mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
9146eb2549
The per-CPU rcu_data structure's ->cpu_no_qs.b.exp field is updated only on the instance corresponding to the current CPU, but can be read more widely. Unmarked accesses are OK from the corresponding CPU, but only if interrupts are disabled, given that interrupt handlers can and do modify this field. Unfortunately, although the load from rcu_preempt_deferred_qs() is always carried out from the corresponding CPU, interrupts are not necessarily disabled. This commit therefore upgrades this load to READ_ONCE. Similarly, the diagnostic access from synchronize_rcu_expedited_wait() might run with interrupts disabled and from some other CPU. This commit therefore marks this load with data_race(). Finally, the C-language access in rcu_preempt_ctxt_queue() is OK as is because interrupts are disabled and this load is always from the corresponding CPU. This commit adds a comment giving the rationale for this access being safe. This data race was reported by KCSAN. Not appropriate for backporting due to failure being unlikely. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
1308 lines
42 KiB
C
1308 lines
42 KiB
C
/* SPDX-License-Identifier: GPL-2.0+ */
|
|
/*
|
|
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
|
|
* Internal non-public definitions that provide either classic
|
|
* or preemptible semantics.
|
|
*
|
|
* Copyright Red Hat, 2009
|
|
* Copyright IBM Corporation, 2009
|
|
*
|
|
* Author: Ingo Molnar <mingo@elte.hu>
|
|
* Paul E. McKenney <paulmck@linux.ibm.com>
|
|
*/
|
|
|
|
#include "../locking/rtmutex_common.h"
|
|
|
|
static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
|
|
{
|
|
/*
|
|
* In order to read the offloaded state of an rdp in a safe
|
|
* and stable way and prevent from its value to be changed
|
|
* under us, we must either hold the barrier mutex, the cpu
|
|
* hotplug lock (read or write) or the nocb lock. Local
|
|
* non-preemptible reads are also safe. NOCB kthreads and
|
|
* timers have their own means of synchronization against the
|
|
* offloaded state updaters.
|
|
*/
|
|
RCU_LOCKDEP_WARN(
|
|
!(lockdep_is_held(&rcu_state.barrier_mutex) ||
|
|
(IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
|
|
rcu_lockdep_is_held_nocb(rdp) ||
|
|
(rdp == this_cpu_ptr(&rcu_data) &&
|
|
!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
|
|
rcu_current_is_nocb_kthread(rdp)),
|
|
"Unsafe read of RCU_NOCB offloaded state"
|
|
);
|
|
|
|
return rcu_segcblist_is_offloaded(&rdp->cblist);
|
|
}
|
|
|
|
/*
|
|
* Check the RCU kernel configuration parameters and print informative
|
|
* messages about anything out of the ordinary.
|
|
*/
|
|
static void __init rcu_bootup_announce_oddness(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RCU_TRACE))
|
|
pr_info("\tRCU event tracing is enabled.\n");
|
|
if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
|
|
(!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
|
|
pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
|
|
RCU_FANOUT);
|
|
if (rcu_fanout_exact)
|
|
pr_info("\tHierarchical RCU autobalancing is disabled.\n");
|
|
if (IS_ENABLED(CONFIG_PROVE_RCU))
|
|
pr_info("\tRCU lockdep checking is enabled.\n");
|
|
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
|
|
pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
|
|
if (RCU_NUM_LVLS >= 4)
|
|
pr_info("\tFour(or more)-level hierarchy is enabled.\n");
|
|
if (RCU_FANOUT_LEAF != 16)
|
|
pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
|
|
RCU_FANOUT_LEAF);
|
|
if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
|
|
pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
|
|
rcu_fanout_leaf);
|
|
if (nr_cpu_ids != NR_CPUS)
|
|
pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
|
|
#ifdef CONFIG_RCU_BOOST
|
|
pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
|
|
kthread_prio, CONFIG_RCU_BOOST_DELAY);
|
|
#endif
|
|
if (blimit != DEFAULT_RCU_BLIMIT)
|
|
pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
|
|
if (qhimark != DEFAULT_RCU_QHIMARK)
|
|
pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
|
|
if (qlowmark != DEFAULT_RCU_QLOMARK)
|
|
pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
|
|
if (qovld != DEFAULT_RCU_QOVLD)
|
|
pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
|
|
if (jiffies_till_first_fqs != ULONG_MAX)
|
|
pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
|
|
if (jiffies_till_next_fqs != ULONG_MAX)
|
|
pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
|
|
if (jiffies_till_sched_qs != ULONG_MAX)
|
|
pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
|
|
if (rcu_kick_kthreads)
|
|
pr_info("\tKick kthreads if too-long grace period.\n");
|
|
if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
|
|
pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
|
|
if (gp_preinit_delay)
|
|
pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
|
|
if (gp_init_delay)
|
|
pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
|
|
if (gp_cleanup_delay)
|
|
pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
|
|
if (!use_softirq)
|
|
pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
|
|
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
|
|
pr_info("\tRCU debug extended QS entry/exit.\n");
|
|
rcupdate_announce_bootup_oddness();
|
|
}
|
|
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
|
|
static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
|
|
static void rcu_read_unlock_special(struct task_struct *t);
|
|
|
|
/*
|
|
* Tell them what RCU they are running.
