mirror of
https://github.com/torvalds/linux.git
synced 2024-11-29 23:51:37 +00:00
61307b7be4
documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB nvA4E0DcPrUAFy144FNM0NTCb7u9vAw= =V3R/ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
2177 lines
56 KiB
C
2177 lines
56 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* test_xarray.c: Test the XArray API
|
|
* Copyright (c) 2017-2018 Microsoft Corporation
|
|
* Copyright (c) 2019-2020 Oracle
|
|
* Author: Matthew Wilcox <willy@infradead.org>
|
|
*/
|
|
|
|
#include <linux/xarray.h>
|
|
#include <linux/module.h>
|
|
|
|
static unsigned int tests_run;
|
|
static unsigned int tests_passed;
|
|
|
|
static const unsigned int order_limit =
|
|
IS_ENABLED(CONFIG_XARRAY_MULTI) ? BITS_PER_LONG : 1;
|
|
|
|
#ifndef XA_DEBUG
|
|
# ifdef __KERNEL__
|
|
void xa_dump(const struct xarray *xa) { }
|
|
# endif
|
|
#undef XA_BUG_ON
|
|
#define XA_BUG_ON(xa, x) do { \
|
|
tests_run++; \
|
|
if (x) { \
|
|
printk("BUG at %s:%d\n", __func__, __LINE__); \
|
|
xa_dump(xa); \
|
|
dump_stack(); \
|
|
} else { \
|
|
tests_passed++; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
static void *xa_mk_index(unsigned long index)
|
|
{
|
|
return xa_mk_value(index & LONG_MAX);
|
|
}
|
|
|
|
static void *xa_store_index(struct xarray *xa, unsigned long index, gfp_t gfp)
|
|
{
|
|
return xa_store(xa, index, xa_mk_index(index), gfp);
|
|
}
|
|
|
|
static void xa_insert_index(struct xarray *xa, unsigned long index)
|
|
{
|
|
XA_BUG_ON(xa, xa_insert(xa, index, xa_mk_index(index),
|
|
GFP_KERNEL) != 0);
|
|
}
|
|
|
|
static void xa_alloc_index(struct xarray *xa, unsigned long index, gfp_t gfp)
|
|
{
|
|
u32 id;
|
|
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(index), xa_limit_32b,
|
|
gfp) != 0);
|
|
XA_BUG_ON(xa, id != index);
|
|
}
|
|
|
|
static void xa_erase_index(struct xarray *xa, unsigned long index)
|
|
{
|
|
XA_BUG_ON(xa, xa_erase(xa, index) != xa_mk_index(index));
|
|
XA_BUG_ON(xa, xa_load(xa, index) != NULL);
|
|
}
|
|
|
|
/*
|
|
* If anyone needs this, please move it to xarray.c. We have no current
|
|
* users outside the test suite because all current multislot users want
|
|
* to use the advanced API.
|
|
*/
|
|
static void *xa_store_order(struct xarray *xa, unsigned long index,
|
|
unsigned order, void *entry, gfp_t gfp)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, order);
|
|
void *curr;
|
|
|
|
do {
|
|
xas_lock(&xas);
|
|
curr = xas_store(&xas, entry);
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, gfp));
|
|
|
|
return curr;
|
|
}
|
|
|
|
static noinline void check_xa_err(struct xarray *xa)
|
|
{
|
|
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 0, GFP_NOWAIT)) != 0);
|
|
XA_BUG_ON(xa, xa_err(xa_erase(xa, 0)) != 0);
|
|
#ifndef __KERNEL__
|
|
/* The kernel does not fail GFP_NOWAIT allocations */
|
|
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) != -ENOMEM);
|
|
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_NOWAIT)) != -ENOMEM);
|
|
#endif
|
|
XA_BUG_ON(xa, xa_err(xa_store_index(xa, 1, GFP_KERNEL)) != 0);
|
|
XA_BUG_ON(xa, xa_err(xa_store(xa, 1, xa_mk_value(0), GFP_KERNEL)) != 0);
|
|
XA_BUG_ON(xa, xa_err(xa_erase(xa, 1)) != 0);
|
|
// kills the test-suite :-(
|
|
// XA_BUG_ON(xa, xa_err(xa_store(xa, 0, xa_mk_internal(0), 0)) != -EINVAL);
|
|
}
|
|
|
|
static noinline void check_xas_retry(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
void *entry;
|
|
|
|
xa_store_index(xa, 0, GFP_KERNEL);
|
|
xa_store_index(xa, 1, GFP_KERNEL);
|
|
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != xa_mk_value(0));
|
|
xa_erase_index(xa, 1);
|
|
XA_BUG_ON(xa, !xa_is_retry(xas_reload(&xas)));
|
|
XA_BUG_ON(xa, xas_retry(&xas, NULL));
|
|
XA_BUG_ON(xa, xas_retry(&xas, xa_mk_value(0)));
|
|
xas_reset(&xas);
|
|
XA_BUG_ON(xa, xas.xa_node != XAS_RESTART);
|
|
XA_BUG_ON(xa, xas_next_entry(&xas, ULONG_MAX) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xas.xa_node != NULL);
|
|
rcu_read_unlock();
|
|
|
|
XA_BUG_ON(xa, xa_store_index(xa, 1, GFP_KERNEL) != NULL);
|
|
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, !xa_is_internal(xas_reload(&xas)));
|
|
xas.xa_node = XAS_RESTART;
|
|
XA_BUG_ON(xa, xas_next_entry(&xas, ULONG_MAX) != xa_mk_value(0));
|
|
rcu_read_unlock();
|
|
|
|
/* Make sure we can iterate through retry entries */
|
|
xas_lock(&xas);
|
|
xas_set(&xas, 0);
|
|
xas_store(&xas, XA_RETRY_ENTRY);
|
|
xas_set(&xas, 1);
|
|
xas_store(&xas, XA_RETRY_ENTRY);
|
|
|
|
xas_set(&xas, 0);
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
xas_store(&xas, xa_mk_index(xas.xa_index));
|
|
}
|
|
xas_unlock(&xas);
|
|
|
|
xa_erase_index(xa, 0);
|
|
xa_erase_index(xa, 1);
|
|
}
|
|
|
|
static noinline void check_xa_load(struct xarray *xa)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
for (j = 0; j < 1024; j++) {
|
|
void *entry = xa_load(xa, j);
|
|
if (j < i)
|
|
XA_BUG_ON(xa, xa_to_value(entry) != j);
|
|
else
|
|
XA_BUG_ON(xa, entry);
|
|
}
|
|
XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL);
|
|
}
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
for (j = 0; j < 1024; j++) {
|
|
void *entry = xa_load(xa, j);
|
|
if (j >= i)
|
|
XA_BUG_ON(xa, xa_to_value(entry) != j);
|
|
else
|
|
XA_BUG_ON(xa, entry);
|
|
}
|
|
xa_erase_index(xa, i);
|
|
}
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_xa_mark_1(struct xarray *xa, unsigned long index)
|
|
{
|
|
unsigned int order;
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 8 : 1;
|
|
|
|
/* NULL elements have no marks set */
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0));
|
|
xa_set_mark(xa, index, XA_MARK_0);
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0));
|
|
|
|
/* Storing a pointer will not make a mark appear */
|
|
XA_BUG_ON(xa, xa_store_index(xa, index, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0));
|
|
xa_set_mark(xa, index, XA_MARK_0);
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0));
|
|
|
|
/* Setting one mark will not set another mark */
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index + 1, XA_MARK_0));
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_1));
|
|
|
|
/* Storing NULL clears marks, and they can't be set again */
|
|
xa_erase_index(xa, index);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0));
|
|
xa_set_mark(xa, index, XA_MARK_0);
|
|
XA_BUG_ON(xa, xa_get_mark(xa, index, XA_MARK_0));
|
|
|
|
/*
|
|
* Storing a multi-index entry over entries with marks gives the
|
|
* entire entry the union of the marks
|
|
*/
|
|
BUG_ON((index % 4) != 0);
|
|
for (order = 2; order < max_order; order++) {
|
|
unsigned long base = round_down(index, 1UL << order);
|
|
unsigned long next = base + (1UL << order);
|
|
unsigned long i;
|
|
|
|
XA_BUG_ON(xa, xa_store_index(xa, index + 1, GFP_KERNEL));
|
|
xa_set_mark(xa, index + 1, XA_MARK_0);
|
|
XA_BUG_ON(xa, xa_store_index(xa, index + 2, GFP_KERNEL));
|
|
xa_set_mark(xa, index + 2, XA_MARK_2);
|
|
XA_BUG_ON(xa, xa_store_index(xa, next, GFP_KERNEL));
|
|
xa_store_order(xa, index, order, xa_mk_index(index),
|
|
GFP_KERNEL);
|
|
for (i = base; i < next; i++) {
|
|
XA_STATE(xas, xa, i);
|
|
unsigned int seen = 0;
|
|
void *entry;
|
|
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_0));
|
|
XA_BUG_ON(xa, xa_get_mark(xa, i, XA_MARK_1));
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_2));
|
|
|
|
/* We should see two elements in the array */
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, entry, ULONG_MAX)
|
|
seen++;
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, seen != 2);
|
|
|
|
/* One of which is marked */
|
|
xas_set(&xas, 0);
|
|
seen = 0;
|
|
rcu_read_lock();
|
|
xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_0)
|
|
seen++;
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, seen != 1);
|
|
}
|
|
XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_0));
|
|
XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_1));
|
|
XA_BUG_ON(xa, xa_get_mark(xa, next, XA_MARK_2));
|
|
xa_erase_index(xa, index);
|
|
