mirror of
https://github.com/torvalds/linux.git
synced 2024-12-13 14:43:03 +00:00
a7a5bc5fe8
When inline encryption is used, the usual message "fscrypt: AES-256-XTS using implementation <impl>" doesn't appear in the kernel log. Add a similar message for the blk-crypto case that indicates that inline encryption was used, and whether blk-crypto-fallback was used or not. This can be useful for debugging performance problems. Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220414053415.158986-1-ebiggers@kernel.org
490 lines
16 KiB
C
490 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Inline encryption support for fscrypt
|
|
*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
/*
|
|
* With "inline encryption", the block layer handles the decryption/encryption
|
|
* as part of the bio, instead of the filesystem doing the crypto itself via
|
|
* crypto API. See Documentation/block/inline-encryption.rst. fscrypt still
|
|
* provides the key and IV to use.
|
|
*/
|
|
|
|
#include <linux/blk-crypto-profile.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include "fscrypt_private.h"
|
|
|
|
struct fscrypt_blk_crypto_key {
|
|
struct blk_crypto_key base;
|
|
int num_devs;
|
|
struct request_queue *devs[];
|
|
};
|
|
|
|
static int fscrypt_get_num_devices(struct super_block *sb)
|
|
{
|
|
if (sb->s_cop->get_num_devices)
|
|
return sb->s_cop->get_num_devices(sb);
|
|
return 1;
|
|
}
|
|
|
|
static void fscrypt_get_devices(struct super_block *sb, int num_devs,
|
|
struct request_queue **devs)
|
|
{
|
|
if (num_devs == 1)
|
|
devs[0] = bdev_get_queue(sb->s_bdev);
|
|
else
|
|
sb->s_cop->get_devices(sb, devs);
|
|
}
|
|
|
|
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
|
|
{
|
|
struct super_block *sb = ci->ci_inode->i_sb;
|
|
unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
|
|
int ino_bits = 64, lblk_bits = 64;
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
|
|
return offsetofend(union fscrypt_iv, nonce);
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
|
|
return sizeof(__le64);
|
|
|
|
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
|
|
return sizeof(__le32);
|
|
|
|
/* Default case: IVs are just the file logical block number */
|
|
if (sb->s_cop->get_ino_and_lblk_bits)
|
|
sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
|
|
return DIV_ROUND_UP(lblk_bits, 8);
|
|
}
|
|
|
|
/*
|
|
* Log a message when starting to use blk-crypto (native) or blk-crypto-fallback
|
|
* for an encryption mode for the first time. This is the blk-crypto
|
|
* counterpart to the message logged when starting to use the crypto API for the
|
|
* first time. A limitation is that these messages don't convey which specific
|
|
* filesystems or files are using each implementation. However, *usually*
|
|
* systems use just one implementation per mode, which makes these messages
|
|
* helpful for debugging problems where the "wrong" implementation is used.
|
|
*/
|
|
static void fscrypt_log_blk_crypto_impl(struct fscrypt_mode *mode,
|
|
struct request_queue **devs,
|
|
int num_devs,
|
|
const struct blk_crypto_config *cfg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_devs; i++) {
|
|
if (!IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
|
|
__blk_crypto_cfg_supported(devs[i]->crypto_profile, cfg)) {
|
|
if (!xchg(&mode->logged_blk_crypto_native, 1))
|
|
pr_info("fscrypt: %s using blk-crypto (native)\n",
|
|
mode->friendly_name);
|
|
} else if (!xchg(&mode->logged_blk_crypto_fallback, 1)) {
|
|
pr_info("fscrypt: %s using blk-crypto-fallback\n",
|
|
mode->friendly_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enable inline encryption for this file if supported. */
|
|
int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
|
|
{
|
|
const struct inode *inode = ci->ci_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct blk_crypto_config crypto_cfg;
|
|
int num_devs;
|
|
struct request_queue **devs;
|
|
int i;
|
|
|
|
/* The file must need contents encryption, not filenames encryption */
|
|
if (!S_ISREG(inode->i_mode))
|
|
return 0;
|
|
|
|
/* The crypto mode must have a blk-crypto counterpart */
|
|
if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
|
|
return 0;
|
|
|
|
/* The filesystem must be mounted with -o inlinecrypt */
|
|
if (!(sb->s_flags & SB_INLINECRYPT))
|
|
return 0;
|
|
|
|
/*
|
|
* When a page contains multiple logically contiguous filesystem blocks,
|
|
* some filesystem code only calls fscrypt_mergeable_bio() for the first
|
|
* block in the page. This is fine for most of fscrypt's IV generation
|
|
* strategies, where contiguous blocks imply contiguous IVs. But it
|
|
* doesn't work with IV_INO_LBLK_32. For now, simply exclude
|
|
* IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
|
|
*/
|
|
if ((fscrypt_policy_flags(&ci->ci_policy) &
|
|
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
|
|
sb->s_blocksize != PAGE_SIZE)
|
|
return 0;
|
|
|
|
/*
|
|
* On all the filesystem's devices, blk-crypto must support the crypto
|
|
* configuration that the file would use.