|
|
*/
|
|
static void __init rcu_bootup_announce(void)
|
|
{
|
|
pr_info("Preemptible hierarchical RCU implementation.\n");
|
|
rcu_bootup_announce_oddness();
|
|
}
|
|
|
|
/* Flags for rcu_preempt_ctxt_queue() decision table. */
|
|
#define RCU_GP_TASKS 0x8
|
|
#define RCU_EXP_TASKS 0x4
|
|
#define RCU_GP_BLKD 0x2
|
|
#define RCU_EXP_BLKD 0x1
|
|
|
|
/*
|
|
* Queues a task preempted within an RCU-preempt read-side critical
|
|
* section into the appropriate location within the ->blkd_tasks list,
|
|
* depending on the states of any ongoing normal and expedited grace
|
|
* periods. The ->gp_tasks pointer indicates which element the normal
|
|
* grace period is waiting on (NULL if none), and the ->exp_tasks pointer
|
|
* indicates which element the expedited grace period is waiting on (again,
|
|
* NULL if none). If a grace period is waiting on a given element in the
|
|
* ->blkd_tasks list, it also waits on all subsequent elements. Thus,
|
|
* adding a task to the tail of the list blocks any grace period that is
|
|
* already waiting on one of the elements. In contrast, adding a task
|
|
* to the head of the list won't block any grace period that is already
|
|
* waiting on one of the elements.
|
|
*
|
|
* This queuing is imprecise, and can sometimes make an ongoing grace
|
|
* period wait for a task that is not strictly speaking blocking it.
|
|
* Given the choice, we needlessly block a normal grace period rather than
|
|
* blocking an expedited grace period.
|
|
*
|
|
* Note that an endless sequence of expedited grace periods still cannot
|
|
* indefinitely postpone a normal grace period. Eventually, all of the
|
|
* fixed number of preempted tasks blocking the normal grace period that are
|
|
* not also blocking the expedited grace period will resume and complete
|
|
* their RCU read-side critical sections. At that point, the ->gp_tasks
|
|
* pointer will equal the ->exp_tasks pointer, at which point the end of
|
|
* the corresponding expedited grace period will also be the end of the
|
|
* normal grace period.
|
|
*/
|
|
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
|
|
__releases(rnp->lock) /* But leaves rrupts disabled. */
|
|
{
|
|
int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
|
|
(rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
|
|
(rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
|
|
(rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
|
|
struct task_struct *t = current;
|
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
|
WARN_ON_ONCE(rdp->mynode != rnp);
|
|
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
|
|
/* RCU better not be waiting on newly onlined CPUs! */
|
|
WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
|
|
rdp->grpmask);
|
|
|
|
/*
|
|
* Decide where to queue the newly blocked task. In theory,
|
|
* this could be an if-statement. In practice, when I tried
|
|
* that, it was quite messy.
|
|
*/
|
|
switch (blkd_state) {
|
|
case 0:
|
|
case RCU_EXP_TASKS:
|
|
case RCU_EXP_TASKS + RCU_GP_BLKD:
|
|
case RCU_GP_TASKS:
|
|
case RCU_GP_TASKS + RCU_EXP_TASKS:
|
|
|
|
/*
|
|
* Blocking neither GP, or first task blocking the normal
|
|
* GP but not blocking the already-waiting expedited GP.
|
|
* Queue at the head of the list to avoid unnecessarily
|
|
* blocking the already-waiting GPs.
|
|
*/
|
|
list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
|
|
break;
|
|
|
|
case RCU_EXP_BLKD:
|
|
case RCU_GP_BLKD:
|
|
case RCU_GP_BLKD + RCU_EXP_BLKD:
|
|
case RCU_GP_TASKS + RCU_EXP_BLKD:
|
|
case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
|
|
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
|
|
|
|
/*
|
|
* First task arriving that blocks either GP, or first task
|
|
* arriving that blocks the expedited GP (with the normal
|
|
* GP already waiting), or a task arriving that blocks
|
|
* both GPs with both GPs already waiting. Queue at the
|
|
* tail of the list to avoid any GP waiting on any of the
|
|
* already queued tasks that are not blocking it.
|
|
*/
|
|
list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
|
|
break;
|
|
|
|
case RCU_EXP_TASKS + RCU_EXP_BLKD:
|
|
case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
|
|
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
|
|
|
|
/*
|
|
* Second or subsequent task blocking the expedited GP.
|
|
* The task either does not block the normal GP, or is the
|
|
* first task blocking the normal GP. Queue just after
|
|
* the first task blocking the expedited GP.
|
|
*/
|
|
list_add(&t->rcu_node_entry, rnp->exp_tasks);
|
|
break;
|
|
|
|
case RCU_GP_TASKS + RCU_GP_BLKD:
|
|
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
|
|
|
|
/*
|
|
* Second or subsequent task blocking the normal GP.
|
|
* The task does not block the expedited GP. Queue just
|
|
* after the first task blocking the normal GP.
|
|
*/
|
|
list_add(&t->rcu_node_entry, rnp->gp_tasks);
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Yet another exercise in excessive paranoia. */
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have now queued the task. If it was the first one to
|
|
* block either grace period, update the ->gp_tasks and/or
|
|
* ->exp_tasks pointers, respectively, to reference the newly
|
|
* blocked tasks.
|
|
*/
|
|
if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
|
|
WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
|
|
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
|
|
}
|
|
if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
|
|
WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
|
|
WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
|
|
!(rnp->qsmask & rdp->grpmask));
|
|
WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
|
|
!(rnp->expmask & rdp->grpmask));
|
|
raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
|
|
|
|
/*
|
|
* Report the quiescent state for the expedited GP. This expedited
|
|
* GP should not be able to end until we report, so there should be
|
|
* no need to check for a subsequent expedited GP. (Though we are
|
|
* still in a quiescent state in any case.)
|
|
*
|
|
* Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
|
|
*/
|
|
if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
|
|
rcu_report_exp_rdp(rdp);
|
|
else
|
|
WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
|
|
}
|
|
|
|
/*
|
|
* Record a preemptible-RCU quiescent state for the specified CPU.
