head;
}
WARN_ON(freed == NUM_TCB);
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
tx_ring->used = 0;
}
/* et131x_handle_send_pkts
*
* Re-claim the send resources, complete sends and get more to send from
* the send wait queue.
*/
static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
{
unsigned long flags;
u32 serviced;
struct tcb *tcb;
u32 index;
struct tx_ring *tx_ring = &adapter->tx_ring;
serviced = readl(&adapter->regs->txdma.new_service_complete);
index = INDEX10(serviced);
/* Has the ring wrapped? Process any descriptors that do not have
* the same "wrap" indicator as the current completion indicator
*/
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
tcb = tx_ring->send_head;
while (tcb &&
((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
index < INDEX10(tcb->index)) {
tx_ring->used--;
tx_ring->send_head = tcb->next;
if (tcb->next == NULL)
tx_ring->send_tail = NULL;
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
free_send_packet(adapter, tcb);
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
/* Goto the next packet */
tcb = tx_ring->send_head;
}
while (tcb &&
!((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
index > (tcb->index & ET_DMA10_MASK)) {
tx_ring->used--;
tx_ring->send_head = tcb->next;
if (tcb->next == NULL)
tx_ring->send_tail = NULL;
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
free_send_packet(adapter, tcb);
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
/* Goto the next packet */
tcb = tx_ring->send_head;
}
/* Wake up the queue when we hit a low-water mark */
if (tx_ring->used <= NUM_TCB / 3)
netif_wake_queue(adapter->netdev);
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
}
static int et131x_get_regs_len(struct net_device *netdev)
{
#define ET131X_REGS_LEN 256
return ET131X_REGS_LEN * sizeof(u32);
}
static void et131x_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *regs_data)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct address_map __iomem *aregs = adapter->regs;
u32 *regs_buff = regs_data;
u32 num = 0;
u16 tmp;
memset(regs_data, 0, et131x_get_regs_len(netdev));
regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
adapter->pdev->device;
/* PHY regs */
et131x_mii_read(adapter, MII_BMCR, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_BMSR, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_PHYSID1, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_PHYSID2, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_LPA, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_EXPANSION, &tmp);
regs_buff[num++] = tmp;
/* Autoneg next page transmit reg */
et131x_mii_read(adapter, 0x07, &tmp);
regs_buff[num++] = tmp;
/* Link partner next page reg */
et131x_mii_read(adapter, 0x08, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_CTRL1000, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_STAT1000, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, 0x0b, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, 0x0c, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, MII_ESTATUS, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_CONFIG, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_LED_1, &tmp);
regs_buff[num++] = tmp;
et131x_mii_read(adapter, PHY_LED_2, &tmp);
regs_buff[num++] = tmp;
/* Global regs */
regs_buff[num++] = readl(&aregs->global.txq_start_addr);
regs_buff[num++] = readl(&aregs->global.txq_end_addr);
regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
regs_buff[num++] = readl(&aregs->global.pm_csr);
regs_buff[num++] = adapter->stats.interrupt_status;
regs_buff[num++] = readl(&aregs->global.int_mask);
regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
regs_buff[num++] = readl(&aregs->global.int_status_alias);
regs_buff[num++] = readl(&aregs->global.sw_reset);
regs_buff[num++] = readl(&aregs->global.slv_timer);
regs_buff[num++] = readl(&aregs->global.msi_config);
regs_buff[num++] = readl(&aregs->global.loopback);
regs_buff[num++] = readl(&aregs->global.watchdog_timer);
/* TXDMA regs */
regs_buff[num++] = readl(&aregs->txdma.csr);
regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
