linux/drivers/memory/tegra/tegra210-emc-core.c
Kai Song 31b88d85f0 memory: tegra210-emc: replace DEFINE_SIMPLE_ATTRIBUTE with
fix debugfs_simple_attr.cocci warning:
drivers/memory/tegra/tegra210-emc-core.c:1665:0-23: WARNING:tegra210_emc_debug_min_rate_fops
should be defined with DEFINE_DEBUGFS_ATTRIBUTE

Commit 6fc5f1adf5 ("memory: tegra210-emc: replace
DEFINE_SIMPLE_ATTRIBUTE with DEFINE_DEBUGFS_ATTRIBUTE") fixed the same
warning, but didn't fix all matches in this file at once.

Signed-off-by: Kai Song <songkai01@inspur.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Link: https://lore.kernel.org/r/20211005043514.9650-1-songkai01@inspur.com
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
2021-10-07 20:37:33 +02:00

2078 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/mc.h>
#include "tegra210-emc.h"
#include "tegra210-mc.h"
/* CLK_RST_CONTROLLER_CLK_SOURCE_EMC */
#define EMC_CLK_EMC_2X_CLK_SRC_SHIFT 29
#define EMC_CLK_EMC_2X_CLK_SRC_MASK \
(0x7 << EMC_CLK_EMC_2X_CLK_SRC_SHIFT)
#define EMC_CLK_SOURCE_PLLM_LJ 0x4
#define EMC_CLK_SOURCE_PLLMB_LJ 0x5
#define EMC_CLK_FORCE_CC_TRIGGER BIT(27)
#define EMC_CLK_MC_EMC_SAME_FREQ BIT(16)
#define EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT 0
#define EMC_CLK_EMC_2X_CLK_DIVISOR_MASK \
(0xff << EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT)
/* CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL */
#define DLL_CLK_EMC_DLL_CLK_SRC_SHIFT 29
#define DLL_CLK_EMC_DLL_CLK_SRC_MASK \
(0x7 << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT)
#define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT 10
#define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK \
(0x3 << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT)
#define PLLM_VCOA 0
#define PLLM_VCOB 1
#define EMC_DLL_SWITCH_OUT 2
#define DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT 0
#define DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK \
(0xff << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT)
/* MC_EMEM_ARB_MISC0 */
#define MC_EMEM_ARB_MISC0_EMC_SAME_FREQ BIT(27)
/* EMC_DATA_BRLSHFT_X */
#define EMC0_EMC_DATA_BRLSHFT_0_INDEX 2
#define EMC1_EMC_DATA_BRLSHFT_0_INDEX 3
#define EMC0_EMC_DATA_BRLSHFT_1_INDEX 4
#define EMC1_EMC_DATA_BRLSHFT_1_INDEX 5
#define TRIM_REG(chan, rank, reg, byte) \
(((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK & \
next->trim_regs[EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## \
rank ## _ ## reg ## _INDEX]) >> \
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT) \
+ \
(((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \
byte ## _DATA_BRLSHFT_MASK & \
next->trim_perch_regs[EMC ## chan ## \
_EMC_DATA_BRLSHFT_ ## rank ## _INDEX]) >> \
EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \
byte ## _DATA_BRLSHFT_SHIFT) * 64))
#define CALC_TEMP(rank, reg, byte1, byte2, n) \
(((new[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## \
reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK) \
| \
((new[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##\
reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK))
#define REFRESH_SPEEDUP(value, speedup) \
(((value) & 0xffff0000) | ((value) & 0xffff) * (speedup))
#define LPDDR2_MR4_SRR GENMASK(2, 0)
static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = {
&tegra210_emc_r21021,
};
static const struct tegra210_emc_table_register_offsets
tegra210_emc_table_register_offsets = {
.burst = {
EMC_RC,
EMC_RFC,
EMC_RFCPB,
EMC_REFCTRL2,
EMC_RFC_SLR,
EMC_RAS,
EMC_RP,
EMC_R2W,
EMC_W2R,
EMC_R2P,
EMC_W2P,
EMC_R2R,
EMC_TPPD,
EMC_CCDMW,
EMC_RD_RCD,
EMC_WR_RCD,
EMC_RRD,
EMC_REXT,
EMC_WEXT,
EMC_WDV_CHK,
EMC_WDV,
EMC_WSV,
EMC_WEV,
EMC_WDV_MASK,
EMC_WS_DURATION,
EMC_WE_DURATION,
EMC_QUSE,
EMC_QUSE_WIDTH,
EMC_IBDLY,
EMC_OBDLY,
EMC_EINPUT,
EMC_MRW6,
EMC_EINPUT_DURATION,
EMC_PUTERM_EXTRA,
EMC_PUTERM_WIDTH,
EMC_QRST,
EMC_QSAFE,
EMC_RDV,
EMC_RDV_MASK,
EMC_RDV_EARLY,
EMC_RDV_EARLY_MASK,
EMC_REFRESH,
EMC_BURST_REFRESH_NUM,
EMC_PRE_REFRESH_REQ_CNT,
EMC_PDEX2WR,
EMC_PDEX2RD,
EMC_PCHG2PDEN,
EMC_ACT2PDEN,
EMC_AR2PDEN,
EMC_RW2PDEN,
EMC_CKE2PDEN,
EMC_PDEX2CKE,
EMC_PDEX2MRR,
EMC_TXSR,
EMC_TXSRDLL,
EMC_TCKE,
EMC_TCKESR,
EMC_TPD,
EMC_TFAW,
EMC_TRPAB,
EMC_TCLKSTABLE,
EMC_TCLKSTOP,
EMC_MRW7,
EMC_TREFBW,
EMC_ODT_WRITE,
EMC_FBIO_CFG5,
EMC_FBIO_CFG7,
EMC_CFG_DIG_DLL,
EMC_CFG_DIG_DLL_PERIOD,
EMC_PMACRO_IB_RXRT,
EMC_CFG_PIPE_1,
EMC_CFG_PIPE_2,
EMC_PMACRO_QUSE_DDLL_RANK0_4,
EMC_PMACRO_QUSE_DDLL_RANK0_5,
EMC_PMACRO_QUSE_DDLL_RANK1_4,
EMC_PMACRO_QUSE_DDLL_RANK1_5,
EMC_MRW8,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_4,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_5,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_0,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_1,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_2,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_3,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_4,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_5,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_0,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_1,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_2,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_3,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_4,
EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_5,
EMC_PMACRO_DDLL_LONG_CMD_0,
EMC_PMACRO_DDLL_LONG_CMD_1,
EMC_PMACRO_DDLL_LONG_CMD_2,
EMC_PMACRO_DDLL_LONG_CMD_3,
EMC_PMACRO_DDLL_LONG_CMD_4,
EMC_PMACRO_DDLL_SHORT_CMD_0,
EMC_PMACRO_DDLL_SHORT_CMD_1,
EMC_PMACRO_DDLL_SHORT_CMD_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_3,
EMC_TXDSRVTTGEN,
EMC_FDPD_CTRL_DQ,
EMC_FDPD_CTRL_CMD,
EMC_FBIO_SPARE,
EMC_ZCAL_INTERVAL,
EMC_ZCAL_WAIT_CNT,
EMC_MRS_WAIT_CNT,
EMC_MRS_WAIT_CNT2,
EMC_AUTO_CAL_CHANNEL,
EMC_DLL_CFG_0,
EMC_DLL_CFG_1,
EMC_PMACRO_AUTOCAL_CFG_COMMON,
EMC_PMACRO_ZCTRL,
EMC_CFG,
EMC_CFG_PIPE,
EMC_DYN_SELF_REF_CONTROL,
EMC_QPOP,
EMC_DQS_BRLSHFT_0,
