linux/arch/x86/kvm/i8254.c
Sean Christopherson 0214f6bbe5 KVM: x86: Migrate the PIT only if vcpu0 is migrated, not any BSP
Make vcpu0 the arbitrary owner of the PIT, as was intended when PIT
migration was added by commit 2f5997140f ("KVM: migrate PIT timer").
The PIT was unintentionally turned into being owned by the BSP by commit
c5af89b68a ("KVM: Introduce kvm_vcpu_is_bsp() function."), and was then
unintentionally converted to a shared ownership model when
kvm_vcpu_is_bsp() was modified to check the APIC base MSR instead of
hardcoding vcpu0 as the BSP.

Functionally, this just means the PIT's hrtimer is migrated less often.
The real motivation is to remove the usage of kvm_vcpu_is_bsp(), so that
more legacy/broken crud can be removed in a future patch.

Fixes: 58d269d8cc ("KVM: x86: BSP in MSR_IA32_APICBASE is writable")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:51 -04:00

750 lines
19 KiB
C

/*
* 8253/8254 interval timer emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2006 Intel Corporation
* Copyright (c) 2007 Keir Fraser, XenSource Inc
* Copyright (c) 2008 Intel Corporation
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Authors:
* Sheng Yang <sheng.yang@intel.com>
* Based on QEMU and Xen.
*/
#define pr_fmt(fmt) "pit: " fmt
#include <linux/kvm_host.h>
#include <linux/slab.h>
#include "ioapic.h"
#include "irq.h"
#include "i8254.h"
#include "x86.h"
#ifndef CONFIG_X86_64
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
#else
#define mod_64(x, y) ((x) % (y))
#endif
#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4
static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
{
struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
switch (c->mode) {
default:
case 0:
case 4:
/* XXX: just disable/enable counting */
break;
case 1:
case 2:
case 3:
case 5:
/* Restart counting on rising edge. */
if (c->gate < val)
c->count_load_time = ktime_get();
break;
}
c->gate = val;
}
static int pit_get_gate(struct kvm_pit *pit, int channel)
{
return pit->pit_state.channels[channel].gate;
}
static s64 __kpit_elapsed(struct kvm_pit *pit)
{
s64 elapsed;
ktime_t remaining;
struct kvm_kpit_state *ps = &pit->pit_state;
if (!ps->period)
return 0;
/*
* The Counter does not stop when it reaches zero. In
* Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
* the highest count, either FFFF hex for binary counting
* or 9999 for BCD counting, and continues counting.
* Modes 2 and 3 are periodic; the Counter reloads
* itself with the initial count and continues counting
* from there.
*/
remaining = hrtimer_get_remaining(&ps->timer);
elapsed = ps->period - ktime_to_ns(remaining);
return elapsed;
}
static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
int channel)
{
if (channel == 0)
return __kpit_elapsed(pit);
return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
}
static int pit_get_count(struct kvm_pit *pit, int channel)
{
struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
s64 d, t;
int counter;
t = kpit_elapsed(pit, c, channel);
d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
switch (c->mode) {
case 0:
case 1:
case 4:
case 5:
counter = (c->count - d) & 0xffff;
break;
case 3:
/* XXX: may be incorrect for odd counts */
counter = c->count - (mod_64((2 * d), c->count));
break;
default:
counter = c->count - mod_64(d, c->count);
break;
}
return counter;
}
static int pit_get_out(struct kvm_pit *pit, int channel)
{
struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
s64 d, t;
int out;
t = kpit_elapsed(pit, c, channel);
d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
switch (c->mode) {
default:
case 0:
out = (d >= c->count);
break;
case 1:
out = (d < c->count);
break;
case 2:
out = ((mod_64(d, c->count) == 0) && (d != 0));
break;
case 3:
out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
break;
case 4:
case 5:
out = (d == c->count);
break;
}
return out;
}
static void pit_latch_count(struct kvm_pit *pit, int channel)
{
struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
if (!c->count_latched) {
c->latched_count = pit_get_count(pit, channel);
c->count_latched = c->rw_mode;
}
}
static void pit_latch_status(struct kvm_pit *pit, int channel)
{
struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
if (!c->status_latched) {
/* TODO: Return NULL COUNT (bit 6). */
c->status = ((pit_get_out(pit, channel) << 7) |
(c->rw_mode << 4) |
(c->mode << 1) |
c->bcd);
c->status_latched = 1;
}
}
static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
{
return container_of(ps, struct kvm_pit, pit_state);
}
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
{
struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
irq_ack_notifier);
struct kvm_pit *pit = pit_state_to_pit(ps);
atomic_set(&ps->irq_ack, 1);
/* irq_ack should be set before pending is read. Order accesses with
* inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
*/
smp_mb();
if (atomic_dec_if_positive(&ps->pending) > 0)
kthread_queue_work(pit->worker, &pit->expired);
}
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
{
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
struct hrtimer *timer;
/* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
if (vcpu->vcpu_id || !pit)
return;
timer = &pit->pit_state.timer;
mutex_lock(&pit->pit_state.lock);
if (hrtimer_cancel(timer))
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
mutex_unlock(&pit->pit_state.lock);
}
static void destroy_pit_timer(struct kvm_pit *pit)
{
hrtimer_cancel(&pit->pit_state.timer);
kthread_flush_work(&pit->expired);
}
static void pit_do_work(struct kthread_work *work)
{
struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
struct kvm *kvm = pit->kvm;
struct kvm_vcpu *vcpu;
int i;
struct kvm_kpit_state *ps = &pit->pit_state;
if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
return;
kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
/*
* Provides NMI watchdog support via Virtual Wire mode.
