linux/arch/x86/kernel/kgdb.c
Jason Wessel 64e9ee3095 kgdb: add x86 HW breakpoints
Add HW breakpoints into the arch specific portion of x86 kgdb.  In the
current x86 kernel.org kernels HW breakpoints are changed out in lazy
fashion because there is no infrastructure around changing them when
changing to a kernel task or entering the kernel mode via a system
call.  This lazy approach means that if a user process uses HW
breakpoints the kgdb will loose out.  This is an acceptable trade off
because the developer debugging the kernel is assumed to know what is
going on system wide and would be aware of this trade off.

There is a minor bug fix to the kgdb core so as to correctly call the
hw breakpoint functions with a valid value from the enum.

There is also a minor change to the x86_64 startup code when using
early HW breakpoints.  When the debugger is connected, the cpu startup
code must not zero out the HW breakpoint registers or you cannot hit
the breakpoints you are interested in, in the first place.

Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-17 20:05:39 +02:00

568 lines
15 KiB
C

/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
/*
* Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
* Copyright (C) 2000-2001 VERITAS Software Corporation.
* Copyright (C) 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
* Copyright (C) 2007 MontaVista Software, Inc.
* Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
*/
/****************************************************************************
* Contributor: Lake Stevens Instrument Division$
* Written by: Glenn Engel $
* Updated by: Amit Kale<akale@veritas.com>
* Updated by: Tom Rini <trini@kernel.crashing.org>
* Updated by: Jason Wessel <jason.wessel@windriver.com>
* Modified for 386 by Jim Kingdon, Cygnus Support.
* Origianl kgdb, compatibility with 2.1.xx kernel by
* David Grothe <dave@gcom.com>
* Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
* X86_64 changes from Andi Kleen's patch merged by Jim Houston
*/
#include <linux/spinlock.h>
#include <linux/kdebug.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/kgdb.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/nmi.h>
#include <asm/apicdef.h>
#include <asm/system.h>
#ifdef CONFIG_X86_32
# include <mach_ipi.h>
#else
# include <asm/mach_apic.h>
#endif
/*
* Put the error code here just in case the user cares:
*/
static int gdb_x86errcode;
/*
* Likewise, the vector number here (since GDB only gets the signal
* number through the usual means, and that's not very specific):
*/
static int gdb_x86vector = -1;
/**
* pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
* @regs: The &struct pt_regs of the current process.
*
* Convert the pt_regs in @regs into the format for registers that
* GDB expects, stored in @gdb_regs.
*/
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
gdb_regs[GDB_AX] = regs->ax;
gdb_regs[GDB_BX] = regs->bx;
gdb_regs[GDB_CX] = regs->cx;
gdb_regs[GDB_DX] = regs->dx;
gdb_regs[GDB_SI] = regs->si;
gdb_regs[GDB_DI] = regs->di;
gdb_regs[GDB_BP] = regs->bp;
gdb_regs[GDB_PS] = regs->flags;
gdb_regs[GDB_PC] = regs->ip;
#ifdef CONFIG_X86_32
gdb_regs[GDB_DS] = regs->ds;
gdb_regs[GDB_ES] = regs->es;
gdb_regs[GDB_CS] = regs->cs;
gdb_regs[GDB_SS] = __KERNEL_DS;
gdb_regs[GDB_FS] = 0xFFFF;
gdb_regs[GDB_GS] = 0xFFFF;
#else
gdb_regs[GDB_R8] = regs->r8;
gdb_regs[GDB_R9] = regs->r9;
gdb_regs[GDB_R10] = regs->r10;
gdb_regs[GDB_R11] = regs->r11;
gdb_regs[GDB_R12] = regs->r12;
gdb_regs[GDB_R13] = regs->r13;
gdb_regs[GDB_R14] = regs->r14;
gdb_regs[GDB_R15] = regs->r15;
#endif
gdb_regs[GDB_SP] = regs->sp;
}
/**
* sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
* @p: The &struct task_struct of the desired process.
*
* Convert the register values of the sleeping process in @p to
* the format that GDB expects.