EMC_DQS_BRLSHFT_1,
EMC_CMD_BRLSHFT_2,
EMC_CMD_BRLSHFT_3,
EMC_PMACRO_PAD_CFG_CTRL,
EMC_PMACRO_DATA_PAD_RX_CTRL,
EMC_PMACRO_CMD_PAD_RX_CTRL,
EMC_PMACRO_DATA_RX_TERM_MODE,
EMC_PMACRO_CMD_RX_TERM_MODE,
EMC_PMACRO_CMD_PAD_TX_CTRL,
EMC_PMACRO_DATA_PAD_TX_CTRL,
EMC_PMACRO_COMMON_PAD_TX_CTRL,
EMC_PMACRO_VTTGEN_CTRL_0,
EMC_PMACRO_VTTGEN_CTRL_1,
EMC_PMACRO_VTTGEN_CTRL_2,
EMC_PMACRO_BRICK_CTRL_RFU1,
EMC_PMACRO_CMD_BRICK_CTRL_FDPD,
EMC_PMACRO_BRICK_CTRL_RFU2,
EMC_PMACRO_DATA_BRICK_CTRL_FDPD,
EMC_PMACRO_BG_BIAS_CTRL_0,
EMC_CFG_3,
EMC_PMACRO_TX_PWRD_0,
EMC_PMACRO_TX_PWRD_1,
EMC_PMACRO_TX_PWRD_2,
EMC_PMACRO_TX_PWRD_3,
EMC_PMACRO_TX_PWRD_4,
EMC_PMACRO_TX_PWRD_5,
EMC_CONFIG_SAMPLE_DELAY,
EMC_PMACRO_TX_SEL_CLK_SRC_0,
EMC_PMACRO_TX_SEL_CLK_SRC_1,
EMC_PMACRO_TX_SEL_CLK_SRC_2,
EMC_PMACRO_TX_SEL_CLK_SRC_3,
EMC_PMACRO_TX_SEL_CLK_SRC_4,
EMC_PMACRO_TX_SEL_CLK_SRC_5,
EMC_PMACRO_DDLL_BYPASS,
EMC_PMACRO_DDLL_PWRD_0,
EMC_PMACRO_DDLL_PWRD_1,
EMC_PMACRO_DDLL_PWRD_2,
EMC_PMACRO_CMD_CTRL_0,
EMC_PMACRO_CMD_CTRL_1,
EMC_PMACRO_CMD_CTRL_2,
EMC_TR_TIMING_0,
EMC_TR_DVFS,
EMC_TR_CTRL_1,
EMC_TR_RDV,
EMC_TR_QPOP,
EMC_TR_RDV_MASK,
EMC_MRW14,
EMC_TR_QSAFE,
EMC_TR_QRST,
EMC_TRAINING_CTRL,
EMC_TRAINING_SETTLE,
EMC_TRAINING_VREF_SETTLE,
EMC_TRAINING_CA_FINE_CTRL,
EMC_TRAINING_CA_CTRL_MISC,
EMC_TRAINING_CA_CTRL_MISC1,
EMC_TRAINING_CA_VREF_CTRL,
EMC_TRAINING_QUSE_CORS_CTRL,
EMC_TRAINING_QUSE_FINE_CTRL,
EMC_TRAINING_QUSE_CTRL_MISC,
EMC_TRAINING_QUSE_VREF_CTRL,
EMC_TRAINING_READ_FINE_CTRL,
EMC_TRAINING_READ_CTRL_MISC,
EMC_TRAINING_READ_VREF_CTRL,
EMC_TRAINING_WRITE_FINE_CTRL,
EMC_TRAINING_WRITE_CTRL_MISC,
EMC_TRAINING_WRITE_VREF_CTRL,
EMC_TRAINING_MPC,
EMC_MRW15,
},
.trim = {
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2,
EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
EMC_PMACRO_IB_VREF_DQS_0,
EMC_PMACRO_IB_VREF_DQS_1,
EMC_PMACRO_IB_VREF_DQ_0,
EMC_PMACRO_IB_VREF_DQ_1,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1,
EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2,
EMC_PMACRO_QUSE_DDLL_RANK0_0,
EMC_PMACRO_QUSE_DDLL_RANK0_1,
EMC_PMACRO_QUSE_DDLL_RANK0_2,
EMC_PMACRO_QUSE_DDLL_RANK0_3,
EMC_PMACRO_QUSE_DDLL_RANK1_0,
EMC_PMACRO_QUSE_DDLL_RANK1_1,
EMC_PMACRO_QUSE_DDLL_RANK1_2,
EMC_PMACRO_QUSE_DDLL_RANK1_3
},
.burst_mc = {
MC_EMEM_ARB_CFG,
MC_EMEM_ARB_OUTSTANDING_REQ,
MC_EMEM_ARB_REFPB_HP_CTRL,
MC_EMEM_ARB_REFPB_BANK_CTRL,
MC_EMEM_ARB_TIMING_RCD,
MC_EMEM_ARB_TIMING_RP,
MC_EMEM_ARB_TIMING_RC,
MC_EMEM_ARB_TIMING_RAS,
MC_EMEM_ARB_TIMING_FAW,
MC_EMEM_ARB_TIMING_RRD,
MC_EMEM_ARB_TIMING_RAP2PRE,
MC_EMEM_ARB_TIMING_WAP2PRE,
MC_EMEM_ARB_TIMING_R2R,
MC_EMEM_ARB_TIMING_W2W,
MC_EMEM_ARB_TIMING_R2W,
MC_EMEM_ARB_TIMING_CCDMW,
MC_EMEM_ARB_TIMING_W2R,
MC_EMEM_ARB_TIMING_RFCPB,
MC_EMEM_ARB_DA_TURNS,
MC_EMEM_ARB_DA_COVERS,
MC_EMEM_ARB_MISC0,
MC_EMEM_ARB_MISC1,
MC_EMEM_ARB_MISC2,
MC_EMEM_ARB_RING1_THROTTLE,
MC_EMEM_ARB_DHYST_CTRL,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_0,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_1,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_2,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_3,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_4,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_5,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_6,
MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_7,
},
.la_scale = {
MC_MLL_MPCORER_PTSA_RATE,
MC_FTOP_PTSA_RATE,
MC_PTSA_GRANT_DECREMENT,
MC_LATENCY_ALLOWANCE_XUSB_0,
MC_LATENCY_ALLOWANCE_XUSB_1,
MC_LATENCY_ALLOWANCE_TSEC_0,
MC_LATENCY_ALLOWANCE_SDMMCA_0,
MC_LATENCY_ALLOWANCE_SDMMCAA_0,
MC_LATENCY_ALLOWANCE_SDMMC_0,
MC_LATENCY_ALLOWANCE_SDMMCAB_0,
MC_LATENCY_ALLOWANCE_PPCS_0,
MC_LATENCY_ALLOWANCE_PPCS_1,
MC_LATENCY_ALLOWANCE_MPCORE_0,
MC_LATENCY_ALLOWANCE_HC_0,
MC_LATENCY_ALLOWANCE_HC_1,
MC_LATENCY_ALLOWANCE_AVPC_0,
MC_LATENCY_ALLOWANCE_GPU_0,
MC_LATENCY_ALLOWANCE_GPU2_0,
MC_LATENCY_ALLOWANCE_NVENC_0,
MC_LATENCY_ALLOWANCE_NVDEC_0,
MC_LATENCY_ALLOWANCE_VIC_0,
MC_LATENCY_ALLOWANCE_VI2_0,
MC_LATENCY_ALLOWANCE_ISP2_0,
MC_LATENCY_ALLOWANCE_ISP2_1,
},
.burst_per_channel = {
{ .bank = 0, .offset = EMC_MRW10, },
{ .bank = 1, .offset = EMC_MRW10, },
{ .bank = 0, .offset = EMC_MRW11, },
{ .bank = 1, .offset = EMC_MRW11, },
{ .bank = 0, .offset = EMC_MRW12, },
{ .bank = 1, .offset = EMC_MRW12, },
{ .bank = 0, .offset = EMC_MRW13, },
{ .bank = 1, .offset = EMC_MRW13, },
},
.trim_per_channel = {
{ .bank = 0, .offset = EMC_CMD_BRLSHFT_0, },
{ .bank = 1, .offset = EMC_CMD_BRLSHFT_1, },
{ .bank = 0, .offset = EMC_DATA_BRLSHFT_0, },
{ .bank = 1, .offset = EMC_DATA_BRLSHFT_0, },
{ .bank = 0, .offset = EMC_DATA_BRLSHFT_1, },
{ .bank = 1, .offset = EMC_DATA_BRLSHFT_1, },
{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_0, },
{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_1, },
{ .bank = 0, .offset = EMC_QUSE_BRLSHFT_2, },
{ .bank = 1, .offset = EMC_QUSE_BRLSHFT_3, },
},
.vref_per_channel = {
{
.bank = 0,
.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
}, {
.bank = 1,
.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0,
}, {
.bank = 0,
.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
}, {
.bank = 1,
.offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1,
},
},
};
static void tegra210_emc_train(struct timer_list *timer)
{
struct tegra210_emc *emc = from_timer(emc, timer, training);
unsigned long flags;
if (!emc->last)
return;
spin_lock_irqsave(&emc->lock, flags);
if (emc->sequence->periodic_compensation)
emc->sequence->periodic_compensation(emc);
spin_unlock_irqrestore(&emc->lock, flags);
mod_timer(&emc->training,
jiffies + msecs_to_jiffies(emc->training_interval));
}
static void tegra210_emc_training_start(struct tegra210_emc *emc)
{
mod_timer(&emc->training,
jiffies + msecs_to_jiffies(emc->training_interval));
}
static void tegra210_emc_training_stop(struct tegra210_emc *emc)
{
del_timer(&emc->training);
}
static unsigned int tegra210_emc_get_temperature(struct tegra210_emc *emc)
{