|
|
* Note that this does not necessarily mean that the task currently running
|
|
* on the CPU is in a quiescent state: Instead, it means that the current
|
|
* grace period need not wait on any RCU read-side critical section that
|
|
* starts later on this CPU. It also means that if the current task is
|
|
* in an RCU read-side critical section, it has already added itself to
|
|
* some leaf rcu_node structure's ->blkd_tasks list. In addition to the
|
|
* current task, there might be any number of other tasks blocked while
|
|
* in an RCU read-side critical section.
|
|
*
|
|
* Unlike non-preemptible-RCU, quiescent state reports for expedited
|
|
* grace periods are handled separately via deferred quiescent states
|
|
* and context switch events.
|
|
*
|
|
* Callers to this function must disable preemption.
|
|
*/
|
|
static void rcu_qs(void)
|
|
{
|
|
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
|
|
if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
|
|
trace_rcu_grace_period(TPS("rcu_preempt"),
|
|
__this_cpu_read(rcu_data.gp_seq),
|
|
TPS("cpuqs"));
|
|
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
|
|
barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
|
|
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have entered the scheduler, and the current task might soon be
|
|
* context-switched away from. If this task is in an RCU read-side
|
|
* critical section, we will no longer be able to rely on the CPU to
|
|
* record that fact, so we enqueue the task on the blkd_tasks list.
|
|
* The task will dequeue itself when it exits the outermost enclosing
|
|
* RCU read-side critical section. Therefore, the current grace period
|
|
* cannot be permitted to complete until the blkd_tasks list entries
|
|
* predating the current grace period drain, in other words, until
|
|
* rnp->gp_tasks becomes NULL.
|
|
*
|
|
* Caller must disable interrupts.
|
|
*/
|
|
void rcu_note_context_switch(bool preempt)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
|
struct rcu_node *rnp;
|
|
|
|
trace_rcu_utilization(TPS("Start context switch"));
|
|
lockdep_assert_irqs_disabled();
|
|
WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
|
|
if (rcu_preempt_depth() > 0 &&
|
|
!t->rcu_read_unlock_special.b.blocked) {
|
|
|
|
/* Possibly blocking in an RCU read-side critical section. */
|
|
rnp = rdp->mynode;
|
|
raw_spin_lock_rcu_node(rnp);
|
|
t->rcu_read_unlock_special.b.blocked = true;
|
|
t->rcu_blocked_node = rnp;
|
|
|
|
/*
|
|
* Verify the CPU's sanity, trace the preemption, and
|
|
* then queue the task as required based on the states
|
|
* of any ongoing and expedited grace periods.
|
|
*/
|
|
WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
|
|
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
|
|
trace_rcu_preempt_task(rcu_state.name,
|
|
t->pid,
|
|
(rnp->qsmask & rdp->grpmask)
|
|
? rnp->gp_seq
|
|
: rcu_seq_snap(&rnp->gp_seq));
|
|
rcu_preempt_ctxt_queue(rnp, rdp);
|
|
} else {
|
|
rcu_preempt_deferred_qs(t);
|
|
}
|
|
|
|
/*
|
|
* Either we were not in an RCU read-side critical section to
|
|
* begin with, or we have now recorded that critical section
|
|
* globally. Either way, we can now note a quiescent state
|
|
* for this CPU. Again, if we were in an RCU read-side critical
|
|
* section, and if that critical section was blocking the current
|
|
* grace period, then the fact that the task has been enqueued
|
|
* means that we continue to block the current grace period.
|
|
*/
|
|
rcu_qs();
|
|
if (rdp->cpu_no_qs.b.exp)
|
|
rcu_report_exp_rdp(rdp);
|
|
rcu_tasks_qs(current, preempt);
|
|
trace_rcu_utilization(TPS("End context switch"));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
|
|
|
|
/*
|
|
* Check for preempted RCU readers blocking the current grace period
|
|
* for the specified rcu_node structure. If the caller needs a reliable
|
|
* answer, it must hold the rcu_node's ->lock.
|
|
*/
|
|
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
|
|
{
|
|
return READ_ONCE(rnp->gp_tasks) != NULL;
|
|
}
|
|
|
|
/* limit value for ->rcu_read_lock_nesting. */
|
|
#define RCU_NEST_PMAX (INT_MAX / 2)
|
|
|
|
static void rcu_preempt_read_enter(void)
|
|
{
|
|
WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
|
|
}
|
|
|
|
static int rcu_preempt_read_exit(void)
|
|
{
|
|
int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
|
|
|
|
WRITE_ONCE(current->rcu_read_lock_nesting, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void rcu_preempt_depth_set(int val)
|
|
{
|
|
WRITE_ONCE(current->rcu_read_lock_nesting, val);
|
|
}
|
|
|
|
/*
|
|
* Preemptible RCU implementation for rcu_read_lock().
|
|
* Just increment ->rcu_read_lock_nesting, shared state will be updated
|
|
* if we block.
|
|
*/
|
|
void __rcu_read_lock(void)
|
|
{
|
|
rcu_preempt_read_enter();
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
|
|
WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
|
|
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
|
|
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
|
|
barrier(); /* critical section after entry code. */
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_lock);
|
|
|
|
/*
|
|
* Preemptible RCU implementation for rcu_read_unlock().
|
|
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
|
|
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
|
|
* invoke rcu_read_unlock_special() to clean up after a context switch
|
|
* in an RCU read-side critical section and other special cases.
|
|
*/
|
|
void __rcu_read_unlock(void)
|
|
{
|
|
struct task_struct *t = current;
|
|
|
|
barrier(); // critical section before exit code.
|
|
if (rcu_preempt_read_exit() == 0) {
|
|
barrier(); // critical-section exit before .s check.