regs_buff[num++] = readl(&aregs->txdma.service_request);
regs_buff[num++] = readl(&aregs->txdma.service_complete);
regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
/* RXDMA regs */
regs_buff[num++] = readl(&aregs->rxdma.csr);
regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
}
static void et131x_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(adapter->pdev),
sizeof(info->bus_info));
}
static const struct ethtool_ops et131x_ethtool_ops = {
.get_drvinfo = et131x_get_drvinfo,
.get_regs_len = et131x_get_regs_len,
.get_regs = et131x_get_regs,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
/* et131x_hwaddr_init - set up the MAC Address */
static void et131x_hwaddr_init(struct et131x_adapter *adapter)
{
/* If have our default mac from init and no mac address from
* EEPROM then we need to generate the last octet and set it on the
* device
*/
if (is_zero_ether_addr(adapter->rom_addr)) {
/* We need to randomly generate the last octet so we
* decrease our chances of setting the mac address to
* same as another one of our cards in the system
*/
get_random_bytes(&adapter->addr[5], 1);
/* We have the default value in the register we are
* working with so we need to copy the current
* address into the permanent address
*/
ether_addr_copy(adapter->rom_addr, adapter->addr);
} else {
/* We do not have an override address, so set the
* current address to the permanent address and add
* it to the device
*/
ether_addr_copy(adapter->addr, adapter->rom_addr);
}
}
static int et131x_pci_init(struct et131x_adapter *adapter,
struct pci_dev *pdev)
{
u16 max_payload;
int i, rc;
rc = et131x_init_eeprom(adapter);
if (rc < 0)
goto out;
if (!pci_is_pcie(pdev)) {
dev_err(&pdev->dev, "Missing PCIe capabilities\n");
goto err_out;
}
/* Program the Ack/Nak latency and replay timers */
max_payload = pdev->pcie_mpss;
if (max_payload < 2) {
static const u16 acknak[2] = { 0x76, 0xD0 };
static const u16 replay[2] = { 0x1E0, 0x2ED };
if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
acknak[max_payload])) {
dev_err(&pdev->dev,
"Could not write PCI config space for ACK/NAK\n");
goto err_out;
}
if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
replay[max_payload])) {
dev_err(&pdev->dev,
"Could not write PCI config space for Replay Timer\n");
goto err_out;
}
}
/* l0s and l1 latency timers. We are using default values.
* Representing 001 for L0s and 010 for L1
*/
if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
dev_err(&pdev->dev,
"Could not write PCI config space for Latency Timers\n");
goto err_out;
}
/* Change the max read size to 2k */
if (pcie_set_readrq(pdev, 2048)) {
dev_err(&pdev->dev,
"Couldn't change PCI config space for Max read size\n");
goto err_out;
}
/* Get MAC address from config space if an eeprom exists, otherwise
* the MAC address there will not be valid
*/
if (!adapter->has_eeprom) {
et131x_hwaddr_init(adapter);
return 0;
}
for (i = 0; i < ETH_ALEN; i++) {
if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
adapter->rom_addr + i)) {
dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
goto err_out;
}
}
ether_addr_copy(adapter->addr, adapter->rom_addr);
out:
return rc;
err_out:
rc = -EIO;
goto out;
}
/* et131x_error_timer_handler
* @data: timer-specific variable; here a pointer to our adapter structure
*
* The routine called when the error timer expires, to track the number of
* recurring errors.
*/
static void et131x_error_timer_handler(unsigned long data)
{
struct et131x_adapter *adapter = (struct et131x_adapter *)data;
struct phy_device *phydev = adapter->netdev->phydev;
if (et1310_in_phy_coma(adapter)) {
/* Bring the device immediately out of coma, to
* prevent it from sleeping indefinitely, this
* mechanism could be improved!
*/
et1310_disable_phy_coma(adapter);
adapter->boot_coma = 20;
} else {
et1310_update_macstat_host_counters(adapter);
}
if (!phydev->link && adapter->boot_coma < 11)
adapter->boot_coma++;
if (adapter->boot_coma == 10) {
if (!phydev->link) {
if (!et1310_in_phy_coma(adapter)) {
/* NOTE - This was originally a 'sync with
* interrupt'. How to do that under Linux?