unsigned long flags;
u32 value, max = 0;
unsigned int i;
spin_lock_irqsave(&emc->lock, flags);
for (i = 0; i < emc->num_devices; i++) {
value = tegra210_emc_mrr_read(emc, i, 4);
if (value & BIT(7))
dev_dbg(emc->dev,
"sensor reading changed for device %u: %08x\n",
i, value);
value = FIELD_GET(LPDDR2_MR4_SRR, value);
if (value > max)
max = value;
}
spin_unlock_irqrestore(&emc->lock, flags);
return max;
}
static void tegra210_emc_poll_refresh(struct timer_list *timer)
{
struct tegra210_emc *emc = from_timer(emc, timer, refresh_timer);
unsigned int temperature;
if (!emc->debugfs.temperature)
temperature = tegra210_emc_get_temperature(emc);
else
temperature = emc->debugfs.temperature;
if (temperature == emc->temperature)
goto reset;
switch (temperature) {
case 0 ... 3:
/* temperature is fine, using regular refresh */
dev_dbg(emc->dev, "switching to nominal refresh...\n");
tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_NOMINAL);
break;
case 4:
dev_dbg(emc->dev, "switching to 2x refresh...\n");
tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_2X);
break;
case 5:
dev_dbg(emc->dev, "switching to 4x refresh...\n");
tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_4X);
break;
case 6 ... 7:
dev_dbg(emc->dev, "switching to throttle refresh...\n");
tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_THROTTLE);
break;
default:
WARN(1, "invalid DRAM temperature state %u\n", temperature);
return;
}
emc->temperature = temperature;
reset:
if (atomic_read(&emc->refresh_poll) > 0) {
unsigned int interval = emc->refresh_poll_interval;
unsigned int timeout = msecs_to_jiffies(interval);
mod_timer(&emc->refresh_timer, jiffies + timeout);
}
}
static void tegra210_emc_poll_refresh_stop(struct tegra210_emc *emc)
{
atomic_set(&emc->refresh_poll, 0);
del_timer_sync(&emc->refresh_timer);
}
static void tegra210_emc_poll_refresh_start(struct tegra210_emc *emc)
{
atomic_set(&emc->refresh_poll, 1);
mod_timer(&emc->refresh_timer,
jiffies + msecs_to_jiffies(emc->refresh_poll_interval));
}
static int tegra210_emc_cd_max_state(struct thermal_cooling_device *cd,
unsigned long *state)
{
*state = 1;
return 0;
}
static int tegra210_emc_cd_get_state(struct thermal_cooling_device *cd,
unsigned long *state)
{
struct tegra210_emc *emc = cd->devdata;
*state = atomic_read(&emc->refresh_poll);
return 0;
}
static int tegra210_emc_cd_set_state(struct thermal_cooling_device *cd,
unsigned long state)
{
struct tegra210_emc *emc = cd->devdata;
if (state == atomic_read(&emc->refresh_poll))
return 0;
if (state)
tegra210_emc_poll_refresh_start(emc);
else
tegra210_emc_poll_refresh_stop(emc);
return 0;
}
static struct thermal_cooling_device_ops tegra210_emc_cd_ops = {
.get_max_state = tegra210_emc_cd_max_state,
.get_cur_state = tegra210_emc_cd_get_state,
.set_cur_state = tegra210_emc_cd_set_state,
};
static void tegra210_emc_set_clock(struct tegra210_emc *emc, u32 clksrc)
{
emc->sequence->set_clock(emc, clksrc);
if (emc->next->periodic_training)
tegra210_emc_training_start(emc);
else
tegra210_emc_training_stop(emc);
}
static void tegra210_change_dll_src(struct tegra210_emc *emc,
u32 clksrc)
{
u32 dll_setting = emc->next->dll_clk_src;
u32 emc_clk_src;
u32 emc_clk_div;
emc_clk_src = (clksrc & EMC_CLK_EMC_2X_CLK_SRC_MASK) >>
EMC_CLK_EMC_2X_CLK_SRC_SHIFT;
emc_clk_div = (clksrc & EMC_CLK_EMC_2X_CLK_DIVISOR_MASK) >>
EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT;
dll_setting &= ~(DLL_CLK_EMC_DLL_CLK_SRC_MASK |
DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK);
dll_setting |= emc_clk_src << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT;
dll_setting |= emc_clk_div << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT;
dll_setting &= ~DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK;
if (emc_clk_src == EMC_CLK_SOURCE_PLLMB_LJ)
dll_setting |= (PLLM_VCOB <<
DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
else if (emc_clk_src == EMC_CLK_SOURCE_PLLM_LJ)
dll_setting |= (PLLM_VCOA <<
DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
else
dll_setting |= (EMC_DLL_SWITCH_OUT <<
DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT);
tegra210_clk_emc_dll_update_setting(dll_setting);
if (emc->next->clk_out_enb_x_0_clk_enb_emc_dll)
tegra210_clk_emc_dll_enable(true);
else
tegra210_clk_emc_dll_enable(false);
}
int tegra210_emc_set_refresh(struct tegra210_emc *emc,
enum tegra210_emc_refresh refresh)
{
struct tegra210_emc_timing *timings;
unsigned long flags;
if ((emc->dram_type != DRAM_TYPE_LPDDR2 &&
emc->dram_type != DRAM_TYPE_LPDDR4) ||
!emc->last)
return -ENODEV;
if (refresh > TEGRA210_EMC_REFRESH_THROTTLE)
return -EINVAL;
if (refresh == emc->refresh)
return 0;
spin_lock_irqsave(&emc->lock, flags);
if (refresh == TEGRA210_EMC_REFRESH_THROTTLE && emc->derated)
timings = emc->derated;
else
timings = emc->nominal;
if (timings != emc->timings) {
unsigned int index = emc->last - emc->timings;
u32 clksrc;
clksrc = emc->provider.configs[index].value |
EMC_CLK_FORCE_CC_TRIGGER;
emc->next = &timings[index];
emc->timings = timings;
tegra210_emc_set_clock(emc, clksrc);
} else {
tegra210_emc_adjust_timing(emc, emc->last);
tegra210_emc_timing_update(emc);
if (refresh != TEGRA210_EMC_REFRESH_NOMINAL)
emc_writel(emc, EMC_REF_REF_CMD, EMC_REF);
}
spin_unlock_irqrestore(&emc->lock, flags);
return 0;
}
u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip,
unsigned int address)
{
u32 value, ret = 0;
unsigned int i;
value = (chip & EMC_MRR_DEV_SEL_MASK) << EMC_MRR_DEV_SEL_SHIFT |
(address & EMC_MRR_MA_MASK) << EMC_MRR_MA_SHIFT;
emc_writel(emc, value, EMC_MRR);
for (i = 0; i < emc->num_channels; i++)
WARN(tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_MRR_DIVLD, 1),
"Timed out waiting for MRR %u (ch=%u)\n", address, i);
for (i = 0; i < emc->num_channels; i++) {
value = emc_channel_readl(emc, i, EMC_MRR);
value &= EMC_MRR_DATA_MASK;
ret = (ret << 16) | value;
}
return ret;
}