|
|
if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
|
|
rcu_read_unlock_special(t);
|
|
}
|
|
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
|
|
int rrln = rcu_preempt_depth();
|
|
|
|
WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
|
|
|
/*
|
|
* Advance a ->blkd_tasks-list pointer to the next entry, instead
|
|
* returning NULL if at the end of the list.
|
|
*/
|
|
static struct list_head *rcu_next_node_entry(struct task_struct *t,
|
|
struct rcu_node *rnp)
|
|
{
|
|
struct list_head *np;
|
|
|
|
np = t->rcu_node_entry.next;
|
|
if (np == &rnp->blkd_tasks)
|
|
np = NULL;
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* Return true if the specified rcu_node structure has tasks that were
|
|
* preempted within an RCU read-side critical section.
|
|
*/
|
|
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
|
|
{
|
|
return !list_empty(&rnp->blkd_tasks);
|
|
}
|
|
|
|
/*
|
|
* Report deferred quiescent states. The deferral time can
|
|
* be quite short, for example, in the case of the call from
|
|
* rcu_read_unlock_special().
|
|
*/
|
|
static notrace void
|
|
rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
|
|
{
|
|
bool empty_exp;
|
|
bool empty_norm;
|
|
bool empty_exp_now;
|
|
struct list_head *np;
|
|
bool drop_boost_mutex = false;
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp;
|
|
union rcu_special special;
|
|
|
|
/*
|
|
* If RCU core is waiting for this CPU to exit its critical section,
|
|
* report the fact that it has exited. Because irqs are disabled,
|
|
* t->rcu_read_unlock_special cannot change.
|
|
*/
|
|
special = t->rcu_read_unlock_special;
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
if (!special.s && !rdp->cpu_no_qs.b.exp) {
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
t->rcu_read_unlock_special.s = 0;
|
|
if (special.b.need_qs) {
|
|
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
|
|
rdp->cpu_no_qs.b.norm = false;
|
|
rcu_report_qs_rdp(rdp);
|
|
udelay(rcu_unlock_delay);
|
|
} else {
|
|
rcu_qs();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Respond to a request by an expedited grace period for a
|
|
* quiescent state from this CPU. Note that requests from
|
|
* tasks are handled when removing the task from the
|
|
* blocked-tasks list below.
|
|
*/
|
|
if (rdp->cpu_no_qs.b.exp)
|
|
rcu_report_exp_rdp(rdp);
|
|
|
|
/* Clean up if blocked during RCU read-side critical section. */
|
|
if (special.b.blocked) {
|
|
|
|
/*
|
|
* Remove this task from the list it blocked on. The task
|
|
* now remains queued on the rcu_node corresponding to the
|
|
* CPU it first blocked on, so there is no longer any need
|
|
* to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
|
|
*/
|
|
rnp = t->rcu_blocked_node;
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
|
WARN_ON_ONCE(rnp != t->rcu_blocked_node);
|
|
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
|
|
empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
|
|
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
|
|
(!empty_norm || rnp->qsmask));
|
|
empty_exp = sync_rcu_exp_done(rnp);
|
|
smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
|
|
np = rcu_next_node_entry(t, rnp);
|
|
list_del_init(&t->rcu_node_entry);
|
|
t->rcu_blocked_node = NULL;
|
|
trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
|
|
rnp->gp_seq, t->pid);
|
|
if (&t->rcu_node_entry == rnp->gp_tasks)
|
|
WRITE_ONCE(rnp->gp_tasks, np);
|
|
if (&t->rcu_node_entry == rnp->exp_tasks)
|
|
WRITE_ONCE(rnp->exp_tasks, np);
|
|
if (IS_ENABLED(CONFIG_RCU_BOOST)) {
|
|
/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
|
|
drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
|
|
if (&t->rcu_node_entry == rnp->boost_tasks)
|
|
WRITE_ONCE(rnp->boost_tasks, np);
|
|
}
|
|
|
|
/*
|
|
* If this was the last task on the current list, and if
|
|
* we aren't waiting on any CPUs, report the quiescent state.
|
|
* Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
|
|
* so we must take a snapshot of the expedited state.
|
|
*/
|
|
empty_exp_now = sync_rcu_exp_done(rnp);
|
|
if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
|
|
trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
|
|
rnp->gp_seq,
|
|
0, rnp->qsmask,
|
|
rnp->level,
|
|
rnp->grplo,
|
|
rnp->grphi,
|
|
!!rnp->gp_tasks);
|
|
rcu_report_unblock_qs_rnp(rnp, flags);
|
|
} else {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
/*
|
|
* If this was the last task on the expedited lists,
|
|
* then we need to report up the rcu_node hierarchy.
|
|
*/
|
|
if (!empty_exp && empty_exp_now)
|
|
rcu_report_exp_rnp(rnp, true);
|
|
|
|
/* Unboost if we were boosted. */
|
|
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
|
|
rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
|
|
} else {
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Is a deferred quiescent-state pending, and are we also not in
|
|
* an RCU read-side critical section? It is the caller's responsibility
|
|
* to ensure it is otherwise safe to report any deferred quiescent
|
|
* states. The reason for this is that it is safe to report a
|
|
* quiescent state during context switch even though preemption
|
|
* is disabled. This function cannot be expected to understand these
|
|
* nuances, so the caller must handle them.
|
|
*/
|
|
static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
|
|
{
|
|
return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
|
|
READ_ONCE(t->rcu_read_unlock_special.s)) &&
|
|
rcu_preempt_depth() == 0;
|
|
}
|
|
|
|
/*
|
|
* Report a deferred quiescent state if needed and safe to do so.