xa_erase_index(xa, next);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_xa_mark_2(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
unsigned long index;
|
|
unsigned int count = 0;
|
|
void *entry;
|
|
|
|
xa_store_index(xa, 0, GFP_KERNEL);
|
|
xa_set_mark(xa, 0, XA_MARK_0);
|
|
xas_lock(&xas);
|
|
xas_load(&xas);
|
|
xas_init_marks(&xas);
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, 0, XA_MARK_0) == 0);
|
|
|
|
for (index = 3500; index < 4500; index++) {
|
|
xa_store_index(xa, index, GFP_KERNEL);
|
|
xa_set_mark(xa, index, XA_MARK_0);
|
|
}
|
|
|
|
xas_reset(&xas);
|
|
rcu_read_lock();
|
|
xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_0)
|
|
count++;
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, count != 1000);
|
|
|
|
xas_lock(&xas);
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
xas_init_marks(&xas);
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, xas.xa_index, XA_MARK_0));
|
|
XA_BUG_ON(xa, !xas_get_mark(&xas, XA_MARK_0));
|
|
}
|
|
xas_unlock(&xas);
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_xa_mark_3(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
XA_STATE(xas, xa, 0x41);
|
|
void *entry;
|
|
int count = 0;
|
|
|
|
xa_store_order(xa, 0x40, 2, xa_mk_index(0x40), GFP_KERNEL);
|
|
xa_set_mark(xa, 0x41, XA_MARK_0);
|
|
|
|
rcu_read_lock();
|
|
xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_0) {
|
|
count++;
|
|
XA_BUG_ON(xa, entry != xa_mk_index(0x40));
|
|
}
|
|
XA_BUG_ON(xa, count != 1);
|
|
rcu_read_unlock();
|
|
xa_destroy(xa);
|
|
#endif
|
|
}
|
|
|
|
static noinline void check_xa_mark(struct xarray *xa)
|
|
{
|
|
unsigned long index;
|
|
|
|
for (index = 0; index < 16384; index += 4)
|
|
check_xa_mark_1(xa, index);
|
|
|
|
check_xa_mark_2(xa);
|
|
check_xa_mark_3(xa);
|
|
}
|
|
|
|
static noinline void check_xa_shrink(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 1);
|
|
struct xa_node *node;
|
|
unsigned int order;
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 15 : 1;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_store_index(xa, 0, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_store_index(xa, 1, GFP_KERNEL) != NULL);
|
|
|
|
/*
|
|
* Check that erasing the entry at 1 shrinks the tree and properly
|
|
* marks the node as being deleted.
|
|
*/
|
|
xas_lock(&xas);
|
|
XA_BUG_ON(xa, xas_load(&xas) != xa_mk_value(1));
|
|
node = xas.xa_node;
|
|
XA_BUG_ON(xa, xa_entry_locked(xa, node, 0) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xas_store(&xas, NULL) != xa_mk_value(1));
|
|
XA_BUG_ON(xa, xa_load(xa, 1) != NULL);
|
|
XA_BUG_ON(xa, xas.xa_node != XAS_BOUNDS);
|
|
XA_BUG_ON(xa, xa_entry_locked(xa, node, 0) != XA_RETRY_ENTRY);
|
|
XA_BUG_ON(xa, xas_load(&xas) != NULL);
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0));
|
|
xa_erase_index(xa, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (order = 0; order < max_order; order++) {
|
|
unsigned long max = (1UL << order) - 1;
|
|
xa_store_order(xa, 0, order, xa_mk_value(0), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, max) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xa_load(xa, max + 1) != NULL);
|
|
rcu_read_lock();
|
|
node = xa_head(xa);
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, xa_store_index(xa, ULONG_MAX, GFP_KERNEL) !=
|
|
NULL);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xa_head(xa) == node);
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, xa_load(xa, max + 1) != NULL);
|
|
xa_erase_index(xa, ULONG_MAX);
|
|
XA_BUG_ON(xa, xa->xa_head != node);
|
|
xa_erase_index(xa, 0);
|
|
}
|
|
}
|
|
|
|
static noinline void check_insert(struct xarray *xa)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
xa_insert_index(xa, i);
|
|
XA_BUG_ON(xa, xa_load(xa, i - 1) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, i + 1) != NULL);
|
|
xa_erase_index(xa, i);
|
|
}
|
|
|
|
for (i = 10; i < BITS_PER_LONG; i++) {
|
|
xa_insert_index(xa, 1UL << i);
|
|
XA_BUG_ON(xa, xa_load(xa, (1UL << i) - 1) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, (1UL << i) + 1) != NULL);
|
|
xa_erase_index(xa, 1UL << i);
|
|
|
|
xa_insert_index(xa, (1UL << i) - 1);
|
|
XA_BUG_ON(xa, xa_load(xa, (1UL << i) - 2) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, 1UL << i) != NULL);
|
|
xa_erase_index(xa, (1UL << i) - 1);
|
|
}
|
|
|
|
xa_insert_index(xa, ~0UL);
|
|
XA_BUG_ON(xa, xa_load(xa, 0UL) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, ~1UL) != NULL);
|
|
xa_erase_index(xa, ~0UL);
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_cmpxchg(struct xarray *xa)
|
|
{
|
|
void *FIVE = xa_mk_value(5);
|
|
void *SIX = xa_mk_value(6);
|
|
void *LOTS = xa_mk_value(12345678);
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_store_index(xa, 12345678, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_insert(xa, 12345678, xa, GFP_KERNEL) != -EBUSY);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, SIX, FIVE, GFP_KERNEL) != LOTS);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, LOTS, FIVE, GFP_KERNEL) != LOTS);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, FIVE, LOTS, GFP_KERNEL) != FIVE);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 5, FIVE, NULL, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 5, NULL, FIVE, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_insert(xa, 5, FIVE, GFP_KERNEL) != -EBUSY);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 5, FIVE, NULL, GFP_KERNEL) != FIVE);
|
|
XA_BUG_ON(xa, xa_insert(xa, 5, FIVE, GFP_KERNEL) == -EBUSY);
|
|
xa_erase_index(xa, 12345678);
|
|
xa_erase_index(xa, 5);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_cmpxchg_order(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
void *FIVE = xa_mk_value(5);
|
|
unsigned int i, order = 3;
|
|
|
|
XA_BUG_ON(xa, xa_store_order(xa, 0, order, FIVE, GFP_KERNEL));
|
|
|
|
/* Check entry FIVE has the order saved */
|
|
XA_BUG_ON(xa, xa_get_order(xa, xa_to_value(FIVE)) != order);
|
|
|
|
/* Check all the tied indexes have the same entry and order */
|
|
for (i = 0; i < (1 << order); i++) {
|
|
XA_BUG_ON(xa, xa_load(xa, i) != FIVE);
|
|
XA_BUG_ON(xa, xa_get_order(xa, i) != order);
|
|
}
|
|
|
|
/* Ensure that nothing is stored at index '1 << order' */
|
|
XA_BUG_ON(xa, xa_load(xa, 1 << order) != NULL);
|
|
|
|
/*
|
|
* Additionally, keep the node information and the order at
|
|
* '1 << order'
|
|
*/
|
|
XA_BUG_ON(xa, xa_store_order(xa, 1 << order, order, FIVE, GFP_KERNEL));
|
|
for (i = (1 << order); i < (1 << order) + (1 << order) - 1; i++) {
|
|
XA_BUG_ON(xa, xa_load(xa, i) != FIVE);
|
|
XA_BUG_ON(xa, xa_get_order(xa, i) != order);
|
|
}
|
|
|
|
/* Conditionally replace FIVE entry at index '0' with NULL */
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 0, FIVE, NULL, GFP_KERNEL) != FIVE);
|
|
|
|
/* Verify the order is lost at FIVE (and old) entries */
|
|
XA_BUG_ON(xa, xa_get_order(xa, xa_to_value(FIVE)) != 0);
|
|
|
|
/* Verify the order and entries are lost in all the tied indexes */
|
|
for (i = 0; i < (1 << order); i++) {
|
|
XA_BUG_ON(xa, xa_load(xa, i) != NULL);
|
|
XA_BUG_ON(xa, xa_get_order(xa, i) != 0);
|
|
}
|
|
|
|
/* Verify node and order are kept at '1 << order' */
|
|
for (i = (1 << order); i < (1 << order) + (1 << order) - 1; i++) {
|
|
XA_BUG_ON(xa, xa_load(xa, i) != FIVE);
|
|
XA_BUG_ON(xa, xa_get_order(xa, i) != order);
|
|
}
|
|
|
|
xa_store_order(xa, 0, BITS_PER_LONG - 1, NULL, GFP_KERNEL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
#endif
|
|
}
|
|
|
|
static noinline void check_reserve(struct xarray *xa)
|
|
{
|
|
void *entry;
|
|
unsigned long index;
|
|
int count;
|
|
|
|
/* An array with a reserved entry is not empty */
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_reserve(xa, 12345678, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_load(xa, 12345678));
|
|
xa_release(xa, 12345678);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Releasing a used entry does nothing */
|
|
XA_BUG_ON(xa, xa_reserve(xa, 12345678, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_store_index(xa, 12345678, GFP_NOWAIT) != NULL);