void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc)
{
int err;
mc_readl(emc->mc, MC_EMEM_ADR_CFG);
emc_readl(emc, EMC_INTSTATUS);
tegra210_clk_emc_update_setting(clksrc);
err = tegra210_emc_wait_for_update(emc, 0, EMC_INTSTATUS,
EMC_INTSTATUS_CLKCHANGE_COMPLETE,
true);
if (err)
dev_warn(emc->dev, "clock change completion error: %d\n", err);
}
struct tegra210_emc_timing *tegra210_emc_find_timing(struct tegra210_emc *emc,
unsigned long rate)
{
unsigned int i;
for (i = 0; i < emc->num_timings; i++)
if (emc->timings[i].rate * 1000UL == rate)
return &emc->timings[i];
return NULL;
}
int tegra210_emc_wait_for_update(struct tegra210_emc *emc, unsigned int channel,
unsigned int offset, u32 bit_mask, bool state)
{
unsigned int i;
u32 value;
for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) {
value = emc_channel_readl(emc, channel, offset);
if (!!(value & bit_mask) == state)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
void tegra210_emc_set_shadow_bypass(struct tegra210_emc *emc, int set)
{
u32 emc_dbg = emc_readl(emc, EMC_DBG);
if (set)
emc_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
else
emc_writel(emc, emc_dbg & ~EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG);
}
u32 tegra210_emc_get_dll_state(struct tegra210_emc_timing *next)
{
if (next->emc_emrs & 0x1)
return 0;
return 1;
}
void tegra210_emc_timing_update(struct tegra210_emc *emc)
{
unsigned int i;
int err = 0;
emc_writel(emc, 0x1, EMC_TIMING_CONTROL);
for (i = 0; i < emc->num_channels; i++) {
err |= tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
false);
}
if (err)
dev_warn(emc->dev, "timing update error: %d\n", err);
}
unsigned long tegra210_emc_actual_osc_clocks(u32 in)
{
if (in < 0x40)
return in * 16;
else if (in < 0x80)
return 2048;
else if (in < 0xc0)
return 4096;
else
return 8192;
}
void tegra210_emc_start_periodic_compensation(struct tegra210_emc *emc)
{
u32 mpc_req = 0x4b;
emc_writel(emc, mpc_req, EMC_MPC);
mpc_req = emc_readl(emc, EMC_MPC);
}
u32 tegra210_emc_compensate(struct tegra210_emc_timing *next, u32 offset)
{
u32 temp = 0, rate = next->rate / 1000;
s32 delta[4], delta_taps[4];
s32 new[] = {
TRIM_REG(0, 0, 0, 0),
TRIM_REG(0, 0, 0, 1),
TRIM_REG(0, 0, 1, 2),
TRIM_REG(0, 0, 1, 3),
TRIM_REG(1, 0, 2, 4),
TRIM_REG(1, 0, 2, 5),
TRIM_REG(1, 0, 3, 6),
TRIM_REG(1, 0, 3, 7),
TRIM_REG(0, 1, 0, 0),
TRIM_REG(0, 1, 0, 1),
TRIM_REG(0, 1, 1, 2),
TRIM_REG(0, 1, 1, 3),
TRIM_REG(1, 1, 2, 4),
TRIM_REG(1, 1, 2, 5),
TRIM_REG(1, 1, 3, 6),
TRIM_REG(1, 1, 3, 7)
};
unsigned i;
switch (offset) {
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
case EMC_DATA_BRLSHFT_0:
delta[0] = 128 * (next->current_dram_clktree[C0D0U0] -
next->trained_dram_clktree[C0D0U0]);
delta[1] = 128 * (next->current_dram_clktree[C0D0U1] -
next->trained_dram_clktree[C0D0U1]);
delta[2] = 128 * (next->current_dram_clktree[C1D0U0] -
next->trained_dram_clktree[C1D0U0]);
delta[3] = 128 * (next->current_dram_clktree[C1D0U1] -
next->trained_dram_clktree[C1D0U1]);
delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
for (i = 0; i < 4; i++) {
if ((delta_taps[i] > next->tree_margin) ||
(delta_taps[i] < (-1 * next->tree_margin))) {
new[i * 2] = new[i * 2] + delta_taps[i];
new[i * 2 + 1] = new[i * 2 + 1] +
delta_taps[i];
}
}
if (offset == EMC_DATA_BRLSHFT_0) {
for (i = 0; i < 8; i++)
new[i] = new[i] / 64;
} else {
for (i = 0; i < 8; i++)
new[i] = new[i] % 64;
}
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
case EMC_DATA_BRLSHFT_1:
delta[0] = 128 * (next->current_dram_clktree[C0D1U0] -
next->trained_dram_clktree[C0D1U0]);
delta[1] = 128 * (next->current_dram_clktree[C0D1U1] -
next->trained_dram_clktree[C0D1U1]);
delta[2] = 128 * (next->current_dram_clktree[C1D1U0] -
next->trained_dram_clktree[C1D1U0]);
delta[3] = 128 * (next->current_dram_clktree[C1D1U1] -
next->trained_dram_clktree[C1D1U1]);
delta_taps[0] = (delta[0] * (s32)rate) / 1000000;
delta_taps[1] = (delta[1] * (s32)rate) / 1000000;
delta_taps[2] = (delta[2] * (s32)rate) / 1000000;
delta_taps[3] = (delta[3] * (s32)rate) / 1000000;
for (i = 0; i < 4; i++) {
if ((delta_taps[i] > next->tree_margin) ||
(delta_taps[i] < (-1 * next->tree_margin))) {
new[8 + i * 2] = new[8 + i * 2] +
delta_taps[i];
new[8 + i * 2 + 1] = new[8 + i * 2 + 1] +
delta_taps[i];
}
}
if (offset == EMC_DATA_BRLSHFT_1) {
for (i = 0; i < 8; i++)
new[i + 8] = new[i + 8] / 64;
} else {
for (i = 0; i < 8; i++)
new[i + 8] = new[i + 8] % 64;
}
break;
}
switch (offset) {
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
temp = CALC_TEMP(0, 0, 0, 1, 0);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
temp = CALC_TEMP(0, 1, 2, 3, 2);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
temp = CALC_TEMP(0, 2, 4, 5, 4);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
temp = CALC_TEMP(0, 3, 6, 7, 6);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
temp = CALC_TEMP(1, 0, 0, 1, 8);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
temp = CALC_TEMP(1, 1, 2, 3, 10);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
temp = CALC_TEMP(1, 2, 4, 5, 12);
break;
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
temp = CALC_TEMP(1, 3, 6, 7, 14);
break;
case EMC_DATA_BRLSHFT_0:
temp = ((new[0] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) |
((new[1] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) |
((new[2] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) |
((new[3] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) |
((new[4] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) |
((new[5] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) |
((new[6] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) |
((new[7] <<
EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK);
break;
case EMC_DATA_BRLSHFT_1:
temp = ((new[8] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) |
((new[9] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) |
((new[10] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) |