*/
et131x_enable_interrupts(adapter);
et1310_enable_phy_coma(adapter);
}
}
}
/* This is a periodic timer, so reschedule */
mod_timer(&adapter->error_timer, jiffies +
msecs_to_jiffies(TX_ERROR_PERIOD));
}
static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
{
et131x_tx_dma_memory_free(adapter);
et131x_rx_dma_memory_free(adapter);
}
static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
{
int status;
status = et131x_tx_dma_memory_alloc(adapter);
if (status) {
dev_err(&adapter->pdev->dev,
"et131x_tx_dma_memory_alloc FAILED\n");
et131x_tx_dma_memory_free(adapter);
return status;
}
status = et131x_rx_dma_memory_alloc(adapter);
if (status) {
dev_err(&adapter->pdev->dev,
"et131x_rx_dma_memory_alloc FAILED\n");
et131x_adapter_memory_free(adapter);
return status;
}
status = et131x_init_recv(adapter);
if (status) {
dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
et131x_adapter_memory_free(adapter);
}
return status;
}
static void et131x_adjust_link(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
if (!phydev)
return;
if (phydev->link == adapter->link)
return;
/* Check to see if we are in coma mode and if
* so, disable it because we will not be able
* to read PHY values until we are out.
*/
if (et1310_in_phy_coma(adapter))
et1310_disable_phy_coma(adapter);
adapter->link = phydev->link;
phy_print_status(phydev);
if (phydev->link) {
adapter->boot_coma = 20;
if (phydev->speed == SPEED_10) {
u16 register18;
et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
&register18);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_MPHY_CONTROL_REG,
register18 | 0x4);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_INDEX_REG, register18 | 0x8402);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_DATA_REG, register18 | 511);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_MPHY_CONTROL_REG, register18);
}
et1310_config_flow_control(adapter);
if (phydev->speed == SPEED_1000 &&
adapter->registry_jumbo_packet > 2048) {
u16 reg;
et131x_mii_read(adapter, PHY_CONFIG, &reg);
reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_CONFIG, reg);
}
et131x_set_rx_dma_timer(adapter);
et1310_config_mac_regs2(adapter);
} else {
adapter->boot_coma = 0;
if (phydev->speed == SPEED_10) {
u16 register18;
et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
&register18);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_MPHY_CONTROL_REG,
register18 | 0x4);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_INDEX_REG, register18 | 0x8402);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_DATA_REG, register18 | 511);
et131x_mii_write(adapter, phydev->mdio.addr,
PHY_MPHY_CONTROL_REG, register18);
}
et131x_free_busy_send_packets(adapter);
et131x_init_send(adapter);
/* Bring the device back to the state it was during
* init prior to autonegotiation being complete. This
* way, when we get the auto-neg complete interrupt,
* we can complete init by calling config_mac_regs2.
*/
et131x_soft_reset(adapter);
et131x_adapter_setup(adapter);
et131x_disable_txrx(netdev);
et131x_enable_txrx(netdev);
}
}
static int et131x_mii_probe(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct phy_device *phydev = NULL;
phydev = phy_find_first(adapter->mii_bus);
if (!phydev) {
dev_err(&adapter->pdev->dev, "no PHY found\n");
return -ENODEV;
}
phydev = phy_connect(netdev, phydev_name(phydev),
&et131x_adjust_link, PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
return PTR_ERR(phydev);
}
phydev->supported &= (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_MII |
SUPPORTED_TP);
if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
phydev->supported |= SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full;
phydev->advertising = phydev->supported;
phydev->autoneg = AUTONEG_ENABLE;
phy_attached_info(phydev);
return 0;
}
static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
struct pci_dev *pdev)
{
static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
struct et131x_adapter *adapter;
adapter = netdev_priv(netdev);
adapter->pdev = pci_dev_get(pdev);
adapter->netdev = netdev;
spin_lock_init(&adapter->tcb_send_qlock);
spin_lock_init(&adapter->tcb_ready_qlock);
spin_lock_init(&adapter->rcv_lock);
adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