|
|
* As with rcu_preempt_need_deferred_qs(), "safe" involves only
|
|
* not being in an RCU read-side critical section. The caller must
|
|
* evaluate safety in terms of interrupt, softirq, and preemption
|
|
* disabling.
|
|
*/
|
|
notrace void rcu_preempt_deferred_qs(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!rcu_preempt_need_deferred_qs(t))
|
|
return;
|
|
local_irq_save(flags);
|
|
rcu_preempt_deferred_qs_irqrestore(t, flags);
|
|
}
|
|
|
|
/*
|
|
* Minimal handler to give the scheduler a chance to re-evaluate.
|
|
*/
|
|
static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
|
|
{
|
|
struct rcu_data *rdp;
|
|
|
|
rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
|
|
rdp->defer_qs_iw_pending = false;
|
|
}
|
|
|
|
/*
|
|
* Handle special cases during rcu_read_unlock(), such as needing to
|
|
* notify RCU core processing or task having blocked during the RCU
|
|
* read-side critical section.
|
|
*/
|
|
static void rcu_read_unlock_special(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
bool irqs_were_disabled;
|
|
bool preempt_bh_were_disabled =
|
|
!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
|
|
|
|
/* NMI handlers cannot block and cannot safely manipulate state. */
|
|
if (in_nmi())
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
irqs_were_disabled = irqs_disabled_flags(flags);
|
|
if (preempt_bh_were_disabled || irqs_were_disabled) {
|
|
bool expboost; // Expedited GP in flight or possible boosting.
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
|
struct rcu_node *rnp = rdp->mynode;
|
|
|
|
expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
|
|
(rdp->grpmask & READ_ONCE(rnp->expmask)) ||
|
|
(IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
|
|
((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
|
|
(IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
|
|
t->rcu_blocked_node);
|
|
// Need to defer quiescent state until everything is enabled.
|
|
if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
|
|
// Using softirq, safe to awaken, and either the
|
|
// wakeup is free or there is either an expedited
|
|
// GP in flight or a potential need to deboost.
|
|
raise_softirq_irqoff(RCU_SOFTIRQ);
|
|
} else {
|
|
// Enabling BH or preempt does reschedule, so...
|
|
// Also if no expediting and no possible deboosting,
|
|
// slow is OK. Plus nohz_full CPUs eventually get
|
|
// tick enabled.
|
|
set_tsk_need_resched(current);
|
|
set_preempt_need_resched();
|
|
if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
|
|
expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
|
|
// Get scheduler to re-evaluate and call hooks.
|
|
// If !IRQ_WORK, FQS scan will eventually IPI.
|
|
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
|
|
IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
|
|
rcu_preempt_deferred_qs_handler);
|
|
else
|
|
init_irq_work(&rdp->defer_qs_iw,
|
|
rcu_preempt_deferred_qs_handler);
|
|
rdp->defer_qs_iw_pending = true;
|
|
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
rcu_preempt_deferred_qs_irqrestore(t, flags);
|
|
}
|
|
|
|
/*
|
|
* Check that the list of blocked tasks for the newly completed grace
|
|
* period is in fact empty. It is a serious bug to complete a grace
|
|
* period that still has RCU readers blocked! This function must be
|
|
* invoked -before- updating this rnp's ->gp_seq.
|
|
*
|
|
* Also, if there are blocked tasks on the list, they automatically
|
|
* block the newly created grace period, so set up ->gp_tasks accordingly.
|
|
*/
|
|
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
|
if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
|
|
dump_blkd_tasks(rnp, 10);
|
|
if (rcu_preempt_has_tasks(rnp) &&
|
|
(rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
|
|
WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
|
|
t = container_of(rnp->gp_tasks, struct task_struct,
|
|
rcu_node_entry);
|
|
trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
|
|
rnp->gp_seq, t->pid);
|
|
}
|
|
WARN_ON_ONCE(rnp->qsmask);
|
|
}
|
|
|
|
/*
|
|
* Check for a quiescent state from the current CPU, including voluntary
|
|
* context switches for Tasks RCU. When a task blocks, the task is
|
|
* recorded in the corresponding CPU's rcu_node structure, which is checked
|
|
* elsewhere, hence this function need only check for quiescent states
|
|
* related to the current CPU, not to those related to tasks.
|
|
*/
|
|
static void rcu_flavor_sched_clock_irq(int user)
|
|
{
|
|
struct task_struct *t = current;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
if (rcu_preempt_depth() > 0 ||
|
|
(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
|
|
/* No QS, force context switch if deferred. */
|
|
if (rcu_preempt_need_deferred_qs(t)) {
|
|
set_tsk_need_resched(t);
|
|
set_preempt_need_resched();
|
|
}
|
|
} else if (rcu_preempt_need_deferred_qs(t)) {
|
|
rcu_preempt_deferred_qs(t); /* Report deferred QS. */
|
|
return;
|
|
} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
|
|
rcu_qs(); /* Report immediate QS. */
|
|
return;
|
|
}
|
|
|
|
/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
|
|
if (rcu_preempt_depth() > 0 &&
|
|
__this_cpu_read(rcu_data.core_needs_qs) &&
|
|
__this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
|
|
!t->rcu_read_unlock_special.b.need_qs &&
|
|
time_after(jiffies, rcu_state.gp_start + HZ))
|
|
t->rcu_read_unlock_special.b.need_qs = true;
|
|
}
|
|
|
|
/*
|
|
* Check for a task exiting while in a preemptible-RCU read-side
|
|
* critical section, clean up if so. No need to issue warnings, as
|
|
* debug_check_no_locks_held() already does this if lockdep is enabled.