((new[11] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) |
((new[12] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) |
((new[13] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) |
((new[14] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) |
((new[15] <<
EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) &
EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK);
break;
default:
break;
}
return temp;
}
u32 tegra210_emc_dll_prelock(struct tegra210_emc *emc, u32 clksrc)
{
unsigned int i;
u32 value;
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_MASK;
value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_SHIFT);
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK;
value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
emc_writel(emc, value, EMC_CFG_DIG_DLL);
emc_writel(emc, 1, EMC_TIMING_CONTROL);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_TIMING_UPDATE_STALLED,
0);
for (i = 0; i < emc->num_channels; i++) {
while (true) {
value = emc_channel_readl(emc, i, EMC_CFG_DIG_DLL);
if ((value & EMC_CFG_DIG_DLL_CFG_DLL_EN) == 0)
break;
}
}
value = emc->next->burst_regs[EMC_DLL_CFG_0_INDEX];
emc_writel(emc, value, EMC_DLL_CFG_0);
value = emc_readl(emc, EMC_DLL_CFG_1);
value &= EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_MASK;
if (emc->next->rate >= 400000 && emc->next->rate < 600000)
value |= 150;
else if (emc->next->rate >= 600000 && emc->next->rate < 800000)
value |= 100;
else if (emc->next->rate >= 800000 && emc->next->rate < 1000000)
value |= 70;
else if (emc->next->rate >= 1000000 && emc->next->rate < 1200000)
value |= 30;
else
value |= 20;
emc_writel(emc, value, EMC_DLL_CFG_1);
tegra210_change_dll_src(emc, clksrc);
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
emc_writel(emc, value, EMC_CFG_DIG_DLL);
tegra210_emc_timing_update(emc);
for (i = 0; i < emc->num_channels; i++) {
while (true) {
value = emc_channel_readl(emc, 0, EMC_CFG_DIG_DLL);
if (value & EMC_CFG_DIG_DLL_CFG_DLL_EN)
break;
}
}
while (true) {
value = emc_readl(emc, EMC_DIG_DLL_STATUS);
if ((value & EMC_DIG_DLL_STATUS_DLL_PRIV_UPDATED) == 0)
continue;
if ((value & EMC_DIG_DLL_STATUS_DLL_LOCK) == 0)
continue;
break;
}
value = emc_readl(emc, EMC_DIG_DLL_STATUS);
return value & EMC_DIG_DLL_STATUS_DLL_OUT_MASK;
}
u32 tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc *emc, u32 clk,
bool flip_backward)
{
u32 cmd_pad, dq_pad, rfu1, cfg5, common_tx, ramp_up_wait = 0;
const struct tegra210_emc_timing *timing;
if (flip_backward)
timing = emc->last;
else
timing = emc->next;
cmd_pad = timing->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
dq_pad = timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
rfu1 = timing->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
cfg5 = timing->burst_regs[EMC_FBIO_CFG5_INDEX];
common_tx = timing->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
ccfifo_writel(emc, common_tx & 0xa,
EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
ccfifo_writel(emc, common_tx & 0xf,
EMC_PMACRO_COMMON_PAD_TX_CTRL,
(100000 / clk) + 1);
ramp_up_wait += 100000;
} else {
ccfifo_writel(emc, common_tx | 0x8,
EMC_PMACRO_COMMON_PAD_TX_CTRL, 0);
}
if (clk < 1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD) {
if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
cmd_pad |=
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
cmd_pad &=
~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
ccfifo_writel(emc, cmd_pad,
EMC_PMACRO_CMD_PAD_TX_CTRL,
(100000 / clk) + 1);
ramp_up_wait += 100000;
dq_pad |=
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
dq_pad &=
~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
ccfifo_writel(emc, dq_pad,
EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
ccfifo_writel(emc, rfu1 & 0xfe40fe40,
EMC_PMACRO_BRICK_CTRL_RFU1, 0);
} else {
ccfifo_writel(emc, rfu1 & 0xfe40fe40,
EMC_PMACRO_BRICK_CTRL_RFU1,
(100000 / clk) + 1);
ramp_up_wait += 100000;
}
ccfifo_writel(emc, rfu1 & 0xfeedfeed,
EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
ramp_up_wait += 100000;
if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) {
cmd_pad |=
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC;
ccfifo_writel(emc, cmd_pad,
EMC_PMACRO_CMD_PAD_TX_CTRL,
(100000 / clk) + 1);
ramp_up_wait += 100000;
dq_pad |=
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC;
ccfifo_writel(emc, dq_pad,
EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
ccfifo_writel(emc, rfu1,
EMC_PMACRO_BRICK_CTRL_RFU1, 0);
} else {
ccfifo_writel(emc, rfu1,
EMC_PMACRO_BRICK_CTRL_RFU1,
(100000 / clk) + 1);
ramp_up_wait += 100000;
}
ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
EMC_FBIO_CFG5, (100000 / clk) + 10);
ramp_up_wait += 100000 + (10 * clk);
} else if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) {
ccfifo_writel(emc, rfu1 | 0x06000600,
EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1);
ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
EMC_FBIO_CFG5, (100000 / clk) + 10);
ramp_up_wait += 100000 + 10 * clk;
} else {
ccfifo_writel(emc, rfu1 | 0x00000600,
EMC_PMACRO_BRICK_CTRL_RFU1, 0);
ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS,
EMC_FBIO_CFG5, 12);
ramp_up_wait += 12 * clk;
}
cmd_pad &= ~EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 5);
return ramp_up_wait;
}
u32 tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc *emc, u32 clk,
bool flip_backward)
{
u32 ramp_down_wait = 0, cmd_pad, dq_pad, rfu1, cfg5, common_tx;
const struct tegra210_emc_timing *entry;
u32 seq_wait;
if (flip_backward)
entry = emc->next;
else
entry = emc->last;
cmd_pad = entry->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX];
dq_pad = entry->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
rfu1 = entry->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX];
cfg5 = entry->burst_regs[EMC_FBIO_CFG5_INDEX];
common_tx = entry->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX];
cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 0);
ccfifo_writel(emc, cfg5 | EMC_FBIO_CFG5_CMD_TX_DIS,
EMC_FBIO_CFG5, 12);
ramp_down_wait = 12 * clk;
seq_wait = (100000 / clk) + 1;
if (clk < (1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD)) {
if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
cmd_pad &=
~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
cmd_pad |=
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC;
ccfifo_writel(emc, cmd_pad,
EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
ramp_down_wait += 100000;
dq_pad &=
~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
dq_pad |=
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC;
ccfifo_writel(emc, dq_pad,
EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
ccfifo_writel(emc, rfu1 & ~0x01120112,
EMC_PMACRO_BRICK_CTRL_RFU1, 0);
} else {
ccfifo_writel(emc, rfu1 & ~0x01120112,
EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
ramp_down_wait += 100000;
}
ccfifo_writel(emc, rfu1 & ~0x01bf01bf,
EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
ramp_down_wait += 100000;
if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) {
cmd_pad &=
~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC);
ccfifo_writel(emc, cmd_pad,
EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait);
ramp_down_wait += 100000;
dq_pad &=
~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC);
ccfifo_writel(emc, dq_pad,
EMC_PMACRO_DATA_PAD_TX_CTRL, 0);
ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
EMC_PMACRO_BRICK_CTRL_RFU1, 0);
} else {
ccfifo_writel(emc, rfu1 & ~0x07ff07ff,
EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait);
ramp_down_wait += 100000;
}
} else {
ccfifo_writel(emc, rfu1 & ~0xffff07ff,
EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait + 19);
ramp_down_wait += 100000 + (20 * clk);
}
if (clk < (1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD)) {
ramp_down_wait += 100000;
ccfifo_writel(emc, common_tx & ~0x5,
EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
ramp_down_wait += 100000;
ccfifo_writel(emc, common_tx & ~0xf,
EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
ramp_down_wait += 100000;
ccfifo_writel(emc, 0, 0, seq_wait);
ramp_down_wait += 100000;
} else {
ccfifo_writel(emc, common_tx & ~0xf,
EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait);
}
return ramp_down_wait;
}
void tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing *timing)
{
timing->current_dram_clktree[C0D0U0] =
timing->trained_dram_clktree[C0D0U0];
timing->current_dram_clktree[C0D0U1] =
timing->trained_dram_clktree[C0D0U1];
timing->current_dram_clktree[C1D0U0] =
timing->trained_dram_clktree[C1D0U0];
timing->current_dram_clktree[C1D0U1] =
timing->trained_dram_clktree[C1D0U1];
timing->current_dram_clktree[C1D1U0] =
timing->trained_dram_clktree[C1D1U0];
timing->current_dram_clktree[C1D1U1] =
timing->trained_dram_clktree[C1D1U1];
}
static void update_dll_control(struct tegra210_emc *emc, u32 value, bool state)
{
unsigned int i;
emc_writel(emc, value, EMC_CFG_DIG_DLL);
tegra210_emc_timing_update(emc);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL,
EMC_CFG_DIG_DLL_CFG_DLL_EN,
state);
}
void tegra210_emc_dll_disable(struct tegra210_emc *emc)
{
u32 value;
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
update_dll_control(emc, value, false);
}
void tegra210_emc_dll_enable(struct tegra210_emc *emc)
{
u32 value;
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
update_dll_control(emc, value, true);
}
void tegra210_emc_adjust_timing(struct tegra210_emc *emc,
struct tegra210_emc_timing *timing)
{
u32 dsr_cntrl = timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX];
u32 pre_ref = timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX];
u32 ref = timing->burst_regs[EMC_REFRESH_INDEX];
switch (emc->refresh) {
case TEGRA210_EMC_REFRESH_NOMINAL:
case TEGRA210_EMC_REFRESH_THROTTLE:
break;
case TEGRA210_EMC_REFRESH_2X:
ref = REFRESH_SPEEDUP(ref, 2);
pre_ref = REFRESH_SPEEDUP(pre_ref, 2);
dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 2);
break;
case TEGRA210_EMC_REFRESH_4X:
ref = REFRESH_SPEEDUP(ref, 4);
pre_ref = REFRESH_SPEEDUP(pre_ref, 4);
dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 4);
break;
default:
dev_warn(emc->dev, "failed to set refresh: %d\n", emc->refresh);
return;
}
emc_writel(emc, ref, emc->offsets->burst[EMC_REFRESH_INDEX]);
emc_writel(emc, pre_ref,
emc->offsets->burst[EMC_PRE_REFRESH_REQ_CNT_INDEX]);
emc_writel(emc, dsr_cntrl,
emc->offsets->burst[EMC_DYN_SELF_REF_CONTROL_INDEX]);
}
static int tegra210_emc_set_rate(struct device *dev,
const struct tegra210_clk_emc_config *config)
{
struct tegra210_emc *emc = dev_get_drvdata(dev);
struct tegra210_emc_timing *timing = NULL;
unsigned long rate = config->rate;
s64 last_change_delay;
unsigned long flags;
unsigned int i;
if (rate == emc->last->rate * 1000UL)
return 0;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate * 1000UL == rate) {
timing = &emc->timings[i];
break;
}
}
if (!timing)
return -EINVAL;
if (rate > 204000000 && !timing->trained)
return -EINVAL;
emc->next = timing;
last_change_delay = ktime_us_delta(ktime_get(), emc->clkchange_time);
/* XXX use non-busy-looping sleep? */
if ((last_change_delay >= 0) &&
(last_change_delay < emc->clkchange_delay))
udelay(emc->clkchange_delay - (int)last_change_delay);
spin_lock_irqsave(&emc->lock, flags);
tegra210_emc_set_clock(emc, config->value);
emc->clkchange_time = ktime_get();
emc->last = timing;
spin_unlock_irqrestore(&emc->lock, flags);
return 0;
}
/*
* debugfs interface
*
* The memory controller driver exposes some files in debugfs that can be used
* to control the EMC frequency. The top-level directory can be found here:
*
* /sys/kernel/debug/emc
*
* It contains the following files:
*
* - available_rates: This file contains a list of valid, space-separated
* EMC frequencies.