ether_addr_copy(adapter->addr, default_mac);
return adapter;
}
static void et131x_pci_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct et131x_adapter *adapter = netdev_priv(netdev);
unregister_netdev(netdev);
netif_napi_del(&adapter->napi);
phy_disconnect(netdev->phydev);
mdiobus_unregister(adapter->mii_bus);
mdiobus_free(adapter->mii_bus);
et131x_adapter_memory_free(adapter);
iounmap(adapter->regs);
pci_dev_put(pdev);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void et131x_up(struct net_device *netdev)
{
et131x_enable_txrx(netdev);
phy_start(netdev->phydev);
}
static void et131x_down(struct net_device *netdev)
{
/* Save the timestamp for the TX watchdog, prevent a timeout */
netif_trans_update(netdev);
phy_stop(netdev->phydev);
et131x_disable_txrx(netdev);
}
#ifdef CONFIG_PM_SLEEP
static int et131x_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
if (netif_running(netdev)) {
netif_device_detach(netdev);
et131x_down(netdev);
pci_save_state(pdev);
}
return 0;
}
static int et131x_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
if (netif_running(netdev)) {
pci_restore_state(pdev);
et131x_up(netdev);
netif_device_attach(netdev);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
static irqreturn_t et131x_isr(int irq, void *dev_id)
{
bool handled = true;
bool enable_interrupts = true;
struct net_device *netdev = dev_id;
struct et131x_adapter *adapter = netdev_priv(netdev);
struct address_map __iomem *iomem = adapter->regs;
struct rx_ring *rx_ring = &adapter->rx_ring;
struct tx_ring *tx_ring = &adapter->tx_ring;
u32 status;
if (!netif_device_present(netdev)) {
handled = false;
enable_interrupts = false;
goto out;
}
et131x_disable_interrupts(adapter);
status = readl(&adapter->regs->global.int_status);
if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
status &= ~INT_MASK_ENABLE;
else
status &= ~INT_MASK_ENABLE_NO_FLOW;
/* Make sure this is our interrupt */
if (!status) {
handled = false;
et131x_enable_interrupts(adapter);
goto out;
}
/* This is our interrupt, so process accordingly */
if (status & ET_INTR_WATCHDOG) {
struct tcb *tcb = tx_ring->send_head;
if (tcb)
if (++tcb->stale > 1)
status |= ET_INTR_TXDMA_ISR;
if (rx_ring->unfinished_receives)
status |= ET_INTR_RXDMA_XFR_DONE;
else if (tcb == NULL)
writel(0, &adapter->regs->global.watchdog_timer);
status &= ~ET_INTR_WATCHDOG;
}
if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
enable_interrupts = false;
napi_schedule(&adapter->napi);
}
status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
if (!status)
goto out;
if (status & ET_INTR_TXDMA_ERR) {
/* Following read also clears the register (COR) */
u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
dev_warn(&adapter->pdev->dev,
"TXDMA_ERR interrupt, error = %d\n",
txdma_err);
}
if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
/* This indicates the number of unused buffers in RXDMA free
* buffer ring 0 is <= the limit you programmed. Free buffer
* resources need to be returned. Free buffers are consumed as
* packets are passed from the network to the host. The host
* becomes aware of the packets from the contents of the packet
* status ring. This ring is queried when the packet done
* interrupt occurs. Packets are then passed to the OS. When
* the OS is done with the packets the resources can be
* returned to the ET1310 for re-use. This interrupt is one
* method of returning resources.
*/
/* If the user has flow control on, then we will
* send a pause packet, otherwise just exit
*/
if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
u32 pm_csr;
/* Tell the device to send a pause packet via the back
* pressure register (bp req and bp xon/xoff)
*/
pm_csr = readl(&iomem->global.pm_csr);
if (!et1310_in_phy_coma(adapter))
writel(3, &iomem->txmac.bp_ctrl);
}
}
/* Handle Packet Status Ring Low Interrupt */
if (status & ET_INTR_RXDMA_STAT_LOW) {
/* Same idea as with the two Free Buffer Rings. Packets going
* from the network to the host each consume a free buffer
* resource and a packet status resource. These resources are
* passed to the OS. When the OS is done with the resources,
* they need to be returned to the ET1310. This is one method
* of returning the resources.