|
|
xa_release(xa, 12345678);
|
|
xa_erase_index(xa, 12345678);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* cmpxchg sees a reserved entry as ZERO */
|
|
XA_BUG_ON(xa, xa_reserve(xa, 12345678, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_cmpxchg(xa, 12345678, XA_ZERO_ENTRY,
|
|
xa_mk_value(12345678), GFP_NOWAIT) != NULL);
|
|
xa_release(xa, 12345678);
|
|
xa_erase_index(xa, 12345678);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* xa_insert treats it as busy */
|
|
XA_BUG_ON(xa, xa_reserve(xa, 12345678, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_insert(xa, 12345678, xa_mk_value(12345678), 0) !=
|
|
-EBUSY);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_erase(xa, 12345678) != NULL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Can iterate through a reserved entry */
|
|
xa_store_index(xa, 5, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_reserve(xa, 6, GFP_KERNEL) != 0);
|
|
xa_store_index(xa, 7, GFP_KERNEL);
|
|
|
|
count = 0;
|
|
xa_for_each(xa, index, entry) {
|
|
XA_BUG_ON(xa, index != 5 && index != 7);
|
|
count++;
|
|
}
|
|
XA_BUG_ON(xa, count != 2);
|
|
|
|
/* If we free a reserved entry, we should be able to allocate it */
|
|
if (xa->xa_flags & XA_FLAGS_ALLOC) {
|
|
u32 id;
|
|
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_value(8),
|
|
XA_LIMIT(5, 10), GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 8);
|
|
|
|
xa_release(xa, 6);
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_value(6),
|
|
XA_LIMIT(5, 10), GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 6);
|
|
}
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_xas_erase(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
void *entry;
|
|
unsigned long i, j;
|
|
|
|
for (i = 0; i < 200; i++) {
|
|
for (j = i; j < 2 * i + 17; j++) {
|
|
xas_set(&xas, j);
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, xa_mk_index(j));
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
}
|
|
|
|
xas_set(&xas, ULONG_MAX);
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, xa_mk_value(0));
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
xas_lock(&xas);
|
|
xas_store(&xas, NULL);
|
|
|
|
xas_set(&xas, 0);
|
|
j = i;
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
XA_BUG_ON(xa, entry != xa_mk_index(j));
|
|
xas_store(&xas, NULL);
|
|
j++;
|
|
}
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
static noinline void check_multi_store_1(struct xarray *xa, unsigned long index,
|
|
unsigned int order)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
unsigned long min = index & ~((1UL << order) - 1);
|
|
unsigned long max = min + (1UL << order);
|
|
|
|
xa_store_order(xa, index, order, xa_mk_index(index), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, min) != xa_mk_index(index));
|
|
XA_BUG_ON(xa, xa_load(xa, max - 1) != xa_mk_index(index));
|
|
XA_BUG_ON(xa, xa_load(xa, max) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, min - 1) != NULL);
|
|
|
|
xas_lock(&xas);
|
|
XA_BUG_ON(xa, xas_store(&xas, xa_mk_index(min)) != xa_mk_index(index));
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, xa_load(xa, min) != xa_mk_index(min));
|
|
XA_BUG_ON(xa, xa_load(xa, max - 1) != xa_mk_index(min));
|
|
XA_BUG_ON(xa, xa_load(xa, max) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, min - 1) != NULL);
|
|
|
|
xa_erase_index(xa, min);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_multi_store_2(struct xarray *xa, unsigned long index,
|
|
unsigned int order)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
xa_store_order(xa, index, order, xa_mk_value(0), GFP_KERNEL);
|
|
|
|
xas_lock(&xas);
|
|
XA_BUG_ON(xa, xas_store(&xas, xa_mk_value(1)) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xas.xa_index != index);
|
|
XA_BUG_ON(xa, xas_store(&xas, NULL) != xa_mk_value(1));
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_multi_store_3(struct xarray *xa, unsigned long index,
|
|
unsigned int order)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
void *entry;
|
|
int n = 0;
|
|
|
|
xa_store_order(xa, index, order, xa_mk_index(index), GFP_KERNEL);
|
|
|
|
xas_lock(&xas);
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
XA_BUG_ON(xa, entry != xa_mk_index(index));
|
|
n++;
|
|
}
|
|
XA_BUG_ON(xa, n != 1);
|
|
xas_set(&xas, index + 1);
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
XA_BUG_ON(xa, entry != xa_mk_index(index));
|
|
n++;
|
|
}
|
|
XA_BUG_ON(xa, n != 2);
|
|
xas_unlock(&xas);
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
#endif
|
|
|
|
static noinline void check_multi_store(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
unsigned long i, j, k;
|
|
unsigned int max_order = (sizeof(long) == 4) ? 30 : 60;
|
|
|
|
/* Loading from any position returns the same value */
|
|
xa_store_order(xa, 0, 1, xa_mk_value(0), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xa_load(xa, 2) != NULL);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 2);
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 2);
|
|
rcu_read_unlock();
|
|
|
|
/* Storing adjacent to the value does not alter the value */
|
|
xa_store(xa, 3, xa, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xa_load(xa, 2) != NULL);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 3);
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 2);
|
|
rcu_read_unlock();
|
|
|
|
/* Overwriting multiple indexes works */
|
|
xa_store_order(xa, 0, 2, xa_mk_value(1), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, 0) != xa_mk_value(1));
|
|
XA_BUG_ON(xa, xa_load(xa, 1) != xa_mk_value(1));
|
|
XA_BUG_ON(xa, xa_load(xa, 2) != xa_mk_value(1));
|
|
XA_BUG_ON(xa, xa_load(xa, 3) != xa_mk_value(1));
|
|
XA_BUG_ON(xa, xa_load(xa, 4) != NULL);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->count != 4);
|
|
XA_BUG_ON(xa, xa_to_node(xa_head(xa))->nr_values != 4);
|
|
rcu_read_unlock();
|
|
|
|
/* We can erase multiple values with a single store */
|
|
xa_store_order(xa, 0, BITS_PER_LONG - 1, NULL, GFP_KERNEL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Even when the first slot is empty but the others aren't */
|
|
xa_store_index(xa, 1, GFP_KERNEL);
|
|
xa_store_index(xa, 2, GFP_KERNEL);
|
|
xa_store_order(xa, 0, 2, NULL, GFP_KERNEL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (i = 0; i < max_order; i++) {
|
|
for (j = 0; j < max_order; j++) {
|
|
xa_store_order(xa, 0, i, xa_mk_index(i), GFP_KERNEL);
|
|
xa_store_order(xa, 0, j, xa_mk_index(j), GFP_KERNEL);
|
|
|
|
for (k = 0; k < max_order; k++) {
|
|
void *entry = xa_load(xa, (1UL << k) - 1);
|
|
if ((i < k) && (j < k))
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
else
|
|
XA_BUG_ON(xa, entry != xa_mk_index(j));
|
|
}
|
|
|
|
xa_erase(xa, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 20; i++) {
|
|
check_multi_store_1(xa, 200, i);
|
|
check_multi_store_1(xa, 0, i);
|
|
check_multi_store_1(xa, (1UL << i) + 1, i);
|
|
}
|
|
check_multi_store_2(xa, 4095, 9);
|
|
|
|
for (i = 1; i < 20; i++) {
|
|
check_multi_store_3(xa, 0, i);
|
|
check_multi_store_3(xa, 1UL << i, i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
/* mimics page cache __filemap_add_folio() */
|
|
static noinline void check_xa_multi_store_adv_add(struct xarray *xa,
|
|
unsigned long index,
|
|
unsigned int order,
|
|
void *p)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
unsigned int nrpages = 1UL << order;
|
|
|
|
/* users are responsible for index alignemnt to the order when adding */
|
|
XA_BUG_ON(xa, index & (nrpages - 1));
|
|
|
|
xas_set_order(&xas, index, order);
|
|
|
|
do {
|
|
xas_lock_irq(&xas);
|
|
xas_store(&xas, p);
|
|
xas_unlock_irq(&xas);
|
|
/*
|
|
* In our selftest case the only failure we can expect is for
|
|
* there not to be enough memory as we're not mimicking the
|
|
* entire page cache, so verify that's the only error we can run
|
|
* into here. The xas_nomem() which follows will ensure to fix
|
|
* that condition for us so to chug on on the loop.