|
|
*/
|
|
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
|
|
crypto_cfg.data_unit_size = sb->s_blocksize;
|
|
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
|
|
num_devs = fscrypt_get_num_devices(sb);
|
|
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
|
|
if (!devs)
|
|
return -ENOMEM;
|
|
fscrypt_get_devices(sb, num_devs, devs);
|
|
|
|
for (i = 0; i < num_devs; i++) {
|
|
if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
|
|
goto out_free_devs;
|
|
}
|
|
|
|
fscrypt_log_blk_crypto_impl(ci->ci_mode, devs, num_devs, &crypto_cfg);
|
|
|
|
ci->ci_inlinecrypt = true;
|
|
out_free_devs:
|
|
kfree(devs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
|
const u8 *raw_key,
|
|
const struct fscrypt_info *ci)
|
|
{
|
|
const struct inode *inode = ci->ci_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
|
|
int num_devs = fscrypt_get_num_devices(sb);
|
|
int queue_refs = 0;
|
|
struct fscrypt_blk_crypto_key *blk_key;
|
|
int err;
|
|
int i;
|
|
|
|
blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL);
|
|
if (!blk_key)
|
|
return -ENOMEM;
|
|
|
|
blk_key->num_devs = num_devs;
|
|
fscrypt_get_devices(sb, num_devs, blk_key->devs);
|
|
|
|
err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode,
|
|
fscrypt_get_dun_bytes(ci), sb->s_blocksize);
|
|
if (err) {
|
|
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We have to start using blk-crypto on all the filesystem's devices.
|
|
* We also have to save all the request_queue's for later so that the
|
|
* key can be evicted from them. This is needed because some keys
|
|
* aren't destroyed until after the filesystem was already unmounted
|
|
* (namely, the per-mode keys in struct fscrypt_master_key).
|
|
*/
|
|
for (i = 0; i < num_devs; i++) {
|
|
if (!blk_get_queue(blk_key->devs[i])) {
|
|
fscrypt_err(inode, "couldn't get request_queue");
|
|
err = -EAGAIN;
|
|
goto fail;
|
|
}
|
|
queue_refs++;
|
|
|
|
err = blk_crypto_start_using_key(&blk_key->base,
|
|
blk_key->devs[i]);
|
|
if (err) {
|
|
fscrypt_err(inode,
|
|
"error %d starting to use blk-crypto", err);
|
|
goto fail;
|
|
}
|
|
}
|
|
/*
|
|
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
|
|
* I.e., here we publish ->blk_key with a RELEASE barrier so that
|
|
* concurrent tasks can ACQUIRE it. Note that this concurrency is only
|
|
* possible for per-mode keys, not for per-file keys.
|
|
*/
|
|
smp_store_release(&prep_key->blk_key, blk_key);
|
|
return 0;
|
|
|
|
fail:
|
|
for (i = 0; i < queue_refs; i++)
|
|
blk_put_queue(blk_key->devs[i]);
|
|
kfree_sensitive(blk_key);
|
|
return err;
|
|
}
|
|
|
|
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
|
|
{
|
|
struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
|
|
int i;
|
|
|
|
if (blk_key) {
|
|
for (i = 0; i < blk_key->num_devs; i++) {
|
|
blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
|
|
blk_put_queue(blk_key->devs[i]);
|
|
}
|
|
kfree_sensitive(blk_key);
|
|
}
|
|
}
|
|
|
|
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
|
|
{
|
|
return inode->i_crypt_info->ci_inlinecrypt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
|
|
|
|
static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
|
|
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
|
|
{
|
|
union fscrypt_iv iv;
|
|
int i;
|
|
|
|
fscrypt_generate_iv(&iv, lblk_num, ci);
|
|
|
|
BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
|
|
memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
|
|
for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
|
|
dun[i] = le64_to_cpu(iv.dun[i]);
|
|
}
|
|
|
|
/**
|
|
* fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto
|
|
* @bio: a bio which will eventually be submitted to the file
|
|
* @inode: the file's inode
|
|
* @first_lblk: the first file logical block number in the I/O
|
|
* @gfp_mask: memory allocation flags - these must be a waiting mask so that
|
|
* bio_crypt_set_ctx can't fail.