* The route is: PIT -> LVT0 in NMI mode.
*
* Note: Our Virtual Wire implementation does not follow
* the MP specification. We propagate a PIT interrupt to all
* VCPUs and only when LVT0 is in NMI mode. The interrupt can
* also be simultaneously delivered through PIC and IOAPIC.
*/
if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_apic_nmi_wd_deliver(vcpu);
}
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
struct kvm_pit *pt = pit_state_to_pit(ps);
if (atomic_read(&ps->reinject))
atomic_inc(&ps->pending);
kthread_queue_work(pt->worker, &pt->expired);
if (ps->is_periodic) {
hrtimer_add_expires_ns(&ps->timer, ps->period);
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}
static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
{
atomic_set(&pit->pit_state.pending, 0);
atomic_set(&pit->pit_state.irq_ack, 1);
}
void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
{
struct kvm_kpit_state *ps = &pit->pit_state;
struct kvm *kvm = pit->kvm;
if (atomic_read(&ps->reinject) == reinject)
return;
/*
* AMD SVM AVIC accelerates EOI write and does not trap.
* This cause in-kernel PIT re-inject mode to fail
* since it checks ps->irq_ack before kvm_set_irq()
* and relies on the ack notifier to timely queue
* the pt->worker work iterm and reinject the missed tick.
* So, deactivate APICv when PIT is in reinject mode.
*/
if (reinject) {
kvm_request_apicv_update(kvm, false,
APICV_INHIBIT_REASON_PIT_REINJ);
/* The initial state is preserved while ps->reinject == 0. */
kvm_pit_reset_reinject(pit);
kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
} else {
kvm_request_apicv_update(kvm, true,
APICV_INHIBIT_REASON_PIT_REINJ);
kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
}
atomic_set(&ps->reinject, reinject);
}
static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
{
struct kvm_kpit_state *ps = &pit->pit_state;
struct kvm *kvm = pit->kvm;
s64 interval;
if (!ioapic_in_kernel(kvm) ||
ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
return;
interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
pr_debug("create pit timer, interval is %llu nsec\n", interval);
/* TODO The new value only affected after the retriggered */
hrtimer_cancel(&ps->timer);
kthread_flush_work(&pit->expired);
ps->period = interval;
ps->is_periodic = is_period;
kvm_pit_reset_reinject(pit);
/*
* Do not allow the guest to program periodic timers with small
* interval, since the hrtimers are not throttled by the host
* scheduler.
*/
if (ps->is_periodic) {
s64 min_period = min_timer_period_us * 1000LL;
if (ps->period < min_period) {
pr_info_ratelimited(
"kvm: requested %lld ns "
"i8254 timer period limited to %lld ns\n",
ps->period, min_period);
ps->period = min_period;
}
}
hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
HRTIMER_MODE_ABS);
}
static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
{
struct kvm_kpit_state *ps = &pit->pit_state;
pr_debug("load_count val is %u, channel is %d\n", val, channel);
/*
* The largest possible initial count is 0; this is equivalent
* to 216 for binary counting and 104 for BCD counting.