|
|
*/
|
|
XA_BUG_ON(xa, xas_error(&xas) && xas_error(&xas) != -ENOMEM);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
XA_BUG_ON(xa, xas_error(&xas));
|
|
XA_BUG_ON(xa, xa_load(xa, index) != p);
|
|
}
|
|
|
|
/* mimics page_cache_delete() */
|
|
static noinline void check_xa_multi_store_adv_del_entry(struct xarray *xa,
|
|
unsigned long index,
|
|
unsigned int order)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
|
|
xas_set_order(&xas, index, order);
|
|
xas_store(&xas, NULL);
|
|
xas_init_marks(&xas);
|
|
}
|
|
|
|
static noinline void check_xa_multi_store_adv_delete(struct xarray *xa,
|
|
unsigned long index,
|
|
unsigned int order)
|
|
{
|
|
xa_lock_irq(xa);
|
|
check_xa_multi_store_adv_del_entry(xa, index, order);
|
|
xa_unlock_irq(xa);
|
|
}
|
|
|
|
/* mimics page cache filemap_get_entry() */
|
|
static noinline void *test_get_entry(struct xarray *xa, unsigned long index)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
void *p;
|
|
static unsigned int loops = 0;
|
|
|
|
rcu_read_lock();
|
|
repeat:
|
|
xas_reset(&xas);
|
|
p = xas_load(&xas);
|
|
if (xas_retry(&xas, p))
|
|
goto repeat;
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* This is not part of the page cache, this selftest is pretty
|
|
* aggressive and does not want to trust the xarray API but rather
|
|
* test it, and for order 20 (4 GiB block size) we can loop over
|
|
* over a million entries which can cause a soft lockup. Page cache
|
|
* APIs won't be stupid, proper page cache APIs loop over the proper
|
|
* order so when using a larger order we skip shared entries.
|
|
*/
|
|
if (++loops % XA_CHECK_SCHED == 0)
|
|
schedule();
|
|
|
|
return p;
|
|
}
|
|
|
|
static unsigned long some_val = 0xdeadbeef;
|
|
static unsigned long some_val_2 = 0xdeaddead;
|
|
|
|
/* mimics the page cache usage */
|
|
static noinline void check_xa_multi_store_adv(struct xarray *xa,
|
|
unsigned long pos,
|
|
unsigned int order)
|
|
{
|
|
unsigned int nrpages = 1UL << order;
|
|
unsigned long index, base, next_index, next_next_index;
|
|
unsigned int i;
|
|
|
|
index = pos >> PAGE_SHIFT;
|
|
base = round_down(index, nrpages);
|
|
next_index = round_down(base + nrpages, nrpages);
|
|
next_next_index = round_down(next_index + nrpages, nrpages);
|
|
|
|
check_xa_multi_store_adv_add(xa, base, order, &some_val);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, base + i) != &some_val);
|
|
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_index) != NULL);
|
|
|
|
/* Use order 0 for the next item */
|
|
check_xa_multi_store_adv_add(xa, next_index, 0, &some_val_2);
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_index) != &some_val_2);
|
|
|
|
/* Remove the next item */
|
|
check_xa_multi_store_adv_delete(xa, next_index, 0);
|
|
|
|
/* Now use order for a new pointer */
|
|
check_xa_multi_store_adv_add(xa, next_index, order, &some_val_2);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_index + i) != &some_val_2);
|
|
|
|
check_xa_multi_store_adv_delete(xa, next_index, order);
|
|
check_xa_multi_store_adv_delete(xa, base, order);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* starting fresh again */
|
|
|
|
/* let's test some holes now */
|
|
|
|
/* hole at base and next_next */
|
|
check_xa_multi_store_adv_add(xa, next_index, order, &some_val_2);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, base + i) != NULL);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_index + i) != &some_val_2);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_next_index + i) != NULL);
|
|
|
|
check_xa_multi_store_adv_delete(xa, next_index, order);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* hole at base and next */
|
|
|
|
check_xa_multi_store_adv_add(xa, next_next_index, order, &some_val_2);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, base + i) != NULL);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_index + i) != NULL);
|
|
|
|
for (i = 0; i < nrpages; i++)
|
|
XA_BUG_ON(xa, test_get_entry(xa, next_next_index + i) != &some_val_2);
|
|
|
|
check_xa_multi_store_adv_delete(xa, next_next_index, order);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
#endif
|
|
|
|
static noinline void check_multi_store_advanced(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1;
|
|
unsigned long end = ULONG_MAX/2;
|
|
unsigned long pos, i;
|
|
|
|
/*
|
|
* About 117 million tests below.
|
|
*/
|
|
for (pos = 7; pos < end; pos = (pos * pos) + 564) {
|
|
for (i = 0; i < max_order; i++) {
|
|
check_xa_multi_store_adv(xa, pos, i);
|
|
check_xa_multi_store_adv(xa, pos + 157, i);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static noinline void check_xa_alloc_1(struct xarray *xa, unsigned int base)
|
|
{
|
|
int i;
|
|
u32 id;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
/* An empty array should assign %base to the first alloc */
|
|
xa_alloc_index(xa, base, GFP_KERNEL);
|
|
|
|
/* Erasing it should make the array empty again */
|
|
xa_erase_index(xa, base);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* And it should assign %base again */
|
|
xa_alloc_index(xa, base, GFP_KERNEL);
|
|
|
|
/* Allocating and then erasing a lot should not lose base */
|
|
for (i = base + 1; i < 2 * XA_CHUNK_SIZE; i++)
|
|
xa_alloc_index(xa, i, GFP_KERNEL);
|
|
for (i = base; i < 2 * XA_CHUNK_SIZE; i++)
|
|
xa_erase_index(xa, i);
|
|
xa_alloc_index(xa, base, GFP_KERNEL);
|
|
|
|
/* Destroying the array should do the same as erasing */
|
|
xa_destroy(xa);
|
|
|
|
/* And it should assign %base again */
|
|
xa_alloc_index(xa, base, GFP_KERNEL);
|
|
|
|
/* The next assigned ID should be base+1 */
|
|
xa_alloc_index(xa, base + 1, GFP_KERNEL);
|
|
xa_erase_index(xa, base + 1);
|
|
|
|
/* Storing a value should mark it used */
|
|
xa_store_index(xa, base + 1, GFP_KERNEL);
|
|
xa_alloc_index(xa, base + 2, GFP_KERNEL);
|
|
|
|
/* If we then erase base, it should be free */
|
|
xa_erase_index(xa, base);
|
|
xa_alloc_index(xa, base, GFP_KERNEL);
|
|
|
|
xa_erase_index(xa, base + 1);
|
|
xa_erase_index(xa, base + 2);
|
|
|
|
for (i = 1; i < 5000; i++) {
|
|
xa_alloc_index(xa, base + i, GFP_KERNEL);
|
|
}
|
|
|
|
xa_destroy(xa);
|
|
|
|
/* Check that we fail properly at the limit of allocation */
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(UINT_MAX - 1),
|
|
XA_LIMIT(UINT_MAX - 1, UINT_MAX),
|
|
GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 0xfffffffeU);
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(UINT_MAX),
|
|
XA_LIMIT(UINT_MAX - 1, UINT_MAX),
|
|
GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 0xffffffffU);
|
|
id = 3;
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(0),
|
|
XA_LIMIT(UINT_MAX - 1, UINT_MAX),
|
|
GFP_KERNEL) != -EBUSY);
|
|
XA_BUG_ON(xa, id != 3);
|
|
xa_destroy(xa);
|
|
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(10), XA_LIMIT(10, 5),
|
|
GFP_KERNEL) != -EBUSY);
|
|
XA_BUG_ON(xa, xa_store_index(xa, 3, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, xa_mk_index(10), XA_LIMIT(10, 5),
|
|
GFP_KERNEL) != -EBUSY);
|
|
xa_erase_index(xa, 3);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_xa_alloc_2(struct xarray *xa, unsigned int base)
|
|
{
|
|
unsigned int i, id;
|
|
unsigned long index;
|
|
void *entry;
|
|
|
|
/* Allocate and free a NULL and check xa_empty() behaves */
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, NULL, xa_limit_32b, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != base);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_erase(xa, id) != NULL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Ditto, but check destroy instead of erase */
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, NULL, xa_limit_32b, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != base);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
xa_destroy(xa);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (i = base; i < base + 10; i++) {
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, NULL, xa_limit_32b,
|
|
GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != i);
|
|
}
|
|
|
|
XA_BUG_ON(xa, xa_store(xa, 3, xa_mk_index(3), GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_store(xa, 4, xa_mk_index(4), GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_store(xa, 4, NULL, GFP_KERNEL) != xa_mk_index(4));
|
|
XA_BUG_ON(xa, xa_erase(xa, 5) != NULL);
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, NULL, xa_limit_32b, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 5);
|
|
|
|
xa_for_each(xa, index, entry) {
|
|
xa_erase_index(xa, index);
|
|
}
|
|
|
|
for (i = base; i < base + 9; i++) {
|
|
XA_BUG_ON(xa, xa_erase(xa, i) != NULL);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
}
|
|
XA_BUG_ON(xa, xa_erase(xa, 8) != NULL);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
XA_BUG_ON(xa, xa_erase(xa, base + 9) != NULL);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_xa_alloc_3(struct xarray *xa, unsigned int base)
|
|
{
|
|
struct xa_limit limit = XA_LIMIT(1, 0x3fff);
|
|
u32 next = 0;
|
|
unsigned int i, id;
|
|
unsigned long index;
|
|
void *entry;
|
|
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, xa_mk_index(1), limit,
|
|
&next, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 1);
|
|
|
|
next = 0x3ffd;
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, xa_mk_index(0x3ffd), limit,
|
|
&next, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != 0x3ffd);
|
|
xa_erase_index(xa, 0x3ffd);
|
|
xa_erase_index(xa, 1);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (i = 0x3ffe; i < 0x4003; i++) {
|
|
if (i < 0x4000)
|
|
entry = xa_mk_index(i);
|
|
else
|
|
entry = xa_mk_index(i - 0x3fff);
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, entry, limit,
|
|
&next, GFP_KERNEL) != (id == 1));
|
|
XA_BUG_ON(xa, xa_mk_index(id) != entry);
|
|
}
|
|
|
|
/* Check wrap-around is handled correctly */
|
|
if (base != 0)
|
|
xa_erase_index(xa, base);
|
|
xa_erase_index(xa, base + 1);
|
|
next = UINT_MAX;
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, xa_mk_index(UINT_MAX),
|
|
xa_limit_32b, &next, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != UINT_MAX);
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, xa_mk_index(base),
|
|
xa_limit_32b, &next, GFP_KERNEL) != 1);
|
|
XA_BUG_ON(xa, id != base);
|
|
XA_BUG_ON(xa, xa_alloc_cyclic(xa, &id, xa_mk_index(base + 1),
|
|
xa_limit_32b, &next, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != base + 1);
|
|
|
|
xa_for_each(xa, index, entry)
|
|
xa_erase_index(xa, index);
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static DEFINE_XARRAY_ALLOC(xa0);
|
|
static DEFINE_XARRAY_ALLOC1(xa1);
|
|
|
|
static noinline void check_xa_alloc(void)
|
|
{
|
|
check_xa_alloc_1(&xa0, 0);
|
|
check_xa_alloc_1(&xa1, 1);
|
|
check_xa_alloc_2(&xa0, 0);
|
|
check_xa_alloc_2(&xa1, 1);
|
|
check_xa_alloc_3(&xa0, 0);
|
|
check_xa_alloc_3(&xa1, 1);
|
|
}
|
|
|
|
static noinline void __check_store_iter(struct xarray *xa, unsigned long start,
|
|
unsigned int order, unsigned int present)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, start, order);
|
|
void *entry;
|
|
unsigned int count = 0;
|
|
|
|
retry:
|
|
xas_lock(&xas);
|
|
xas_for_each_conflict(&xas, entry) {
|
|
XA_BUG_ON(xa, !xa_is_value(entry));
|
|
XA_BUG_ON(xa, entry < xa_mk_index(start));
|
|
XA_BUG_ON(xa, entry > xa_mk_index(start + (1UL << order) - 1));
|
|
count++;
|
|
}
|
|
xas_store(&xas, xa_mk_index(start));
|
|
xas_unlock(&xas);
|
|
if (xas_nomem(&xas, GFP_KERNEL)) {
|
|
count = 0;
|
|
goto retry;
|
|
}
|
|
XA_BUG_ON(xa, xas_error(&xas));
|
|
XA_BUG_ON(xa, count != present);
|
|
XA_BUG_ON(xa, xa_load(xa, start) != xa_mk_index(start));
|
|
XA_BUG_ON(xa, xa_load(xa, start + (1UL << order) - 1) !=
|
|
xa_mk_index(start));
|
|
xa_erase_index(xa, start);
|
|
}
|
|
|
|
static noinline void check_store_iter(struct xarray *xa)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1;
|
|
|
|
for (i = 0; i < max_order; i++) {
|
|
unsigned int min = 1 << i;
|
|
unsigned int max = (2 << i) - 1;
|
|
__check_store_iter(xa, 0, i, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
__check_store_iter(xa, min, i, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
xa_store_index(xa, min, GFP_KERNEL);
|
|
__check_store_iter(xa, min, i, 1);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
xa_store_index(xa, max, GFP_KERNEL);
|
|
__check_store_iter(xa, min, i, 1);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (j = 0; j < min; j++)
|
|
xa_store_index(xa, j, GFP_KERNEL);
|
|
__check_store_iter(xa, 0, i, min);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
for (j = 0; j < min; j++)
|
|
xa_store_index(xa, min + j, GFP_KERNEL);
|
|
__check_store_iter(xa, min, i, min);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
xa_store_index(xa, 63, GFP_KERNEL);
|
|
xa_store_index(xa, 65, GFP_KERNEL);
|
|
__check_store_iter(xa, 64, 2, 1);
|
|
xa_erase_index(xa, 63);
|
|
#endif
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_multi_find_1(struct xarray *xa, unsigned order)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
unsigned long multi = 3 << order;
|
|
unsigned long next = 4 << order;
|
|
unsigned long index;
|
|
|
|
xa_store_order(xa, multi, order, xa_mk_value(multi), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_store_index(xa, next, GFP_KERNEL) != NULL);
|
|
XA_BUG_ON(xa, xa_store_index(xa, next + 1, GFP_KERNEL) != NULL);
|
|
|
|
index = 0;
|
|
XA_BUG_ON(xa, xa_find(xa, &index, ULONG_MAX, XA_PRESENT) !=
|
|
xa_mk_value(multi));
|
|
XA_BUG_ON(xa, index != multi);
|
|
index = multi + 1;
|
|
XA_BUG_ON(xa, xa_find(xa, &index, ULONG_MAX, XA_PRESENT) !=
|
|
xa_mk_value(multi));
|
|
XA_BUG_ON(xa, (index < multi) || (index >= next));
|
|
XA_BUG_ON(xa, xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT) !=
|
|
xa_mk_value(next));
|
|
XA_BUG_ON(xa, index != next);
|
|
XA_BUG_ON(xa, xa_find_after(xa, &index, next, XA_PRESENT) != NULL);
|
|
XA_BUG_ON(xa, index != next);
|
|
|
|
xa_erase_index(xa, multi);
|
|
xa_erase_index(xa, next);
|
|
xa_erase_index(xa, next + 1);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
#endif
|
|
}
|
|
|
|
static noinline void check_multi_find_2(struct xarray *xa)
|
|
{
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 10 : 1;
|
|
unsigned int i, j;
|
|
void *entry;
|
|
|
|
for (i = 0; i < max_order; i++) {
|
|
unsigned long index = 1UL << i;
|
|
for (j = 0; j < index; j++) {
|
|
XA_STATE(xas, xa, j + index);
|
|
xa_store_index(xa, index - 1, GFP_KERNEL);
|
|
xa_store_order(xa, index, i, xa_mk_index(index),
|
|
GFP_KERNEL);
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
xa_erase_index(xa, index);
|
|
}
|
|
rcu_read_unlock();
|
|
xa_erase_index(xa, index - 1);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
}
|
|
}
|
|
|
|
static noinline void check_multi_find_3(struct xarray *xa)
|
|
{
|
|
unsigned int order;
|
|
|
|
for (order = 5; order < order_limit; order++) {
|
|
unsigned long index = 1UL << (order - 5);
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
xa_store_order(xa, 0, order - 4, xa_mk_index(0), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT));
|
|
xa_erase_index(xa, 0);
|
|
}
|
|
}
|
|
|
|
static noinline void check_find_1(struct xarray *xa)
|
|
{
|
|
unsigned long i, j, k;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/*
|
|
* Check xa_find with all pairs between 0 and 99 inclusive,
|
|
* starting at every index between 0 and 99
|
|
*/
|
|
for (i = 0; i < 100; i++) {
|
|
XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL);
|
|
xa_set_mark(xa, i, XA_MARK_0);
|
|
for (j = 0; j < i; j++) {
|
|
XA_BUG_ON(xa, xa_store_index(xa, j, GFP_KERNEL) !=
|
|
NULL);
|
|
xa_set_mark(xa, j, XA_MARK_0);
|
|
for (k = 0; k < 100; k++) {
|
|
unsigned long index = k;
|
|
void *entry = xa_find(xa, &index, ULONG_MAX,
|
|
XA_PRESENT);
|
|
if (k <= j)
|
|
XA_BUG_ON(xa, index != j);
|
|
else if (k <= i)
|
|
XA_BUG_ON(xa, index != i);
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