|
|
* Besides, if this function does anything other than just immediately
|
|
* return, there was a bug of some sort. Spewing warnings from this
|
|
* function is like as not to simply obscure important prior warnings.
|
|
*/
|
|
void exit_rcu(void)
|
|
{
|
|
struct task_struct *t = current;
|
|
|
|
if (unlikely(!list_empty(¤t->rcu_node_entry))) {
|
|
rcu_preempt_depth_set(1);
|
|
barrier();
|
|
WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
|
|
} else if (unlikely(rcu_preempt_depth())) {
|
|
rcu_preempt_depth_set(1);
|
|
} else {
|
|
return;
|
|
}
|
|
__rcu_read_unlock();
|
|
rcu_preempt_deferred_qs(current);
|
|
}
|
|
|
|
/*
|
|
* Dump the blocked-tasks state, but limit the list dump to the
|
|
* specified number of elements.
|
|
*/
|
|
static void
|
|
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
struct list_head *lhp;
|
|
struct rcu_data *rdp;
|
|
struct rcu_node *rnp1;
|
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
|
pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
|
|
__func__, rnp->grplo, rnp->grphi, rnp->level,
|
|
(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
|
|
for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
|
|
pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
|
|
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
|
|
pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
|
|
__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
|
|
READ_ONCE(rnp->exp_tasks));
|
|
pr_info("%s: ->blkd_tasks", __func__);
|
|
i = 0;
|
|
list_for_each(lhp, &rnp->blkd_tasks) {
|
|
pr_cont(" %p", lhp);
|
|
if (++i >= ncheck)
|
|
break;
|
|
}
|
|
pr_cont("\n");
|
|
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
|
|
cpu, ".o"[rcu_rdp_cpu_online(rdp)],
|
|
(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
|
|
(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
|
|
}
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_PREEMPT_RCU */
|
|
|
|
/*
|
|
* If strict grace periods are enabled, and if the calling
|
|
* __rcu_read_unlock() marks the beginning of a quiescent state, immediately
|
|
* report that quiescent state and, if requested, spin for a bit.
|
|
*/
|
|
void rcu_read_unlock_strict(void)
|
|
{
|
|
struct rcu_data *rdp;
|
|
|
|
if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
|
|
return;
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
rdp->cpu_no_qs.b.norm = false;
|
|
rcu_report_qs_rdp(rdp);
|
|
udelay(rcu_unlock_delay);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
|
|
|
|
/*
|
|
* Tell them what RCU they are running.
|
|
*/
|
|
static void __init rcu_bootup_announce(void)
|
|
{
|
|
pr_info("Hierarchical RCU implementation.\n");
|
|
rcu_bootup_announce_oddness();
|
|
}
|
|
|
|
/*
|
|
* Note a quiescent state for PREEMPTION=n. Because we do not need to know
|
|
* how many quiescent states passed, just if there was at least one since
|
|
* the start of the grace period, this just sets a flag. The caller must
|
|
* have disabled preemption.
|
|
*/
|
|
static void rcu_qs(void)
|
|
{
|
|
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
|
|
if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
|
|
return;
|
|
trace_rcu_grace_period(TPS("rcu_sched"),
|
|
__this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
|
|
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
|
|
if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
|
|
rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
|
|
}
|
|
|
|
/*
|
|
* Register an urgently needed quiescent state. If there is an
|
|
* emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
|
|
* dyntick-idle quiescent state visible to other CPUs, which will in
|
|
* some cases serve for expedited as well as normal grace periods.
|
|
* Either way, register a lightweight quiescent state.
|
|
*/
|
|
void rcu_all_qs(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
|
|
return;
|
|
preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels
|
|
/* Load rcu_urgent_qs before other flags. */
|
|
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
this_cpu_write(rcu_data.rcu_urgent_qs, false);
|
|
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
|
|
local_irq_save(flags);
|
|
rcu_momentary_dyntick_idle();
|
|
local_irq_restore(flags);
|
|
}
|
|
rcu_qs();
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_all_qs);
|
|
|
|
/*
|
|
* Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
|
|
*/
|
|
void rcu_note_context_switch(bool preempt)
|
|
{
|
|
trace_rcu_utilization(TPS("Start context switch"));
|
|
rcu_qs();
|
|
/* Load rcu_urgent_qs before other flags. */
|
|
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
|
|
goto out;
|
|
this_cpu_write(rcu_data.rcu_urgent_qs, false);
|
|
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
|
|
rcu_momentary_dyntick_idle();
|
|
out:
|
|
rcu_tasks_qs(current, preempt);
|
|
trace_rcu_utilization(TPS("End context switch"));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
|
|
|
|
/*
|
|
* Because preemptible RCU does not exist, there are never any preempted
|
|
* RCU readers.
|
|
*/
|
|
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Because there is no preemptible RCU, there can be no readers blocked.
|
|
*/
|
|
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Because there is no preemptible RCU, there can be no deferred quiescent
|
|
* states.
|
|
*/
|
|
static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Except that we do need to respond to a request by an expedited
|
|
// grace period for a quiescent state from this CPU. Note that in
|
|
// non-preemptible kernels, there can be no context switches within RCU
|
|
// read-side critical sections, which in turn means that the leaf rcu_node
|
|
// structure's blocked-tasks list is always empty. is therefore no need to
|
|
// actually check it. Instead, a quiescent state from this CPU suffices,
|
|
// and this function is only called from such a quiescent state.
|
|
notrace void rcu_preempt_deferred_qs(struct task_struct *t)
|
|
{
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
|
|
|
if (READ_ONCE(rdp->cpu_no_qs.b.exp))
|
|
rcu_report_exp_rdp(rdp);
|
|
}
|
|
|
|
/*
|
|
* Because there is no preemptible RCU, there can be no readers blocked,
|
|
* so there is no need to check for blocked tasks. So check only for
|
|
* bogus qsmask values.