*/
}
if (status & ET_INTR_RXDMA_ERR) {
/* The rxdma_error interrupt is sent when a time-out on a
* request issued by the JAGCore has occurred or a completion is
* returned with an un-successful status. In both cases the
* request is considered complete. The JAGCore will
* automatically re-try the request in question. Normally
* information on events like these are sent to the host using
* the "Advanced Error Reporting" capability. This interrupt is
* another way of getting similar information. The only thing
* required is to clear the interrupt by reading the ISR in the
* global resources. The JAGCore will do a re-try on the
* request. Normally you should never see this interrupt. If
* you start to see this interrupt occurring frequently then
* something bad has occurred. A reset might be the thing to do.
*/
/* TRAP();*/
dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
readl(&iomem->txmac.tx_test));
}
/* Handle the Wake on LAN Event */
if (status & ET_INTR_WOL) {
/* This is a secondary interrupt for wake on LAN. The driver
* should never see this, if it does, something serious is
* wrong.
*/
dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
}
if (status & ET_INTR_TXMAC) {
u32 err = readl(&iomem->txmac.err);
/* When any of the errors occur and TXMAC generates an
* interrupt to report these errors, it usually means that
* TXMAC has detected an error in the data stream retrieved
* from the on-chip Tx Q. All of these errors are catastrophic
* and TXMAC won't be able to recover data when these errors
* occur. In a nutshell, the whole Tx path will have to be reset
* and re-configured afterwards.
*/
dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
err);
/* If we are debugging, we want to see this error, otherwise we
* just want the device to be reset and continue
*/
}
if (status & ET_INTR_RXMAC) {
/* These interrupts are catastrophic to the device, what we need
* to do is disable the interrupts and set the flag to cause us
* to reset so we can solve this issue.
*/
dev_warn(&adapter->pdev->dev,
"RXMAC interrupt, error 0x%08x. Requesting reset\n",
readl(&iomem->rxmac.err_reg));
dev_warn(&adapter->pdev->dev,
"Enable 0x%08x, Diag 0x%08x\n",
readl(&iomem->rxmac.ctrl),
readl(&iomem->rxmac.rxq_diag));
/* If we are debugging, we want to see this error, otherwise we
* just want the device to be reset and continue
*/
}
if (status & ET_INTR_MAC_STAT) {
/* This means at least one of the un-masked counters in the
* MAC_STAT block has rolled over. Use this to maintain the top,
* software managed bits of the counter(s).
*/
et1310_handle_macstat_interrupt(adapter);
}
if (status & ET_INTR_SLV_TIMEOUT) {
/* This means a timeout has occurred on a read or write request
* to one of the JAGCore registers. The Global Resources block
* has terminated the request and on a read request, returned a
* "fake" value. The most likely reasons are: Bad Address or the
* addressed module is in a power-down state and can't respond.
*/
}
out:
if (enable_interrupts)
et131x_enable_interrupts(adapter);
return IRQ_RETVAL(handled);
}
static int et131x_poll(struct napi_struct *napi, int budget)
{
struct et131x_adapter *adapter =
container_of(napi, struct et131x_adapter, napi);
int work_done = et131x_handle_recv_pkts(adapter, budget);
et131x_handle_send_pkts(adapter);
if (work_done < budget) {
napi_complete_done(&adapter->napi, work_done);
et131x_enable_interrupts(adapter);
}
return work_done;
}
/* et131x_stats - Return the current device statistics */
static struct net_device_stats *et131x_stats(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct net_device_stats *stats = &adapter->netdev->stats;
struct ce_stats *devstat = &adapter->stats;
stats->rx_errors = devstat->rx_length_errs +
devstat->rx_align_errs +
devstat->rx_crc_errs +
devstat->rx_code_violations +
devstat->rx_other_errs;
stats->tx_errors = devstat->tx_max_pkt_errs;
stats->multicast = devstat->multicast_pkts_rcvd;