|
|
index = k;
|
|
entry = xa_find(xa, &index, ULONG_MAX,
|
|
XA_MARK_0);
|
|
if (k <= j)
|
|
XA_BUG_ON(xa, index != j);
|
|
else if (k <= i)
|
|
XA_BUG_ON(xa, index != i);
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
}
|
|
xa_erase_index(xa, j);
|
|
XA_BUG_ON(xa, xa_get_mark(xa, j, XA_MARK_0));
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, i, XA_MARK_0));
|
|
}
|
|
xa_erase_index(xa, i);
|
|
XA_BUG_ON(xa, xa_get_mark(xa, i, XA_MARK_0));
|
|
}
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_find_2(struct xarray *xa)
|
|
{
|
|
void *entry;
|
|
unsigned long i, j, index;
|
|
|
|
xa_for_each(xa, index, entry) {
|
|
XA_BUG_ON(xa, true);
|
|
}
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
xa_store_index(xa, index, GFP_KERNEL);
|
|
j = 0;
|
|
xa_for_each(xa, index, entry) {
|
|
XA_BUG_ON(xa, xa_mk_index(index) != entry);
|
|
XA_BUG_ON(xa, index != j++);
|
|
}
|
|
}
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_find_3(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
unsigned long i, j, k;
|
|
void *entry;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
for (j = 0; j < 100; j++) {
|
|
rcu_read_lock();
|
|
for (k = 0; k < 100; k++) {
|
|
xas_set(&xas, j);
|
|
xas_for_each_marked(&xas, entry, k, XA_MARK_0)
|
|
;
|
|
if (j > k)
|
|
XA_BUG_ON(xa,
|
|
xas.xa_node != XAS_RESTART);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
xa_store_index(xa, i, GFP_KERNEL);
|
|
xa_set_mark(xa, i, XA_MARK_0);
|
|
}
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_find_4(struct xarray *xa)
|
|
{
|
|
unsigned long index = 0;
|
|
void *entry;
|
|
|
|
xa_store_index(xa, ULONG_MAX, GFP_KERNEL);
|
|
|
|
entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT);
|
|
XA_BUG_ON(xa, entry != xa_mk_index(ULONG_MAX));
|
|
|
|
entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT);
|
|
XA_BUG_ON(xa, entry);
|
|
|
|
xa_erase_index(xa, ULONG_MAX);
|
|
}
|
|
|
|
static noinline void check_find(struct xarray *xa)
|
|
{
|
|
unsigned i;
|
|
|
|
check_find_1(xa);
|
|
check_find_2(xa);
|
|
check_find_3(xa);
|
|
check_find_4(xa);
|
|
|
|
for (i = 2; i < 10; i++)
|
|
check_multi_find_1(xa, i);
|
|
check_multi_find_2(xa);
|
|
check_multi_find_3(xa);
|
|
}
|
|
|
|
/* See find_swap_entry() in mm/shmem.c */
|
|
static noinline unsigned long xa_find_entry(struct xarray *xa, void *item)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
unsigned int checked = 0;
|
|
void *entry;
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
if (xas_retry(&xas, entry))
|
|
continue;
|
|
if (entry == item)
|
|
break;
|
|
checked++;
|
|
if ((checked % 4) != 0)
|
|
continue;
|
|
xas_pause(&xas);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return entry ? xas.xa_index : -1;
|
|
}
|
|
|
|
static noinline void check_find_entry(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
unsigned int order;
|
|
unsigned long offset, index;
|
|
|
|
for (order = 0; order < 20; order++) {
|
|
for (offset = 0; offset < (1UL << (order + 3));
|
|
offset += (1UL << order)) {
|
|
for (index = 0; index < (1UL << (order + 5));
|
|
index += (1UL << order)) {
|
|
xa_store_order(xa, index, order,
|
|
xa_mk_index(index), GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_load(xa, index) !=
|
|
xa_mk_index(index));
|
|
XA_BUG_ON(xa, xa_find_entry(xa,
|
|
xa_mk_index(index)) != index);
|
|
}
|
|
XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1);
|
|
xa_destroy(xa);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1);
|
|
xa_store_index(xa, ULONG_MAX, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_find_entry(xa, xa) != -1);
|
|
XA_BUG_ON(xa, xa_find_entry(xa, xa_mk_index(ULONG_MAX)) != -1);
|
|
xa_erase_index(xa, ULONG_MAX);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_pause(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
void *entry;
|
|
unsigned int order;
|
|
unsigned long index = 1;
|
|
unsigned int count = 0;
|
|
|
|
for (order = 0; order < order_limit; order++) {
|
|
XA_BUG_ON(xa, xa_store_order(xa, index, order,
|
|
xa_mk_index(index), GFP_KERNEL));
|
|
index += 1UL << order;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
XA_BUG_ON(xa, entry != xa_mk_index(1UL << count));
|
|
count++;
|
|
}
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, count != order_limit);
|
|
|
|
count = 0;
|
|
xas_set(&xas, 0);
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, entry, ULONG_MAX) {
|
|
XA_BUG_ON(xa, entry != xa_mk_index(1UL << count));
|
|
count++;
|
|
xas_pause(&xas);
|
|
}
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, count != order_limit);
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_move_tiny(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xas_next(&xas) != NULL);
|
|
XA_BUG_ON(xa, xas_next(&xas) != NULL);
|
|
rcu_read_unlock();
|
|
xa_store_index(xa, 0, GFP_KERNEL);
|
|
rcu_read_lock();
|
|
xas_set(&xas, 0);
|
|
XA_BUG_ON(xa, xas_next(&xas) != xa_mk_index(0));
|
|
XA_BUG_ON(xa, xas_next(&xas) != NULL);
|
|
xas_set(&xas, 0);
|
|
XA_BUG_ON(xa, xas_prev(&xas) != xa_mk_index(0));
|
|
XA_BUG_ON(xa, xas_prev(&xas) != NULL);
|
|
rcu_read_unlock();
|
|
xa_erase_index(xa, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_move_max(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
|
|
xa_store_index(xa, ULONG_MAX, GFP_KERNEL);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != xa_mk_index(ULONG_MAX));
|
|
XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != NULL);
|
|
rcu_read_unlock();
|
|
|
|
xas_set(&xas, 0);
|
|
rcu_read_lock();
|
|
XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != xa_mk_index(ULONG_MAX));
|
|
xas_pause(&xas);
|
|
XA_BUG_ON(xa, xas_find(&xas, ULONG_MAX) != NULL);
|
|
rcu_read_unlock();
|
|
|
|
xa_erase_index(xa, ULONG_MAX);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_move_small(struct xarray *xa, unsigned long idx)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
unsigned long i;
|
|
|
|
xa_store_index(xa, 0, GFP_KERNEL);
|
|
xa_store_index(xa, idx, GFP_KERNEL);
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < idx * 4; i++) {
|
|
void *entry = xas_next(&xas);
|
|
if (i <= idx)
|
|
XA_BUG_ON(xa, xas.xa_node == XAS_RESTART);
|
|
XA_BUG_ON(xa, xas.xa_index != i);
|
|
if (i == 0 || i == idx)
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
}
|
|
xas_next(&xas);
|
|
XA_BUG_ON(xa, xas.xa_index != i);
|
|
|
|
do {
|
|
void *entry = xas_prev(&xas);
|
|
i--;
|
|
if (i <= idx)
|
|
XA_BUG_ON(xa, xas.xa_node == XAS_RESTART);
|
|
XA_BUG_ON(xa, xas.xa_index != i);
|
|
if (i == 0 || i == idx)
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
} while (i > 0);
|
|
|
|
xas_set(&xas, ULONG_MAX);
|
|
XA_BUG_ON(xa, xas_next(&xas) != NULL);
|
|
XA_BUG_ON(xa, xas.xa_index != ULONG_MAX);
|
|
XA_BUG_ON(xa, xas_next(&xas) != xa_mk_value(0));
|
|
XA_BUG_ON(xa, xas.xa_index != 0);
|
|
XA_BUG_ON(xa, xas_prev(&xas) != NULL);
|
|
XA_BUG_ON(xa, xas.xa_index != ULONG_MAX);
|
|
rcu_read_unlock();
|
|
|
|
xa_erase_index(xa, 0);
|
|
xa_erase_index(xa, idx);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_move(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, (1 << 16) - 1);
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < (1 << 16); i++)
|
|
XA_BUG_ON(xa, xa_store_index(xa, i, GFP_KERNEL) != NULL);
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
void *entry = xas_prev(&xas);
|
|
i--;
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
XA_BUG_ON(xa, i != xas.xa_index);
|
|
} while (i != 0);
|
|
|
|
XA_BUG_ON(xa, xas_prev(&xas) != NULL);
|
|
XA_BUG_ON(xa, xas.xa_index != ULONG_MAX);
|
|
|
|
do {
|
|
void *entry = xas_next(&xas);
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
XA_BUG_ON(xa, i != xas.xa_index);
|
|
i++;
|
|
} while (i < (1 << 16));
|
|
rcu_read_unlock();
|
|
|
|
for (i = (1 << 8); i < (1 << 15); i++)
|
|
xa_erase_index(xa, i);
|
|
|
|
i = xas.xa_index;
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
void *entry = xas_prev(&xas);
|
|
i--;
|
|
if ((i < (1 << 8)) || (i >= (1 << 15)))