* This function is called when kgdb does not have access to the
* &struct pt_regs and therefore it should fill the gdb registers
* @gdb_regs with what has been saved in &struct thread_struct
* thread field during switch_to.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
gdb_regs[GDB_AX] = 0;
gdb_regs[GDB_BX] = 0;
gdb_regs[GDB_CX] = 0;
gdb_regs[GDB_DX] = 0;
gdb_regs[GDB_SI] = 0;
gdb_regs[GDB_DI] = 0;
gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
#ifdef CONFIG_X86_32
gdb_regs[GDB_DS] = __KERNEL_DS;
gdb_regs[GDB_ES] = __KERNEL_DS;
gdb_regs[GDB_PS] = 0;
gdb_regs[GDB_CS] = __KERNEL_CS;
gdb_regs[GDB_PC] = p->thread.ip;
gdb_regs[GDB_SS] = __KERNEL_DS;
gdb_regs[GDB_FS] = 0xFFFF;
gdb_regs[GDB_GS] = 0xFFFF;
#else
gdb_regs[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
gdb_regs[GDB_PC] = 0;
gdb_regs[GDB_R8] = 0;
gdb_regs[GDB_R9] = 0;
gdb_regs[GDB_R10] = 0;
gdb_regs[GDB_R11] = 0;
gdb_regs[GDB_R12] = 0;
gdb_regs[GDB_R13] = 0;
gdb_regs[GDB_R14] = 0;
gdb_regs[GDB_R15] = 0;
#endif
gdb_regs[GDB_SP] = p->thread.sp;
}
/**
* gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
* @gdb_regs: A pointer to hold the registers we've received from GDB.
* @regs: A pointer to a &struct pt_regs to hold these values in.
*
* Convert the GDB regs in @gdb_regs into the pt_regs, and store them
* in @regs.
*/
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
regs->ax = gdb_regs[GDB_AX];
regs->bx = gdb_regs[GDB_BX];
regs->cx = gdb_regs[GDB_CX];
regs->dx = gdb_regs[GDB_DX];
regs->si = gdb_regs[GDB_SI];
regs->di = gdb_regs[GDB_DI];
regs->bp = gdb_regs[GDB_BP];
regs->flags = gdb_regs[GDB_PS];
regs->ip = gdb_regs[GDB_PC];
#ifdef CONFIG_X86_32
regs->ds = gdb_regs[GDB_DS];
regs->es = gdb_regs[GDB_ES];
regs->cs = gdb_regs[GDB_CS];
#else
regs->r8 = gdb_regs[GDB_R8];
regs->r9 = gdb_regs[GDB_R9];
regs->r10 = gdb_regs[GDB_R10];
regs->r11 = gdb_regs[GDB_R11];
regs->r12 = gdb_regs[GDB_R12];
regs->r13 = gdb_regs[GDB_R13];
regs->r14 = gdb_regs[GDB_R14];
regs->r15 = gdb_regs[GDB_R15];
#endif
}
static struct hw_breakpoint {
unsigned enabled;
unsigned type;
unsigned len;
unsigned long addr;
} breakinfo[4];
static void kgdb_correct_hw_break(void)
{
unsigned long dr7;
int correctit = 0;
int breakbit;
int breakno;
get_debugreg(dr7, 7);
for (breakno = 0; breakno < 4; breakno++) {
breakbit = 2 << (breakno << 1);
if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
correctit = 1;
dr7 |= breakbit;
dr7 &= ~(0xf0000 << (breakno << 2));
dr7 |= ((breakinfo[breakno].len << 2) |
breakinfo[breakno].type) <<
((breakno << 2) + 16);
if (breakno >= 0 && breakno <= 3)
set_debugreg(breakinfo[breakno].addr, breakno);
} else {
if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
correctit = 1;
dr7 &= ~breakbit;
dr7 &= ~(0xf0000 << (breakno << 2));
}
}
}
if (correctit)
set_debugreg(dr7, 7);
}
static int
kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < 4; i++)
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
break;
if (i == 4)
return -1;
breakinfo[i].enabled = 0;
return 0;
}
static void kgdb_remove_all_hw_break(void)
{
int i;
for (i = 0; i < 4; i++)
memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
}
static int
kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
unsigned type;
int i;
for (i = 0; i < 4; i++)
if (!breakinfo[i].enabled)
break;
if (i == 4)
return -1;
switch (bptype) {
case BP_HARDWARE_BREAKPOINT:
type = 0;
len = 1;
break;
case BP_WRITE_WATCHPOINT:
type = 1;
break;
case BP_ACCESS_WATCHPOINT:
type = 3;
break;
default:
return -1;
}
if (len == 1 || len == 2 || len == 4)
breakinfo[i].len = len - 1;
else
return -1;
breakinfo[i].enabled = 1;
breakinfo[i].addr = addr;
breakinfo[i].type = type;
return 0;
}
/**
* kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
* @regs: Current &struct pt_regs.