|
|
*/
|
|
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
|
|
{
|
|
WARN_ON_ONCE(rnp->qsmask);
|
|
}
|
|
|
|
/*
|
|
* Check to see if this CPU is in a non-context-switch quiescent state,
|
|
* namely user mode and idle loop.
|
|
*/
|
|
static void rcu_flavor_sched_clock_irq(int user)
|
|
{
|
|
if (user || rcu_is_cpu_rrupt_from_idle()) {
|
|
|
|
/*
|
|
* Get here if this CPU took its interrupt from user
|
|
* mode or from the idle loop, and if this is not a
|
|
* nested interrupt. In this case, the CPU is in
|
|
* a quiescent state, so note it.
|
|
*
|
|
* No memory barrier is required here because rcu_qs()
|
|
* references only CPU-local variables that other CPUs
|
|
* neither access nor modify, at least not while the
|
|
* corresponding CPU is online.
|
|
*/
|
|
rcu_qs();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Because preemptible RCU does not exist, tasks cannot possibly exit
|
|
* while in preemptible RCU read-side critical sections.
|
|
*/
|
|
void exit_rcu(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Dump the guaranteed-empty blocked-tasks state. Trust but verify.
|
|
*/
|
|
static void
|
|
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
|
|
{
|
|
WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
|
|
|
|
/*
|
|
* If boosting, set rcuc kthreads to realtime priority.
|
|
*/
|
|
static void rcu_cpu_kthread_setup(unsigned int cpu)
|
|
{
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
#ifdef CONFIG_RCU_BOOST
|
|
struct sched_param sp;
|
|
|
|
sp.sched_priority = kthread_prio;
|
|
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
|
|
#endif /* #ifdef CONFIG_RCU_BOOST */
|
|
|
|
WRITE_ONCE(rdp->rcuc_activity, jiffies);
|
|
}
|
|
|
|
static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
|
|
{
|
|
#ifdef CONFIG_RCU_NOCB_CPU
|
|
return rdp->nocb_cb_kthread == current;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Is the current CPU running the RCU-callbacks kthread?
|
|
* Caller must have preemption disabled.
|
|
*/
|
|
static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
|
|
{
|
|
return rdp->rcu_cpu_kthread_task == current ||
|
|
rcu_is_callbacks_nocb_kthread(rdp);
|
|
}
|
|
|
|
#ifdef CONFIG_RCU_BOOST
|
|
|
|
/*
|
|
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
|
|
* or ->boost_tasks, advancing the pointer to the next task in the
|
|
* ->blkd_tasks list.
|
|
*
|
|
* Note that irqs must be enabled: boosting the task can block.
|
|
* Returns 1 if there are more tasks needing to be boosted.
|
|
*/
|
|
static int rcu_boost(struct rcu_node *rnp)
|
|
{
|
|
unsigned long flags;
|
|
struct task_struct *t;
|
|
struct list_head *tb;
|
|
|
|
if (READ_ONCE(rnp->exp_tasks) == NULL &&
|
|
READ_ONCE(rnp->boost_tasks) == NULL)
|
|
return 0; /* Nothing left to boost. */
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
/*
|
|
* Recheck under the lock: all tasks in need of boosting
|
|
* might exit their RCU read-side critical sections on their own.
|
|
*/
|
|
if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Preferentially boost tasks blocking expedited grace periods.
|
|
* This cannot starve the normal grace periods because a second
|
|
* expedited grace period must boost all blocked tasks, including
|
|
* those blocking the pre-existing normal grace period.
|
|
*/
|
|
if (rnp->exp_tasks != NULL)
|
|
tb = rnp->exp_tasks;
|
|
else
|
|
tb = rnp->boost_tasks;
|
|
|
|
/*
|
|
* We boost task t by manufacturing an rt_mutex that appears to
|
|
* be held by task t. We leave a pointer to that rt_mutex where
|
|
* task t can find it, and task t will release the mutex when it
|
|
* exits its outermost RCU read-side critical section. Then
|
|
* simply acquiring this artificial rt_mutex will boost task
|
|
* t's priority. (Thanks to tglx for suggesting this approach!)
|
|
*
|
|
* Note that task t must acquire rnp->lock to remove itself from
|
|
* the ->blkd_tasks list, which it will do from exit() if from
|
|
* nowhere else. We therefore are guaranteed that task t will
|
|
* stay around at least until we drop rnp->lock. Note that
|
|
* rnp->lock also resolves races between our priority boosting
|
|
* and task t's exiting its outermost RCU read-side critical
|
|
* section.
|
|
*/
|
|
t = container_of(tb, struct task_struct, rcu_node_entry);
|
|
rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
/* Lock only for side effect: boosts task t's priority. */
|
|
rt_mutex_lock(&rnp->boost_mtx);
|
|
rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
|
|
rnp->n_boosts++;
|
|
|
|
return READ_ONCE(rnp->exp_tasks) != NULL ||
|
|
READ_ONCE(rnp->boost_tasks) != NULL;
|
|
}
|
|
|
|
/*
|
|
* Priority-boosting kthread, one per leaf rcu_node.