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
XA_BUG_ON(xa, i != xas.xa_index);
|
|
} while (i != 0);
|
|
|
|
XA_BUG_ON(xa, xas_prev(&xas) != NULL);
|
|
XA_BUG_ON(xa, xas.xa_index != ULONG_MAX);
|
|
|
|
do {
|
|
void *entry = xas_next(&xas);
|
|
if ((i < (1 << 8)) || (i >= (1 << 15)))
|
|
XA_BUG_ON(xa, entry != xa_mk_index(i));
|
|
else
|
|
XA_BUG_ON(xa, entry != NULL);
|
|
XA_BUG_ON(xa, i != xas.xa_index);
|
|
i++;
|
|
} while (i < (1 << 16));
|
|
rcu_read_unlock();
|
|
|
|
xa_destroy(xa);
|
|
|
|
check_move_tiny(xa);
|
|
check_move_max(xa);
|
|
|
|
for (i = 0; i < 16; i++)
|
|
check_move_small(xa, 1UL << i);
|
|
|
|
for (i = 2; i < 16; i++)
|
|
check_move_small(xa, (1UL << i) - 1);
|
|
}
|
|
|
|
static noinline void xa_store_many_order(struct xarray *xa,
|
|
unsigned long index, unsigned order)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, order);
|
|
unsigned int i = 0;
|
|
|
|
do {
|
|
xas_lock(&xas);
|
|
XA_BUG_ON(xa, xas_find_conflict(&xas));
|
|
xas_create_range(&xas);
|
|
if (xas_error(&xas))
|
|
goto unlock;
|
|
for (i = 0; i < (1U << order); i++) {
|
|
XA_BUG_ON(xa, xas_store(&xas, xa_mk_index(index + i)));
|
|
xas_next(&xas);
|
|
}
|
|
unlock:
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
XA_BUG_ON(xa, xas_error(&xas));
|
|
}
|
|
|
|
static noinline void check_create_range_1(struct xarray *xa,
|
|
unsigned long index, unsigned order)
|
|
{
|
|
unsigned long i;
|
|
|
|
xa_store_many_order(xa, index, order);
|
|
for (i = index; i < index + (1UL << order); i++)
|
|
xa_erase_index(xa, i);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_create_range_2(struct xarray *xa, unsigned order)
|
|
{
|
|
unsigned long i;
|
|
unsigned long nr = 1UL << order;
|
|
|
|
for (i = 0; i < nr * nr; i += nr)
|
|
xa_store_many_order(xa, i, order);
|
|
for (i = 0; i < nr * nr; i++)
|
|
xa_erase_index(xa, i);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_create_range_3(void)
|
|
{
|
|
XA_STATE(xas, NULL, 0);
|
|
xas_set_err(&xas, -EEXIST);
|
|
xas_create_range(&xas);
|
|
XA_BUG_ON(NULL, xas_error(&xas) != -EEXIST);
|
|
}
|
|
|
|
static noinline void check_create_range_4(struct xarray *xa,
|
|
unsigned long index, unsigned order)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, order);
|
|
unsigned long base = xas.xa_index;
|
|
unsigned long i = 0;
|
|
|
|
xa_store_index(xa, index, GFP_KERNEL);
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_create_range(&xas);
|
|
if (xas_error(&xas))
|
|
goto unlock;
|
|
for (i = 0; i < (1UL << order); i++) {
|
|
void *old = xas_store(&xas, xa_mk_index(base + i));
|
|
if (xas.xa_index == index)
|
|
XA_BUG_ON(xa, old != xa_mk_index(base + i));
|
|
else
|
|
XA_BUG_ON(xa, old != NULL);
|
|
xas_next(&xas);
|
|
}
|
|
unlock:
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
XA_BUG_ON(xa, xas_error(&xas));
|
|
|
|
for (i = base; i < base + (1UL << order); i++)
|
|
xa_erase_index(xa, i);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_create_range_5(struct xarray *xa,
|
|
unsigned long index, unsigned int order)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, order);
|
|
unsigned int i;
|
|
|
|
xa_store_order(xa, index, order, xa_mk_index(index), GFP_KERNEL);
|
|
|
|
for (i = 0; i < order + 10; i++) {
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_create_range(&xas);
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
}
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_create_range(struct xarray *xa)
|
|
{
|
|
unsigned int order;
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 12 : 1;
|
|
|
|
for (order = 0; order < max_order; order++) {
|
|
check_create_range_1(xa, 0, order);
|
|
check_create_range_1(xa, 1U << order, order);
|
|
check_create_range_1(xa, 2U << order, order);
|
|
check_create_range_1(xa, 3U << order, order);
|
|
check_create_range_1(xa, 1U << 24, order);
|
|
if (order < 10)
|
|
check_create_range_2(xa, order);
|
|
|
|
check_create_range_4(xa, 0, order);
|
|
check_create_range_4(xa, 1U << order, order);
|
|
check_create_range_4(xa, 2U << order, order);
|
|
check_create_range_4(xa, 3U << order, order);
|
|
check_create_range_4(xa, 1U << 24, order);
|
|
|
|
check_create_range_4(xa, 1, order);
|
|
check_create_range_4(xa, (1U << order) + 1, order);
|
|
check_create_range_4(xa, (2U << order) + 1, order);
|
|
check_create_range_4(xa, (2U << order) - 1, order);
|
|
check_create_range_4(xa, (3U << order) + 1, order);
|
|
check_create_range_4(xa, (3U << order) - 1, order);
|
|
check_create_range_4(xa, (1U << 24) + 1, order);
|
|
|
|
check_create_range_5(xa, 0, order);
|
|
check_create_range_5(xa, (1U << order), order);
|
|
}
|
|
|
|
check_create_range_3();
|
|
}
|
|
|
|
static noinline void __check_store_range(struct xarray *xa, unsigned long first,
|
|
unsigned long last)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
xa_store_range(xa, first, last, xa_mk_index(first), GFP_KERNEL);
|
|
|
|
XA_BUG_ON(xa, xa_load(xa, first) != xa_mk_index(first));
|
|
XA_BUG_ON(xa, xa_load(xa, last) != xa_mk_index(first));
|
|
XA_BUG_ON(xa, xa_load(xa, first - 1) != NULL);
|
|
XA_BUG_ON(xa, xa_load(xa, last + 1) != NULL);
|
|
|
|
xa_store_range(xa, first, last, NULL, GFP_KERNEL);
|
|
#endif
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_store_range(struct xarray *xa)
|
|
{
|
|
unsigned long i, j;
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
for (j = i; j < 128; j++) {
|
|
__check_store_range(xa, i, j);
|
|
__check_store_range(xa, 128 + i, 128 + j);
|
|
__check_store_range(xa, 4095 + i, 4095 + j);
|
|
__check_store_range(xa, 4096 + i, 4096 + j);
|
|
__check_store_range(xa, 123456 + i, 123456 + j);
|
|
__check_store_range(xa, (1 << 24) + i, (1 << 24) + j);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
static void check_split_1(struct xarray *xa, unsigned long index,
|
|
unsigned int order, unsigned int new_order)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, new_order);
|
|
unsigned int i, found;
|
|
void *entry;
|
|
|
|
xa_store_order(xa, index, order, xa, GFP_KERNEL);
|
|
xa_set_mark(xa, index, XA_MARK_1);
|
|
|
|
xas_split_alloc(&xas, xa, order, GFP_KERNEL);
|
|
xas_lock(&xas);
|
|
xas_split(&xas, xa, order);
|
|
for (i = 0; i < (1 << order); i += (1 << new_order))
|
|
__xa_store(xa, index + i, xa_mk_index(index + i), 0);
|
|
xas_unlock(&xas);
|
|
|
|
for (i = 0; i < (1 << order); i++) {
|
|
unsigned int val = index + (i & ~((1 << new_order) - 1));
|
|
XA_BUG_ON(xa, xa_load(xa, index + i) != xa_mk_index(val));
|
|
}
|
|
|
|
xa_set_mark(xa, index, XA_MARK_0);
|
|
XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0));
|
|
|
|
xas_set_order(&xas, index, 0);
|
|
found = 0;
|
|
rcu_read_lock();
|
|
xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_1) {
|
|
found++;
|
|
XA_BUG_ON(xa, xa_is_internal(entry));
|
|
}
|
|
rcu_read_unlock();
|
|
XA_BUG_ON(xa, found != 1 << (order - new_order));
|
|
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
static noinline void check_split(struct xarray *xa)
|
|
{
|
|
unsigned int order, new_order;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (order = 1; order < 2 * XA_CHUNK_SHIFT; order++) {
|
|
for (new_order = 0; new_order < order; new_order++) {
|
|
check_split_1(xa, 0, order, new_order);
|
|
check_split_1(xa, 1UL << order, order, new_order);
|
|
check_split_1(xa, 3UL << order, order, new_order);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void check_split(struct xarray *xa) { }
|
|
#endif
|
|
|
|
static void check_align_1(struct xarray *xa, char *name)
|
|
{
|
|
int i;
|
|
unsigned int id;
|
|
unsigned long index;
|
|
void *entry;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
XA_BUG_ON(xa, xa_alloc(xa, &id, name + i, xa_limit_32b,
|
|
GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, id != i);
|
|
}
|
|
xa_for_each(xa, index, entry)
|
|
XA_BUG_ON(xa, xa_is_err(entry));
|
|
xa_destroy(xa);
|
|
}
|
|
|
|
/*
|
|
* We should always be able to store without allocating memory after
|
|
* reserving a slot.