*
* - min_rate: Writing a value to this file sets the given frequency as the
* floor of the permitted range. If this is higher than the currently
* configured EMC frequency, this will cause the frequency to be
* increased so that it stays within the valid range.
*
* - max_rate: Similarily to the min_rate file, writing a value to this file
* sets the given frequency as the ceiling of the permitted range. If
* the value is lower than the currently configured EMC frequency, this
* will cause the frequency to be decreased so that it stays within the
* valid range.
*/
static bool tegra210_emc_validate_rate(struct tegra210_emc *emc,
unsigned long rate)
{
unsigned int i;
for (i = 0; i < emc->num_timings; i++)
if (rate == emc->timings[i].rate * 1000UL)
return true;
return false;
}
static int tegra210_emc_debug_available_rates_show(struct seq_file *s,
void *data)
{
struct tegra210_emc *emc = s->private;
const char *prefix = "";
unsigned int i;
for (i = 0; i < emc->num_timings; i++) {
seq_printf(s, "%s%u", prefix, emc->timings[i].rate * 1000);
prefix = " ";
}
seq_puts(s, "\n");
return 0;
}
static int tegra210_emc_debug_available_rates_open(struct inode *inode,
struct file *file)
{
return single_open(file, tegra210_emc_debug_available_rates_show,
inode->i_private);
}
static const struct file_operations tegra210_emc_debug_available_rates_fops = {
.open = tegra210_emc_debug_available_rates_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int tegra210_emc_debug_min_rate_get(void *data, u64 *rate)
{
struct tegra210_emc *emc = data;
*rate = emc->debugfs.min_rate;
return 0;
}
static int tegra210_emc_debug_min_rate_set(void *data, u64 rate)
{
struct tegra210_emc *emc = data;
int err;
if (!tegra210_emc_validate_rate(emc, rate))
return -EINVAL;
err = clk_set_min_rate(emc->clk, rate);
if (err < 0)
return err;
emc->debugfs.min_rate = rate;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_min_rate_fops,
tegra210_emc_debug_min_rate_get,
tegra210_emc_debug_min_rate_set, "%llu\n");
static int tegra210_emc_debug_max_rate_get(void *data, u64 *rate)
{
struct tegra210_emc *emc = data;
*rate = emc->debugfs.max_rate;
return 0;
}
static int tegra210_emc_debug_max_rate_set(void *data, u64 rate)
{
struct tegra210_emc *emc = data;
int err;
if (!tegra210_emc_validate_rate(emc, rate))
return -EINVAL;
err = clk_set_max_rate(emc->clk, rate);
if (err < 0)
return err;
emc->debugfs.max_rate = rate;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_max_rate_fops,
tegra210_emc_debug_max_rate_get,
tegra210_emc_debug_max_rate_set, "%llu\n");
static int tegra210_emc_debug_temperature_get(void *data, u64 *temperature)
{
struct tegra210_emc *emc = data;
unsigned int value;
if (!emc->debugfs.temperature)
value = tegra210_emc_get_temperature(emc);
else
value = emc->debugfs.temperature;
*temperature = value;
return 0;
}
static int tegra210_emc_debug_temperature_set(void *data, u64 temperature)
{
struct tegra210_emc *emc = data;
if (temperature > 7)
return -EINVAL;
emc->debugfs.temperature = temperature;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_temperature_fops,
tegra210_emc_debug_temperature_get,
tegra210_emc_debug_temperature_set, "%llu\n");
static void tegra210_emc_debugfs_init(struct tegra210_emc *emc)
{
struct device *dev = emc->dev;
unsigned int i;
int err;
emc->debugfs.min_rate = ULONG_MAX;
emc->debugfs.max_rate = 0;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate * 1000UL < emc->debugfs.min_rate)
emc->debugfs.min_rate = emc->timings[i].rate * 1000UL;
if (emc->timings[i].rate * 1000UL > emc->debugfs.max_rate)
emc->debugfs.max_rate = emc->timings[i].rate * 1000UL;
}
if (!emc->num_timings) {
emc->debugfs.min_rate = clk_get_rate(emc->clk);
emc->debugfs.max_rate = emc->debugfs.min_rate;
}
err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
emc->debugfs.max_rate);
if (err < 0) {
dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
emc->debugfs.min_rate, emc->debugfs.max_rate,
emc->clk);
return;
}
emc->debugfs.root = debugfs_create_dir("emc", NULL);
debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc,
&tegra210_emc_debug_available_rates_fops);
debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc,
&tegra210_emc_debug_min_rate_fops);
debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc,
&tegra210_emc_debug_max_rate_fops);
debugfs_create_file("temperature", 0644, emc->debugfs.root, emc,
&tegra210_emc_debug_temperature_fops);
}
static void tegra210_emc_detect(struct tegra210_emc *emc)
{
u32 value;
/* probe the number of connected DRAM devices */
value = mc_readl(emc->mc, MC_EMEM_ADR_CFG);
if (value & MC_EMEM_ADR_CFG_EMEM_NUMDEV)
emc->num_devices = 2;
else
emc->num_devices = 1;
/* probe the type of DRAM */
value = emc_readl(emc, EMC_FBIO_CFG5);
emc->dram_type = value & 0x3;
/* probe the number of channels */
value = emc_readl(emc, EMC_FBIO_CFG7);
if ((value & EMC_FBIO_CFG7_CH1_ENABLE) &&
(value & EMC_FBIO_CFG7_CH0_ENABLE))
emc->num_channels = 2;
else
emc->num_channels = 1;
}
static int tegra210_emc_validate_timings(struct tegra210_emc *emc,
struct tegra210_emc_timing *timings,
unsigned int num_timings)
{
unsigned int i;
for (i = 0; i < num_timings; i++) {
u32 min_volt = timings[i].min_volt;
u32 rate = timings[i].rate;
if (!rate)
return -EINVAL;
if ((i > 0) && ((rate <= timings[i - 1].rate) ||
(min_volt < timings[i - 1].min_volt)))
return -EINVAL;
if (timings[i].revision != timings[0].revision)
continue;
}
return 0;
}
static int tegra210_emc_probe(struct platform_device *pdev)
{
struct thermal_cooling_device *cd;
unsigned long current_rate;
struct tegra210_emc *emc;
struct device_node *np;
unsigned int i;
int err;
emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
if (!emc)
return -ENOMEM;