stats->collisions = devstat->tx_collisions;
stats->rx_length_errors = devstat->rx_length_errs;
stats->rx_over_errors = devstat->rx_overflows;
stats->rx_crc_errors = devstat->rx_crc_errs;
stats->rx_dropped = devstat->rcvd_pkts_dropped;
/* NOTE: Not used, can't find analogous statistics */
/* stats->rx_frame_errors = devstat->; */
/* stats->rx_fifo_errors = devstat->; */
/* stats->rx_missed_errors = devstat->; */
/* stats->tx_aborted_errors = devstat->; */
/* stats->tx_carrier_errors = devstat->; */
/* stats->tx_fifo_errors = devstat->; */
/* stats->tx_heartbeat_errors = devstat->; */
/* stats->tx_window_errors = devstat->; */
return stats;
}
static int et131x_open(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
unsigned int irq = pdev->irq;
int result;
/* Start the timer to track NIC errors */
init_timer(&adapter->error_timer);
adapter->error_timer.expires = jiffies +
msecs_to_jiffies(TX_ERROR_PERIOD);
adapter->error_timer.function = et131x_error_timer_handler;
adapter->error_timer.data = (unsigned long)adapter;
add_timer(&adapter->error_timer);
result = request_irq(irq, et131x_isr,
IRQF_SHARED, netdev->name, netdev);
if (result) {
dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
return result;
}
adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
napi_enable(&adapter->napi);
et131x_up(netdev);
return result;
}
static int et131x_close(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
et131x_down(netdev);
napi_disable(&adapter->napi);
adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
free_irq(adapter->pdev->irq, netdev);
/* Stop the error timer */
return del_timer_sync(&adapter->error_timer);
}
static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
int cmd)
{
if (!netdev->phydev)
return -EINVAL;
return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
}
/* et131x_set_packet_filter - Configures the Rx Packet filtering */
static int et131x_set_packet_filter(struct et131x_adapter *adapter)
{
int filter = adapter->packet_filter;
u32 ctrl;
u32 pf_ctrl;
ctrl = readl(&adapter->regs->rxmac.ctrl);
pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
/* Default to disabled packet filtering */
ctrl |= 0x04;
/* Set us to be in promiscuous mode so we receive everything, this
* is also true when we get a packet filter of 0
*/
if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
pf_ctrl &= ~7; /* Clear filter bits */
else {
/* Set us up with Multicast packet filtering. Three cases are
* possible - (1) we have a multi-cast list, (2) we receive ALL
* multicast entries or (3) we receive none.
*/
if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
pf_ctrl &= ~2; /* Multicast filter bit */
else {
et1310_setup_device_for_multicast(adapter);
pf_ctrl |= 2;
ctrl &= ~0x04;
}
/* Set us up with Unicast packet filtering */
if (filter & ET131X_PACKET_TYPE_DIRECTED) {
et1310_setup_device_for_unicast(adapter);
pf_ctrl |= 4;
ctrl &= ~0x04;
}
/* Set us up with Broadcast packet filtering */
if (filter & ET131X_PACKET_TYPE_BROADCAST) {
pf_ctrl |= 1; /* Broadcast filter bit */
ctrl &= ~0x04;
} else {
pf_ctrl &= ~1;
}
/* Setup the receive mac configuration registers - Packet
* Filter control + the enable / disable for packet filter
* in the control reg.
*/
writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
writel(ctrl, &adapter->regs->rxmac.ctrl);
}
return 0;
}
static void et131x_multicast(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
int packet_filter;
struct netdev_hw_addr *ha;
int i;
/* Before we modify the platform-independent filter flags, store them
* locally. This allows us to determine if anything's changed and if
* we even need to bother the hardware
*/
packet_filter = adapter->packet_filter;
/* Clear the 'multicast' flag locally; because we only have a single
* flag to check multicast, and multiple multicast addresses can be
* set, this is the easiest way to determine if more than one
* multicast address is being set.