|
|
*/
|
|
static int rcu_boost_kthread(void *arg)
|
|
{
|
|
struct rcu_node *rnp = (struct rcu_node *)arg;
|
|
int spincnt = 0;
|
|
int more2boost;
|
|
|
|
trace_rcu_utilization(TPS("Start boost kthread@init"));
|
|
for (;;) {
|
|
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
|
|
trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
|
|
rcu_wait(READ_ONCE(rnp->boost_tasks) ||
|
|
READ_ONCE(rnp->exp_tasks));
|
|
trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
|
|
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
|
|
more2boost = rcu_boost(rnp);
|
|
if (more2boost)
|
|
spincnt++;
|
|
else
|
|
spincnt = 0;
|
|
if (spincnt > 10) {
|
|
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
|
|
trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
|
|
schedule_timeout_idle(2);
|
|
trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
|
|
spincnt = 0;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
trace_rcu_utilization(TPS("End boost kthread@notreached"));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check to see if it is time to start boosting RCU readers that are
|
|
* blocking the current grace period, and, if so, tell the per-rcu_node
|
|
* kthread to start boosting them. If there is an expedited grace
|
|
* period in progress, it is always time to boost.
|
|
*
|
|
* The caller must hold rnp->lock, which this function releases.
|
|
* The ->boost_kthread_task is immortal, so we don't need to worry
|
|
* about it going away.
|
|
*/
|
|
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
|
|
__releases(rnp->lock)
|
|
{
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
|
if (!rnp->boost_kthread_task ||
|
|
(!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
return;
|
|
}
|
|
if (rnp->exp_tasks != NULL ||
|
|
(rnp->gp_tasks != NULL &&
|
|
rnp->boost_tasks == NULL &&
|
|
rnp->qsmask == 0 &&
|
|
(!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
|
|
IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
|
|
if (rnp->exp_tasks == NULL)
|
|
WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
rcu_wake_cond(rnp->boost_kthread_task,
|
|
READ_ONCE(rnp->boost_kthread_status));
|
|
} else {
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
}
|
|
|
|
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
|
|
|
|
/*
|
|
* Do priority-boost accounting for the start of a new grace period.
|
|
*/
|
|
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
|
|
{
|
|
rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
|
|
}
|
|
|
|
/*
|
|
* Create an RCU-boost kthread for the specified node if one does not
|
|
* already exist. We only create this kthread for preemptible RCU.
|
|
*/
|
|
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
|
|
{
|
|
unsigned long flags;
|
|
int rnp_index = rnp - rcu_get_root();
|
|
struct sched_param sp;
|
|
struct task_struct *t;
|
|
|
|
mutex_lock(&rnp->boost_kthread_mutex);
|
|
if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
|
|
goto out;
|
|
|
|
t = kthread_create(rcu_boost_kthread, (void *)rnp,
|
|
"rcub/%d", rnp_index);
|
|
if (WARN_ON_ONCE(IS_ERR(t)))
|
|
goto out;
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
rnp->boost_kthread_task = t;
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
sp.sched_priority = kthread_prio;
|
|
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
|
|
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
|
|
|
|
out:
|
|
mutex_unlock(&rnp->boost_kthread_mutex);
|
|
}
|
|
|
|
/*
|
|
* Set the per-rcu_node kthread's affinity to cover all CPUs that are
|
|
* served by the rcu_node in question. The CPU hotplug lock is still
|
|
* held, so the value of rnp->qsmaskinit will be stable.
|
|
*
|
|
* We don't include outgoingcpu in the affinity set, use -1 if there is
|
|
* no outgoing CPU. If there are no CPUs left in the affinity set,
|
|
* this function allows the kthread to execute on any CPU.
|
|
*
|
|
* Any future concurrent calls are serialized via ->boost_kthread_mutex.
|
|
*/
|
|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
|
|
{
|
|
struct task_struct *t = rnp->boost_kthread_task;
|
|
unsigned long mask;
|
|
cpumask_var_t cm;
|
|
int cpu;
|
|
|
|
if (!t)
|
|
return;
|
|
if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
|
|
return;
|
|
mutex_lock(&rnp->boost_kthread_mutex);
|
|
mask = rcu_rnp_online_cpus(rnp);
|
|
for_each_leaf_node_possible_cpu(rnp, cpu)
|
|
if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
|
|
cpu != outgoingcpu)
|
|
cpumask_set_cpu(cpu, cm);
|
|
cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
|
|
if (cpumask_empty(cm)) {
|
|
cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
|
|
if (outgoingcpu >= 0)
|
|
cpumask_clear_cpu(outgoingcpu, cm);
|
|
}
|
|
set_cpus_allowed_ptr(t, cm);
|
|
mutex_unlock(&rnp->boost_kthread_mutex);
|
|
free_cpumask_var(cm);
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_RCU_BOOST */
|
|
|
|
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
|
|
__releases(rnp->lock)
|
|
{
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
}
|
|
|
|
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
|
|
{
|
|
}
|
|
|
|
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
|
|
{
|
|
}
|
|
|
|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
|
|
{
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_RCU_BOOST */
|
|
|
|
/*
|
|
* Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
|
|
* grace-period kthread will do force_quiescent_state() processing?
|
|
* The idea is to avoid waking up RCU core processing on such a
|
|
* CPU unless the grace period has extended for too long.
|
|
*
|
|
* This code relies on the fact that all NO_HZ_FULL CPUs are also
|
|
* RCU_NOCB_CPU CPUs.
|
|
*/
|
|
static bool rcu_nohz_full_cpu(void)
|
|
{
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
if (tick_nohz_full_cpu(smp_processor_id()) &&
|
|
(!rcu_gp_in_progress() ||
|
|
time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
|
|
return true;
|
|
#endif /* #ifdef CONFIG_NO_HZ_FULL */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Bind the RCU grace-period kthreads to the housekeeping CPU.
|
|
*/
|
|
static void rcu_bind_gp_kthread(void)
|
|
{
|
|
if (!tick_nohz_full_enabled())
|
|
return;
|
|
housekeeping_affine(current, HK_TYPE_RCU);
|
|
}
|