*/
if (val == 0)
val = 0x10000;
ps->channels[channel].count = val;
if (channel != 0) {
ps->channels[channel].count_load_time = ktime_get();
return;
}
/* Two types of timer
* mode 1 is one shot, mode 2 is period, otherwise del timer */
switch (ps->channels[0].mode) {
case 0:
case 1:
/* FIXME: enhance mode 4 precision */
case 4:
create_pit_timer(pit, val, 0);
break;
case 2:
case 3:
create_pit_timer(pit, val, 1);
break;
default:
destroy_pit_timer(pit);
}
}
void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
int hpet_legacy_start)
{
u8 saved_mode;
WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
if (hpet_legacy_start) {
/* save existing mode for later reenablement */
WARN_ON(channel != 0);
saved_mode = pit->pit_state.channels[0].mode;
pit->pit_state.channels[0].mode = 0xff; /* disable timer */
pit_load_count(pit, channel, val);
pit->pit_state.channels[0].mode = saved_mode;
} else {
pit_load_count(pit, channel, val);
}
}
static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
{
return container_of(dev, struct kvm_pit, dev);
}
static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
{
return container_of(dev, struct kvm_pit, speaker_dev);
}
static inline int pit_in_range(gpa_t addr)
{
return ((addr >= KVM_PIT_BASE_ADDRESS) &&
(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
}
static int pit_ioport_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, const void *data)
{
struct kvm_pit *pit = dev_to_pit(this);
struct kvm_kpit_state *pit_state = &pit->pit_state;
int channel, access;
struct kvm_kpit_channel_state *s;
u32 val = *(u32 *) data;
if (!pit_in_range(addr))
return -EOPNOTSUPP;
val &= 0xff;
addr &= KVM_PIT_CHANNEL_MASK;
mutex_lock(&pit_state->lock);
if (val != 0)
pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
(unsigned int)addr, len, val);
if (addr == 3) {
channel = val >> 6;
if (channel == 3) {
/* Read-Back Command. */
for (channel = 0; channel < 3; channel++) {
if (val & (2 << channel)) {
if (!(val & 0x20))
pit_latch_count(pit, channel);
if (!(val & 0x10))
pit_latch_status(pit, channel);
}
}
} else {
/* Select Counter <channel>. */
s = &pit_state->channels[channel];
access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
if (access == 0) {
pit_latch_count(pit, channel);
} else {
s->rw_mode = access;
s->read_state = access;
s->write_state = access;
s->mode = (val >> 1) & 7;
if (s->mode > 5)
s->mode -= 4;
s->bcd = val & 1;
}
}
} else {
/* Write Count. */
s = &pit_state->channels[addr];
switch (s->write_state) {
default:
case RW_STATE_LSB:
pit_load_count(pit, addr, val);
break;
case RW_STATE_MSB:
pit_load_count(pit, addr, val << 8);
break;
case RW_STATE_WORD0:
s->write_latch = val;
s->write_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
pit_load_count(pit, addr, s->write_latch | (val << 8));
s->write_state = RW_STATE_WORD0;
break;
}
}
mutex_unlock(&pit_state->lock);
return 0;
}
static int pit_ioport_read(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, void *data)
{
struct kvm_pit *pit = dev_to_pit(this);
struct kvm_kpit_state *pit_state = &pit->pit_state;
int ret, count;
struct kvm_kpit_channel_state *s;
if (!pit_in_range(addr))
return -EOPNOTSUPP;
addr &= KVM_PIT_CHANNEL_MASK;
if (addr == 3)
return 0;
s = &pit_state->channels[addr];
mutex_lock(&pit_state->lock);
if (s->status_latched) {
s->status_latched = 0;
ret = s->status;
} else if (s->count_latched) {
switch (s->count_latched) {
default:
case RW_STATE_LSB:
ret = s->latched_count & 0xff;
s->count_latched = 0;
break;
case RW_STATE_MSB:
ret = s->latched_count >> 8;
s->count_latched = 0;
break;
case RW_STATE_WORD0:
ret = s->latched_count & 0xff;
s->count_latched = RW_STATE_MSB;
break;
}
} else {
switch (s->read_state) {
default:
case RW_STATE_LSB:
count = pit_get_count(pit, addr);
ret = count & 0xff;
break;
case RW_STATE_MSB:
count = pit_get_count(pit, addr);
ret = (count >> 8) & 0xff;
break;
case RW_STATE_WORD0:
count = pit_get_count(pit, addr);
ret = count & 0xff;