*
* This function will be called if the particular architecture must
* disable hardware debugging while it is processing gdb packets or
* handling exception.
*/
void kgdb_disable_hw_debug(struct pt_regs *regs)
{
/* Disable hardware debugging while we are in kgdb: */
set_debugreg(0UL, 7);
}
/**
* kgdb_post_primary_code - Save error vector/code numbers.
* @regs: Original pt_regs.
* @e_vector: Original error vector.
* @err_code: Original error code.
*
* This is needed on architectures which support SMP and KGDB.
* This function is called after all the slave cpus have been put
* to a know spin state and the primary CPU has control over KGDB.
*/
void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
{
/* primary processor is completely in the debugger */
gdb_x86vector = e_vector;
gdb_x86errcode = err_code;
}
#ifdef CONFIG_SMP
/**
* kgdb_roundup_cpus - Get other CPUs into a holding pattern
* @flags: Current IRQ state
*
* On SMP systems, we need to get the attention of the other CPUs
* and get them be in a known state. This should do what is needed
* to get the other CPUs to call kgdb_wait(). Note that on some arches,
* the NMI approach is not used for rounding up all the CPUs. For example,
* in case of MIPS, smp_call_function() is used to roundup CPUs. In
* this case, we have to make sure that interrupts are enabled before
* calling smp_call_function(). The argument to this function is
* the flags that will be used when restoring the interrupts. There is
* local_irq_save() call before kgdb_roundup_cpus().
*
* On non-SMP systems, this is not called.
*/
void kgdb_roundup_cpus(unsigned long flags)
{
send_IPI_allbutself(APIC_DM_NMI);
}
#endif
/**
* kgdb_arch_handle_exception - Handle architecture specific GDB packets.
* @vector: The error vector of the exception that happened.
* @signo: The signal number of the exception that happened.
* @err_code: The error code of the exception that happened.
* @remcom_in_buffer: The buffer of the packet we have read.
* @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
* @regs: The &struct pt_regs of the current process.
*
* This function MUST handle the 'c' and 's' command packets,
* as well packets to set / remove a hardware breakpoint, if used.
* If there are additional packets which the hardware needs to handle,
* they are handled here. The code should return -1 if it wants to
* process more packets, and a %0 or %1 if it wants to exit from the
* kgdb callback.
*/
int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
char *remcomInBuffer, char *remcomOutBuffer,
struct pt_regs *linux_regs)
{
unsigned long addr;
unsigned long dr6;
char *ptr;
int newPC;
switch (remcomInBuffer[0]) {
case 'c':
case 's':
/* try to read optional parameter, pc unchanged if no parm */
ptr = &remcomInBuffer[1];
if (kgdb_hex2long(&ptr, &addr))
linux_regs->ip = addr;
newPC = linux_regs->ip;
/* clear the trace bit */
linux_regs->flags &= ~TF_MASK;
atomic_set(&kgdb_cpu_doing_single_step, -1);
/* set the trace bit if we're stepping */
if (remcomInBuffer[0] == 's') {
linux_regs->flags |= TF_MASK;
kgdb_single_step = 1;
if (kgdb_contthread) {
atomic_set(&kgdb_cpu_doing_single_step,
raw_smp_processor_id());
}
}
get_debugreg(dr6, 6);
if (!(dr6 & 0x4000)) {
int breakno;
for (breakno = 0; breakno < 4; breakno++) {
if (dr6 & (1 << breakno) &&
breakinfo[breakno].type == 0) {
/* Set restore flag: */
linux_regs->flags |= X86_EFLAGS_RF;
break;
}
}
}
set_debugreg(0UL, 6);
kgdb_correct_hw_break();
return 0;
}
/* this means that we do not want to exit from the handler: */
return -1;
}