emc->clk = devm_clk_get(&pdev->dev, "emc");
if (IS_ERR(emc->clk))
return PTR_ERR(emc->clk);
platform_set_drvdata(pdev, emc);
spin_lock_init(&emc->lock);
emc->dev = &pdev->dev;
emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
if (IS_ERR(emc->mc))
return PTR_ERR(emc->mc);
emc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(emc->regs))
return PTR_ERR(emc->regs);
for (i = 0; i < 2; i++) {
emc->channel[i] = devm_platform_ioremap_resource(pdev, 1 + i);
if (IS_ERR(emc->channel[i]))
return PTR_ERR(emc->channel[i]);
}
tegra210_emc_detect(emc);
np = pdev->dev.of_node;
/* attach to the nominal and (optional) derated tables */
err = of_reserved_mem_device_init_by_name(emc->dev, np, "nominal");
if (err < 0) {
dev_err(emc->dev, "failed to get nominal EMC table: %d\n", err);
return err;
}
err = of_reserved_mem_device_init_by_name(emc->dev, np, "derated");
if (err < 0 && err != -ENODEV) {
dev_err(emc->dev, "failed to get derated EMC table: %d\n", err);
goto release;
}
/* validate the tables */
if (emc->nominal) {
err = tegra210_emc_validate_timings(emc, emc->nominal,
emc->num_timings);
if (err < 0)
goto release;
}
if (emc->derated) {
err = tegra210_emc_validate_timings(emc, emc->derated,
emc->num_timings);
if (err < 0)
goto release;
}
/* default to the nominal table */
emc->timings = emc->nominal;
/* pick the current timing based on the current EMC clock rate */
current_rate = clk_get_rate(emc->clk) / 1000;
for (i = 0; i < emc->num_timings; i++) {
if (emc->timings[i].rate == current_rate) {
emc->last = &emc->timings[i];
break;
}
}
if (i == emc->num_timings) {
dev_err(emc->dev, "no EMC table entry found for %lu kHz\n",
current_rate);
err = -ENOENT;
goto release;
}
/* pick a compatible clock change sequence for the EMC table */
for (i = 0; i < ARRAY_SIZE(tegra210_emc_sequences); i++) {
const struct tegra210_emc_sequence *sequence =
tegra210_emc_sequences[i];
if (emc->timings[0].revision == sequence->revision) {
emc->sequence = sequence;
break;
}
}
if (!emc->sequence) {
dev_err(&pdev->dev, "sequence %u not supported\n",
emc->timings[0].revision);
err = -ENOTSUPP;
goto release;
}
emc->offsets = &tegra210_emc_table_register_offsets;
emc->refresh = TEGRA210_EMC_REFRESH_NOMINAL;
emc->provider.owner = THIS_MODULE;
emc->provider.dev = &pdev->dev;
emc->provider.set_rate = tegra210_emc_set_rate;
emc->provider.configs = devm_kcalloc(&pdev->dev, emc->num_timings,
sizeof(*emc->provider.configs),
GFP_KERNEL);
if (!emc->provider.configs) {
err = -ENOMEM;
goto release;
}
emc->provider.num_configs = emc->num_timings;
for (i = 0; i < emc->provider.num_configs; i++) {
struct tegra210_emc_timing *timing = &emc->timings[i];
struct tegra210_clk_emc_config *config =
&emc->provider.configs[i];
u32 value;
config->rate = timing->rate * 1000UL;
config->value = timing->clk_src_emc;
value = timing->burst_mc_regs[MC_EMEM_ARB_MISC0_INDEX];
if ((value & MC_EMEM_ARB_MISC0_EMC_SAME_FREQ) == 0)
config->same_freq = false;
else
config->same_freq = true;
}
err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
if (err < 0) {
dev_err(&pdev->dev, "failed to attach to EMC clock: %d\n", err);
goto release;
}
emc->clkchange_delay = 100;
emc->training_interval = 100;
dev_set_drvdata(emc->dev, emc);
timer_setup(&emc->refresh_timer, tegra210_emc_poll_refresh,
TIMER_DEFERRABLE);
atomic_set(&emc->refresh_poll, 0);
emc->refresh_poll_interval = 1000;
timer_setup(&emc->training, tegra210_emc_train, 0);
tegra210_emc_debugfs_init(emc);
cd = devm_thermal_of_cooling_device_register(emc->dev, np, "emc", emc,
&tegra210_emc_cd_ops);
if (IS_ERR(cd)) {
err = PTR_ERR(cd);
dev_err(emc->dev, "failed to register cooling device: %d\n",
err);
goto detach;
}
return 0;
detach:
debugfs_remove_recursive(emc->debugfs.root);
tegra210_clk_emc_detach(emc->clk);
release:
of_reserved_mem_device_release(emc->dev);
return err;
}
static int tegra210_emc_remove(struct platform_device *pdev)
{
struct tegra210_emc *emc = platform_get_drvdata(pdev);
debugfs_remove_recursive(emc->debugfs.root);
tegra210_clk_emc_detach(emc->clk);
of_reserved_mem_device_release(emc->dev);
return 0;
}
static int __maybe_unused tegra210_emc_suspend(struct device *dev)
{
struct tegra210_emc *emc = dev_get_drvdata(dev);
int err;
err = clk_rate_exclusive_get(emc->clk);
if (err < 0) {
dev_err(emc->dev, "failed to acquire clock: %d\n", err);
return err;
}
emc->resume_rate = clk_get_rate(emc->clk);
clk_set_rate(emc->clk, 204000000);
tegra210_clk_emc_detach(emc->clk);
dev_dbg(dev, "suspending at %lu Hz\n", clk_get_rate(emc->clk));
return 0;
}
static int __maybe_unused tegra210_emc_resume(struct device *dev)
{
struct tegra210_emc *emc = dev_get_drvdata(dev);
int err;
err = tegra210_clk_emc_attach(emc->clk, &emc->provider);
if (err < 0) {
dev_err(dev, "failed to attach to EMC clock: %d\n", err);
return err;
}
clk_set_rate(emc->clk, emc->resume_rate);
clk_rate_exclusive_put(emc->clk);
dev_dbg(dev, "resuming at %lu Hz\n", clk_get_rate(emc->clk));
return 0;
}
static const struct dev_pm_ops tegra210_emc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tegra210_emc_suspend, tegra210_emc_resume)
};
static const struct of_device_id tegra210_emc_of_match[] = {
{ .compatible = "nvidia,tegra210-emc", },
{ },
};
MODULE_DEVICE_TABLE(of, tegra210_emc_of_match);
static struct platform_driver tegra210_emc_driver = {
.driver = {
.name = "tegra210-emc",
.of_match_table = tegra210_emc_of_match,
.pm = &tegra210_emc_pm_ops,
},
.probe = tegra210_emc_probe,
.remove = tegra210_emc_remove,
};
module_platform_driver(tegra210_emc_driver);
MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_AUTHOR("Joseph Lo <josephl@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra210 EMC driver");
MODULE_LICENSE("GPL v2");