s->read_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
count = pit_get_count(pit, addr);
ret = (count >> 8) & 0xff;
s->read_state = RW_STATE_WORD0;
break;
}
}
if (len > sizeof(ret))
len = sizeof(ret);
memcpy(data, (char *)&ret, len);
mutex_unlock(&pit_state->lock);
return 0;
}
static int speaker_ioport_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, const void *data)
{
struct kvm_pit *pit = speaker_to_pit(this);
struct kvm_kpit_state *pit_state = &pit->pit_state;
u32 val = *(u32 *) data;
if (addr != KVM_SPEAKER_BASE_ADDRESS)
return -EOPNOTSUPP;
mutex_lock(&pit_state->lock);
pit_state->speaker_data_on = (val >> 1) & 1;
pit_set_gate(pit, 2, val & 1);
mutex_unlock(&pit_state->lock);
return 0;
}
static int speaker_ioport_read(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, void *data)
{
struct kvm_pit *pit = speaker_to_pit(this);
struct kvm_kpit_state *pit_state = &pit->pit_state;
unsigned int refresh_clock;
int ret;
if (addr != KVM_SPEAKER_BASE_ADDRESS)
return -EOPNOTSUPP;
/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
mutex_lock(&pit_state->lock);
ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
if (len > sizeof(ret))
len = sizeof(ret);
memcpy(data, (char *)&ret, len);
mutex_unlock(&pit_state->lock);
return 0;
}
static void kvm_pit_reset(struct kvm_pit *pit)
{
int i;
struct kvm_kpit_channel_state *c;
pit->pit_state.flags = 0;
for (i = 0; i < 3; i++) {
c = &pit->pit_state.channels[i];
c->mode = 0xff;
c->gate = (i != 2);
pit_load_count(pit, i, 0);
}
kvm_pit_reset_reinject(pit);
}
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
{
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
if (!mask)
kvm_pit_reset_reinject(pit);
}
static const struct kvm_io_device_ops pit_dev_ops = {
.read = pit_ioport_read,
.write = pit_ioport_write,
};
static const struct kvm_io_device_ops speaker_dev_ops = {
.read = speaker_ioport_read,
.write = speaker_ioport_write,
};
struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
{
struct kvm_pit *pit;
struct kvm_kpit_state *pit_state;
struct pid *pid;
pid_t pid_nr;
int ret;
pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
if (!pit)
return NULL;
pit->irq_source_id = kvm_request_irq_source_id(kvm);
if (pit->irq_source_id < 0)
goto fail_request;
mutex_init(&pit->pit_state.lock);
pid = get_pid(task_tgid(current));
pid_nr = pid_vnr(pid);
put_pid(pid);
pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
if (IS_ERR(pit->worker))
goto fail_kthread;
kthread_init_work(&pit->expired, pit_do_work);
pit->kvm = kvm;
pit_state = &pit->pit_state;
hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
pit_state->timer.function = pit_timer_fn;
pit_state->irq_ack_notifier.gsi = 0;
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
pit->mask_notifier.func = pit_mask_notifer;
kvm_pit_reset(pit);
kvm_pit_set_reinject(pit, true);
mutex_lock(&kvm->slots_lock);
kvm_iodevice_init(&pit->dev, &pit_dev_ops);
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
KVM_PIT_MEM_LENGTH, &pit->dev);
if (ret < 0)
goto fail_register_pit;
if (flags & KVM_PIT_SPEAKER_DUMMY) {
kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
KVM_SPEAKER_BASE_ADDRESS, 4,
&pit->speaker_dev);
if (ret < 0)
goto fail_register_speaker;
}
mutex_unlock(&kvm->slots_lock);
return pit;
fail_register_speaker:
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
fail_register_pit:
mutex_unlock(&kvm->slots_lock);
kvm_pit_set_reinject(pit, false);
kthread_destroy_worker(pit->worker);
fail_kthread:
kvm_free_irq_source_id(kvm, pit->irq_source_id);
fail_request:
kfree(pit);
return NULL;
}
void kvm_free_pit(struct kvm *kvm)
{
struct kvm_pit *pit = kvm->arch.vpit;
if (pit) {
mutex_lock(&kvm->slots_lock);
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
mutex_unlock(&kvm->slots_lock);
kvm_pit_set_reinject(pit, false);
hrtimer_cancel(&pit->pit_state.timer);
kthread_destroy_worker(pit->worker);
kvm_free_irq_source_id(kvm, pit->irq_source_id);
kfree(pit);
}
}