static inline int
single_step_cont(struct pt_regs *regs, struct die_args *args)
{
/*
* Single step exception from kernel space to user space so
* eat the exception and continue the process:
*/
printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
"resuming...\n");
kgdb_arch_handle_exception(args->trapnr, args->signr,
args->err, "c", "", regs);
return NOTIFY_STOP;
}
static int was_in_debug_nmi[NR_CPUS];
static int __kgdb_notify(struct die_args *args, unsigned long cmd)
{
struct pt_regs *regs = args->regs;
switch (cmd) {
case DIE_NMI:
if (atomic_read(&kgdb_active) != -1) {
/* KGDB CPU roundup */
kgdb_nmicallback(raw_smp_processor_id(), regs);
was_in_debug_nmi[raw_smp_processor_id()] = 1;
touch_nmi_watchdog();
return NOTIFY_STOP;
}
return NOTIFY_DONE;
case DIE_NMI_IPI:
if (atomic_read(&kgdb_active) != -1) {
/* KGDB CPU roundup */
kgdb_nmicallback(raw_smp_processor_id(), regs);
was_in_debug_nmi[raw_smp_processor_id()] = 1;
touch_nmi_watchdog();
}
return NOTIFY_DONE;
case DIE_NMIUNKNOWN:
if (was_in_debug_nmi[raw_smp_processor_id()]) {
was_in_debug_nmi[raw_smp_processor_id()] = 0;
return NOTIFY_STOP;
}
return NOTIFY_DONE;
case DIE_NMIWATCHDOG:
if (atomic_read(&kgdb_active) != -1) {
/* KGDB CPU roundup: */
kgdb_nmicallback(raw_smp_processor_id(), regs);
return NOTIFY_STOP;
}
/* Enter debugger: */
break;
case DIE_DEBUG:
if (atomic_read(&kgdb_cpu_doing_single_step) ==
raw_smp_processor_id() &&
user_mode(regs))
return single_step_cont(regs, args);
/* fall through */
default:
if (user_mode(regs))
return NOTIFY_DONE;
}
if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
return NOTIFY_DONE;
return NOTIFY_STOP;
}
static int
kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
{
unsigned long flags;
int ret;
local_irq_save(flags);
ret = __kgdb_notify(ptr, cmd);
local_irq_restore(flags);
return ret;
}
static struct notifier_block kgdb_notifier = {
.notifier_call = kgdb_notify,
/*
* Lowest-prio notifier priority, we want to be notified last:
*/
.priority = -INT_MAX,
};
/**
* kgdb_arch_init - Perform any architecture specific initalization.
*
* This function will handle the initalization of any architecture
* specific callbacks.
*/
int kgdb_arch_init(void)
{
return register_die_notifier(&kgdb_notifier);
}
/**
* kgdb_arch_exit - Perform any architecture specific uninitalization.
*
* This function will handle the uninitalization of any architecture
* specific callbacks, for dynamic registration and unregistration.
*/
void kgdb_arch_exit(void)
{
unregister_die_notifier(&kgdb_notifier);
}
/**
*
* kgdb_skipexception - Bail out of KGDB when we've been triggered.
* @exception: Exception vector number
* @regs: Current &struct pt_regs.
*
* On some architectures we need to skip a breakpoint exception when
* it occurs after a breakpoint has been removed.
*
* Skip an int3 exception when it occurs after a breakpoint has been
* removed. Backtrack eip by 1 since the int3 would have caused it to
* increment by 1.
*/
int kgdb_skipexception(int exception, struct pt_regs *regs)
{
if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
regs->ip -= 1;
return 1;
}
return 0;
}
unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
{
if (exception == 3)
return instruction_pointer(regs) - 1;
return instruction_pointer(regs);
}
struct kgdb_arch arch_kgdb_ops = {
/* Breakpoint instruction: */
.gdb_bpt_instr = { 0xcc },
.flags = KGDB_HW_BREAKPOINT,
.set_hw_breakpoint = kgdb_set_hw_break,
.remove_hw_breakpoint = kgdb_remove_hw_break,
.remove_all_hw_break = kgdb_remove_all_hw_break,
.correct_hw_break = kgdb_correct_hw_break,
};