*/
packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
/* Check the net_device flags and set the device independent flags
* accordingly
*/
if (netdev->flags & IFF_PROMISC)
adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
else
adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
if ((netdev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
if (netdev_mc_count(netdev) < 1) {
adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
} else {
adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
}
/* Set values in the private adapter struct */
i = 0;
netdev_for_each_mc_addr(ha, netdev) {
if (i == NIC_MAX_MCAST_LIST)
break;
ether_addr_copy(adapter->multicast_list[i++], ha->addr);
}
adapter->multicast_addr_count = i;
/* Are the new flags different from the previous ones? If not, then no
* action is required
*
* NOTE - This block will always update the multicast_list with the
* hardware, even if the addresses aren't the same.
*/
if (packet_filter != adapter->packet_filter)
et131x_set_packet_filter(adapter);
}
static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct tx_ring *tx_ring = &adapter->tx_ring;
/* stop the queue if it's getting full */
if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
netif_stop_queue(netdev);
/* Save the timestamp for the TX timeout watchdog */
netif_trans_update(netdev);
/* TCB is not available */
if (tx_ring->used >= NUM_TCB)
goto drop_err;
if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
!netif_carrier_ok(netdev))
goto drop_err;
if (send_packet(skb, adapter))
goto drop_err;
return NETDEV_TX_OK;
drop_err:
dev_kfree_skb_any(skb);
adapter->netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/* et131x_tx_timeout - Timeout handler
*
* The handler called when a Tx request times out. The timeout period is
* specified by the 'tx_timeo" element in the net_device structure (see
* et131x_alloc_device() to see how this value is set).
*/
static void et131x_tx_timeout(struct net_device *netdev)
{
struct et131x_adapter *adapter = netdev_priv(netdev);
struct tx_ring *tx_ring = &adapter->tx_ring;
struct tcb *tcb;
unsigned long flags;
/* If the device is closed, ignore the timeout */
if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
return;
/* Any nonrecoverable hardware error?
* Checks adapter->flags for any failure in phy reading
*/
if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
return;
/* Hardware failure? */
if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
dev_err(&adapter->pdev->dev, "hardware error - reset\n");
return;
}
/* Is send stuck? */
spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
tcb = tx_ring->send_head;
spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
if (tcb) {
tcb->count++;
if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
dev_warn(&adapter->pdev->dev,
"Send stuck - reset. tcb->WrIndex %x\n",
tcb->index);
adapter->netdev->stats.tx_errors++;
/* perform reset of tx/rx */
et131x_disable_txrx(netdev);
et131x_enable_txrx(netdev);
}
}
}
static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
{
int result = 0;
struct et131x_adapter *adapter = netdev_priv(netdev);
et131x_disable_txrx(netdev);
netdev->mtu = new_mtu;
et131x_adapter_memory_free(adapter);
/* Set the config parameter for Jumbo Packet support */
adapter->registry_jumbo_packet = new_mtu + 14;
et131x_soft_reset(adapter);
result = et131x_adapter_memory_alloc(adapter);
if (result != 0) {
dev_warn(&adapter->pdev->dev,
"Change MTU failed; couldn't re-alloc DMA memory\n");
return result;
}
et131x_init_send(adapter);
et131x_hwaddr_init(adapter);
ether_addr_copy(netdev->dev_addr, adapter->addr);
/* Init the device with the new settings */
et131x_adapter_setup(adapter);
et131x_enable_txrx(netdev);
return result;
}
static const struct net_device_ops et131x_netdev_ops = {
.ndo_open = et131x_open,
.ndo_stop = et131x_close,
.ndo_start_xmit = et131x_tx,
.ndo_set_rx_mode = et131x_multicast,
.ndo_tx_timeout = et131x_tx_timeout,
.ndo_change_mtu = et131x_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_get_stats = et131x_stats,
.ndo_do_ioctl = et131x_ioctl,
};