|
|
*/
|
|
static void check_align_2(struct xarray *xa, char *name)
|
|
{
|
|
int i;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
XA_BUG_ON(xa, xa_store(xa, 0, name + i, GFP_KERNEL) != NULL);
|
|
xa_erase(xa, 0);
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
XA_BUG_ON(xa, xa_reserve(xa, 0, GFP_KERNEL) != 0);
|
|
XA_BUG_ON(xa, xa_store(xa, 0, name + i, 0) != NULL);
|
|
xa_erase(xa, 0);
|
|
}
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
static noinline void check_align(struct xarray *xa)
|
|
{
|
|
char name[] = "Motorola 68000";
|
|
|
|
check_align_1(xa, name);
|
|
check_align_1(xa, name + 1);
|
|
check_align_1(xa, name + 2);
|
|
check_align_1(xa, name + 3);
|
|
check_align_2(xa, name);
|
|
}
|
|
|
|
static LIST_HEAD(shadow_nodes);
|
|
|
|
static void test_update_node(struct xa_node *node)
|
|
{
|
|
if (node->count && node->count == node->nr_values) {
|
|
if (list_empty(&node->private_list))
|
|
list_add(&shadow_nodes, &node->private_list);
|
|
} else {
|
|
if (!list_empty(&node->private_list))
|
|
list_del_init(&node->private_list);
|
|
}
|
|
}
|
|
|
|
static noinline void shadow_remove(struct xarray *xa)
|
|
{
|
|
struct xa_node *node;
|
|
|
|
xa_lock(xa);
|
|
while ((node = list_first_entry_or_null(&shadow_nodes,
|
|
struct xa_node, private_list))) {
|
|
XA_BUG_ON(xa, node->array != xa);
|
|
list_del_init(&node->private_list);
|
|
xa_delete_node(node, test_update_node);
|
|
}
|
|
xa_unlock(xa);
|
|
}
|
|
|
|
static noinline void check_workingset(struct xarray *xa, unsigned long index)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
xas_set_update(&xas, test_update_node);
|
|
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, xa_mk_value(0));
|
|
xas_next(&xas);
|
|
xas_store(&xas, xa_mk_value(1));
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
XA_BUG_ON(xa, list_empty(&shadow_nodes));
|
|
|
|
xas_lock(&xas);
|
|
xas_next(&xas);
|
|
xas_store(&xas, &xas);
|
|
XA_BUG_ON(xa, !list_empty(&shadow_nodes));
|
|
|
|
xas_store(&xas, xa_mk_value(2));
|
|
xas_unlock(&xas);
|
|
XA_BUG_ON(xa, list_empty(&shadow_nodes));
|
|
|
|
shadow_remove(xa);
|
|
XA_BUG_ON(xa, !list_empty(&shadow_nodes));
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
/*
|
|
* Check that the pointer / value / sibling entries are accounted the
|
|
* way we expect them to be.
|
|
*/
|
|
static noinline void check_account(struct xarray *xa)
|
|
{
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
unsigned int order;
|
|
|
|
for (order = 1; order < 12; order++) {
|
|
XA_STATE(xas, xa, 1 << order);
|
|
|
|
xa_store_order(xa, 0, order, xa, GFP_KERNEL);
|
|
rcu_read_lock();
|
|
xas_load(&xas);
|
|
XA_BUG_ON(xa, xas.xa_node->count == 0);
|
|
XA_BUG_ON(xa, xas.xa_node->count > (1 << order));
|
|
XA_BUG_ON(xa, xas.xa_node->nr_values != 0);
|
|
rcu_read_unlock();
|
|
|
|
xa_store_order(xa, 1 << order, order, xa_mk_index(1UL << order),
|
|
GFP_KERNEL);
|
|
XA_BUG_ON(xa, xas.xa_node->count != xas.xa_node->nr_values * 2);
|
|
|
|
xa_erase(xa, 1 << order);
|
|
XA_BUG_ON(xa, xas.xa_node->nr_values != 0);
|
|
|
|
xa_erase(xa, 0);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static noinline void check_get_order(struct xarray *xa)
|
|
{
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1;
|
|
unsigned int order;
|
|
unsigned long i, j;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
XA_BUG_ON(xa, xa_get_order(xa, i) != 0);
|
|
|
|
for (order = 0; order < max_order; order++) {
|
|
for (i = 0; i < 10; i++) {
|
|
xa_store_order(xa, i << order, order,
|
|
xa_mk_index(i << order), GFP_KERNEL);
|
|
for (j = i << order; j < (i + 1) << order; j++)
|
|
XA_BUG_ON(xa, xa_get_order(xa, j) != order);
|
|
xa_erase(xa, i << order);
|
|
}
|
|
}
|
|
}
|
|
|
|
static noinline void check_xas_get_order(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1;
|
|
unsigned int order;
|
|
unsigned long i, j;
|
|
|
|
for (order = 0; order < max_order; order++) {
|
|
for (i = 0; i < 10; i++) {
|
|
xas_set_order(&xas, i << order, order);
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, xa_mk_value(i));
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
for (j = i << order; j < (i + 1) << order; j++) {
|
|
xas_set_order(&xas, j, 0);
|
|
rcu_read_lock();
|
|
xas_load(&xas);
|
|
XA_BUG_ON(xa, xas_get_order(&xas) != order);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
xas_lock(&xas);
|
|
xas_set_order(&xas, i << order, order);
|
|
xas_store(&xas, NULL);
|
|
xas_unlock(&xas);
|
|
}
|
|
}
|
|
}
|
|
|
|
static noinline void check_xas_conflict_get_order(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
|
|
void *entry;
|
|
int only_once;
|
|
unsigned int max_order = IS_ENABLED(CONFIG_XARRAY_MULTI) ? 20 : 1;
|
|
unsigned int order;
|
|
unsigned long i, j, k;
|
|
|
|
for (order = 0; order < max_order; order++) {
|
|
for (i = 0; i < 10; i++) {
|
|
xas_set_order(&xas, i << order, order);
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, xa_mk_value(i));
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
/*
|
|
* Ensure xas_get_order works with xas_for_each_conflict.
|
|
*/
|
|
j = i << order;
|
|
for (k = 0; k < order; k++) {
|
|
only_once = 0;
|
|
xas_set_order(&xas, j + (1 << k), k);
|
|
xas_lock(&xas);
|
|
xas_for_each_conflict(&xas, entry) {
|
|
XA_BUG_ON(xa, entry != xa_mk_value(i));
|
|
XA_BUG_ON(xa, xas_get_order(&xas) != order);
|
|
only_once++;
|
|
}
|
|
XA_BUG_ON(xa, only_once != 1);
|
|
xas_unlock(&xas);
|
|
}
|
|
|
|
if (order < max_order - 1) {
|
|
only_once = 0;
|
|
xas_set_order(&xas, (i & ~1UL) << order, order + 1);
|
|
xas_lock(&xas);
|
|
xas_for_each_conflict(&xas, entry) {
|
|
XA_BUG_ON(xa, entry != xa_mk_value(i));
|
|
XA_BUG_ON(xa, xas_get_order(&xas) != order);
|
|
only_once++;
|
|
}
|
|
XA_BUG_ON(xa, only_once != 1);
|
|
xas_unlock(&xas);
|
|
}
|
|
|
|
xas_set_order(&xas, i << order, order);
|
|
xas_lock(&xas);
|
|
xas_store(&xas, NULL);
|
|
xas_unlock(&xas);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static noinline void check_destroy(struct xarray *xa)
|
|
{
|
|
unsigned long index;
|
|
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Destroying an empty array is a no-op */
|
|
xa_destroy(xa);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
/* Destroying an array with a single entry */
|
|
for (index = 0; index < 1000; index++) {
|
|
xa_store_index(xa, index, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
xa_destroy(xa);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
}
|
|
|
|
/* Destroying an array with a single entry at ULONG_MAX */
|
|
xa_store(xa, ULONG_MAX, xa, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
xa_destroy(xa);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
|
|
#ifdef CONFIG_XARRAY_MULTI
|
|
/* Destroying an array with a multi-index entry */
|
|
xa_store_order(xa, 1 << 11, 11, xa, GFP_KERNEL);
|
|
XA_BUG_ON(xa, xa_empty(xa));
|
|
xa_destroy(xa);
|
|
XA_BUG_ON(xa, !xa_empty(xa));
|
|
#endif
|
|
}
|
|
|
|
static DEFINE_XARRAY(array);
|
|
|
|
static int xarray_checks(void)
|
|
{
|
|
check_xa_err(&array);
|
|
check_xas_retry(&array);
|
|
check_xa_load(&array);
|
|
check_xa_mark(&array);
|
|
check_xa_shrink(&array);
|
|
check_xas_erase(&array);
|
|
check_insert(&array);
|
|
check_cmpxchg(&array);
|
|
check_cmpxchg_order(&array);
|
|
check_reserve(&array);
|
|
check_reserve(&xa0);
|
|
check_multi_store(&array);
|
|
check_multi_store_advanced(&array);
|
|
check_get_order(&array);
|
|
check_xas_get_order(&array);
|
|
check_xas_conflict_get_order(&array);
|
|
check_xa_alloc();
|
|
check_find(&array);
|
|
check_find_entry(&array);
|
|
check_pause(&array);
|
|
check_account(&array);
|
|
check_destroy(&array);
|
|
check_move(&array);
|
|
check_create_range(&array);
|
|
check_store_range(&array);
|
|
check_store_iter(&array);
|
|
check_align(&xa0);
|
|
check_split(&array);
|
|
|
|
check_workingset(&array, 0);
|
|
check_workingset(&array, 64);
|
|
check_workingset(&array, 4096);
|
|
|
|
printk("XArray: %u of %u tests passed\n", tests_passed, tests_run);
|
|
return (tests_run == tests_passed) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static void xarray_exit(void)
|
|
{
|
|
}
|
|
|
|
module_init(xarray_checks);
|
|
module_exit(xarray_exit);
|
|
MODULE_AUTHOR("Matthew Wilcox <willy@infradead.org>");
|
|
MODULE_LICENSE("GPL");
|