|
|
*
|
|
* If the contents of the file should be encrypted (or decrypted) with inline
|
|
* encryption, then assign the appropriate encryption context to the bio.
|
|
*
|
|
* Normally the bio should be newly allocated (i.e. no pages added yet), as
|
|
* otherwise fscrypt_mergeable_bio() won't work as intended.
|
|
*
|
|
* The encryption context will be freed automatically when the bio is freed.
|
|
*/
|
|
void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
|
|
u64 first_lblk, gfp_t gfp_mask)
|
|
{
|
|
const struct fscrypt_info *ci;
|
|
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
|
|
|
|
if (!fscrypt_inode_uses_inline_crypto(inode))
|
|
return;
|
|
ci = inode->i_crypt_info;
|
|
|
|
fscrypt_generate_dun(ci, first_lblk, dun);
|
|
bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
|
|
|
|
/* Extract the inode and logical block number from a buffer_head. */
|
|
static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
|
|
const struct inode **inode_ret,
|
|
u64 *lblk_num_ret)
|
|
{
|
|
struct page *page = bh->b_page;
|
|
const struct address_space *mapping;
|
|
const struct inode *inode;
|
|
|
|
/*
|
|
* The ext4 journal (jbd2) can submit a buffer_head it directly created
|
|
* for a non-pagecache page. fscrypt doesn't care about these.
|
|
*/
|
|
mapping = page_mapping(page);
|
|
if (!mapping)
|
|
return false;
|
|
inode = mapping->host;
|
|
|
|
*inode_ret = inode;
|
|
*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
|
|
(bh_offset(bh) >> inode->i_blkbits);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline
|
|
* crypto
|
|
* @bio: a bio which will eventually be submitted to the file
|
|
* @first_bh: the first buffer_head for which I/O will be submitted
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
|
|
* of an inode and block number directly.
|
|
*/
|
|
void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
|
|
const struct buffer_head *first_bh,
|
|
gfp_t gfp_mask)
|
|
{
|
|
const struct inode *inode;
|
|
u64 first_lblk;
|
|
|
|
if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
|
|
fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
|
|
|
|
/**
|
|
* fscrypt_mergeable_bio() - test whether data can be added to a bio
|
|
* @bio: the bio being built up
|
|
* @inode: the inode for the next part of the I/O
|
|
* @next_lblk: the next file logical block number in the I/O
|
|
*
|
|
* When building a bio which may contain data which should undergo inline
|
|
* encryption (or decryption) via fscrypt, filesystems should call this function
|
|
* to ensure that the resulting bio contains only contiguous data unit numbers.
|
|
* This will return false if the next part of the I/O cannot be merged with the
|
|
* bio because either the encryption key would be different or the encryption
|
|
* data unit numbers would be discontiguous.
|
|
*
|
|
* fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
|
|
*
|
|
* This function isn't required in cases where crypto-mergeability is ensured in
|
|
* another way, such as I/O targeting only a single file (and thus a single key)
|
|
* combined with fscrypt_limit_io_blocks() to ensure DUN contiguity.
|
|
*
|
|
* Return: true iff the I/O is mergeable
|
|
*/
|
|
bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
|
|
u64 next_lblk)
|
|
{
|
|
const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
|
|
u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
|
|
|
|
if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
|
|
return false;
|
|
if (!bc)
|
|
return true;
|
|
|
|
/*
|
|
* Comparing the key pointers is good enough, as all I/O for each key
|
|
* uses the same pointer. I.e., there's currently no need to support
|
|
* merging requests where the keys are the same but the pointers differ.
|
|
*/
|
|
if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
|
|
return false;
|
|
|
|
fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
|
|
return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
|
|
|
|
/**
|
|
* fscrypt_mergeable_bio_bh() - test whether data can be added to a bio
|
|
* @bio: the bio being built up
|
|
* @next_bh: the next buffer_head for which I/O will be submitted
|
|
*
|
|
* Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
|
|
* an inode and block number directly.