static int et131x_pci_setup(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct et131x_adapter *adapter;
int rc;
rc = pci_enable_device(pdev);
if (rc < 0) {
dev_err(&pdev->dev, "pci_enable_device() failed\n");
goto out;
}
/* Perform some basic PCI checks */
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "Can't find PCI device's base address\n");
rc = -ENODEV;
goto err_disable;
}
rc = pci_request_regions(pdev, DRIVER_NAME);
if (rc < 0) {
dev_err(&pdev->dev, "Can't get PCI resources\n");
goto err_disable;
}
pci_set_master(pdev);
/* Check the DMA addressing support of this device */
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
dev_err(&pdev->dev, "No usable DMA addressing method\n");
rc = -EIO;
goto err_release_res;
}
netdev = alloc_etherdev(sizeof(struct et131x_adapter));
if (!netdev) {
dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
rc = -ENOMEM;
goto err_release_res;
}
netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
netdev->netdev_ops = &et131x_netdev_ops;
netdev->min_mtu = ET131X_MIN_MTU;
netdev->max_mtu = ET131X_MAX_MTU;
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->ethtool_ops = &et131x_ethtool_ops;
adapter = et131x_adapter_init(netdev, pdev);
rc = et131x_pci_init(adapter, pdev);
if (rc < 0)
goto err_free_dev;
/* Map the bus-relative registers to system virtual memory */
adapter->regs = pci_ioremap_bar(pdev, 0);
if (!adapter->regs) {
dev_err(&pdev->dev, "Cannot map device registers\n");
rc = -ENOMEM;
goto err_free_dev;
}
/* If Phy COMA mode was enabled when we went down, disable it here. */
writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
et131x_soft_reset(adapter);
et131x_disable_interrupts(adapter);
rc = et131x_adapter_memory_alloc(adapter);
if (rc < 0) {
dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
goto err_iounmap;
}
et131x_init_send(adapter);
netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
ether_addr_copy(netdev->dev_addr, adapter->addr);
rc = -ENOMEM;
adapter->mii_bus = mdiobus_alloc();
if (!adapter->mii_bus) {
dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
goto err_mem_free;
}
adapter->mii_bus->name = "et131x_eth_mii";
snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
(adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
adapter->mii_bus->priv = netdev;
adapter->mii_bus->read = et131x_mdio_read;
adapter->mii_bus->write = et131x_mdio_write;
rc = mdiobus_register(adapter->mii_bus);
if (rc < 0) {
dev_err(&pdev->dev, "failed to register MII bus\n");
goto err_mdio_free;
}
rc = et131x_mii_probe(netdev);
if (rc < 0) {
dev_err(&pdev->dev, "failed to probe MII bus\n");
goto err_mdio_unregister;
}
et131x_adapter_setup(adapter);
/* Init variable for counting how long we do not have link status */
adapter->boot_coma = 0;
et1310_disable_phy_coma(adapter);
/* We can enable interrupts now
*
* NOTE - Because registration of interrupt handler is done in the
* device's open(), defer enabling device interrupts to that
* point
*/
rc = register_netdev(netdev);
if (rc < 0) {
dev_err(&pdev->dev, "register_netdev() failed\n");
goto err_phy_disconnect;
}
/* Register the net_device struct with the PCI subsystem. Save a copy
* of the PCI config space for this device now that the device has
* been initialized, just in case it needs to be quickly restored.
*/
pci_set_drvdata(pdev, netdev);
out:
return rc;
err_phy_disconnect:
phy_disconnect(netdev->phydev);
err_mdio_unregister:
mdiobus_unregister(adapter->mii_bus);
err_mdio_free:
mdiobus_free(adapter->mii_bus);
err_mem_free:
et131x_adapter_memory_free(adapter);
err_iounmap:
iounmap(adapter->regs);
err_free_dev:
pci_dev_put(pdev);
free_netdev(netdev);
err_release_res:
pci_release_regions(pdev);
err_disable:
pci_disable_device(pdev);
goto out;
}
static const struct pci_device_id et131x_pci_table[] = {
{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
{ 0,}
};
MODULE_DEVICE_TABLE(pci, et131x_pci_table);
static struct pci_driver et131x_driver = {
.name = DRIVER_NAME,
.id_table = et131x_pci_table,
.probe = et131x_pci_setup,
.remove = et131x_pci_remove,
.driver.pm = &et131x_pm_ops,
};
module_pci_driver(et131x_driver);