|
|
*
|
|
* Return: true iff the I/O is mergeable
|
|
*/
|
|
bool fscrypt_mergeable_bio_bh(struct bio *bio,
|
|
const struct buffer_head *next_bh)
|
|
{
|
|
const struct inode *inode;
|
|
u64 next_lblk;
|
|
|
|
if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
|
|
return !bio->bi_crypt_context;
|
|
|
|
return fscrypt_mergeable_bio(bio, inode, next_lblk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
|
|
|
|
/**
|
|
* fscrypt_dio_supported() - check whether a DIO (direct I/O) request is
|
|
* supported as far as encryption is concerned
|
|
* @iocb: the file and position the I/O is targeting
|
|
* @iter: the I/O data segment(s)
|
|
*
|
|
* Return: %true if there are no encryption constraints that prevent DIO from
|
|
* being supported; %false if DIO is unsupported. (Note that in the
|
|
* %true case, the filesystem might have other, non-encryption-related
|
|
* constraints that prevent DIO from actually being supported.)
|
|
*/
|
|
bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
const struct inode *inode = file_inode(iocb->ki_filp);
|
|
const unsigned int blocksize = i_blocksize(inode);
|
|
|
|
/* If the file is unencrypted, no veto from us. */
|
|
if (!fscrypt_needs_contents_encryption(inode))
|
|
return true;
|
|
|
|
/* We only support DIO with inline crypto, not fs-layer crypto. */
|
|
if (!fscrypt_inode_uses_inline_crypto(inode))
|
|
return false;
|
|
|
|
/*
|
|
* Since the granularity of encryption is filesystem blocks, the file
|
|
* position and total I/O length must be aligned to the filesystem block
|
|
* size -- not just to the block device's logical block size as is
|
|
* traditionally the case for DIO on many filesystems.
|
|
*
|
|
* We require that the user-provided memory buffers be filesystem block
|
|
* aligned too. It is simpler to have a single alignment value required
|
|
* for all properties of the I/O, as is normally the case for DIO.
|
|
* Also, allowing less aligned buffers would imply that data units could
|
|
* cross bvecs, which would greatly complicate the I/O stack, which
|
|
* assumes that bios can be split at any bvec boundary.
|
|
*/
|
|
if (!IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), blocksize))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_dio_supported);
|
|
|
|
/**
|
|
* fscrypt_limit_io_blocks() - limit I/O blocks to avoid discontiguous DUNs
|
|
* @inode: the file on which I/O is being done
|
|
* @lblk: the block at which the I/O is being started from
|
|
* @nr_blocks: the number of blocks we want to submit starting at @lblk
|
|
*
|
|
* Determine the limit to the number of blocks that can be submitted in a bio
|
|
* targeting @lblk without causing a data unit number (DUN) discontiguity.
|
|
*
|
|
* This is normally just @nr_blocks, as normally the DUNs just increment along
|
|
* with the logical blocks. (Or the file is not encrypted.)
|
|
*
|
|
* In rare cases, fscrypt can be using an IV generation method that allows the
|
|
* DUN to wrap around within logically contiguous blocks, and that wraparound
|
|
* will occur. If this happens, a value less than @nr_blocks will be returned
|
|
* so that the wraparound doesn't occur in the middle of a bio, which would
|
|
* cause encryption/decryption to produce wrong results.
|
|
*
|
|
* Return: the actual number of blocks that can be submitted
|
|
*/
|
|
u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks)
|
|
{
|
|
const struct fscrypt_info *ci;
|
|
u32 dun;
|
|
|
|
if (!fscrypt_inode_uses_inline_crypto(inode))
|
|
return nr_blocks;
|
|
|
|
if (nr_blocks <= 1)
|
|
return nr_blocks;
|
|
|
|
ci = inode->i_crypt_info;
|
|
if (!(fscrypt_policy_flags(&ci->ci_policy) &
|
|
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))
|
|
return nr_blocks;
|
|
|
|
/* With IV_INO_LBLK_32, the DUN can wrap around from U32_MAX to 0. */
|
|
|
|
dun = ci->ci_hashed_ino + lblk;
|
|
|
|
return min_t(u64, nr_blocks, (u64)U32_MAX + 1 - dun);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_limit_io_blocks);
|