linux/drivers/gpu/drm/sun4i/sun4i_backend.c
Paul Kocialkowski 02a3ce3c2a
drm/sun4i: Pass modifier to backend and frontend format support helpers
To prepare the introduction of tiled mode support, pass the framebuffer
format modifier to the helpers dealing with format support.

Since only linear mode is supported for now, add corresponding checks in
each helper.

Signed-off-by: Paul Kocialkowski <paul.kocialkowski@bootlin.com>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20181123092515.2511-33-paul.kocialkowski@bootlin.com
2018-11-27 10:12:56 +01:00

1061 lines
30 KiB
C

/*
* Copyright (C) 2015 Free Electrons
* Copyright (C) 2015 NextThing Co
*
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_plane_helper.h>
#include <linux/component.h>
#include <linux/list.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/reset.h>
#include "sun4i_backend.h"
#include "sun4i_drv.h"
#include "sun4i_frontend.h"
#include "sun4i_layer.h"
#include "sunxi_engine.h"
struct sun4i_backend_quirks {
/* backend <-> TCON muxing selection done in backend */
bool needs_output_muxing;
/* alpha at the lowest z position is not always supported */
bool supports_lowest_plane_alpha;
};
static const u32 sunxi_rgb2yuv_coef[12] = {
0x00000107, 0x00000204, 0x00000064, 0x00000108,
0x00003f69, 0x00003ed6, 0x000001c1, 0x00000808,
0x000001c1, 0x00003e88, 0x00003fb8, 0x00000808
};
/*
* These coefficients are taken from the A33 BSP from Allwinner.
*
* The first three values of each row are coded as 13-bit signed fixed-point
* numbers, with 10 bits for the fractional part. The fourth value is a
* constant coded as a 14-bit signed fixed-point number with 4 bits for the
* fractional part.
*
* The values in table order give the following colorspace translation:
* G = 1.164 * Y - 0.391 * U - 0.813 * V + 135
* R = 1.164 * Y + 1.596 * V - 222
* B = 1.164 * Y + 2.018 * U + 276
*
* This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255],
* following the BT601 spec.
*/
static const u32 sunxi_bt601_yuv2rgb_coef[12] = {
0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877,
0x000004a7, 0x00000000, 0x00000662, 0x00003211,
0x000004a7, 0x00000812, 0x00000000, 0x00002eb1,
};
static void sun4i_backend_apply_color_correction(struct sunxi_engine *engine)
{
int i;
DRM_DEBUG_DRIVER("Applying RGB to YUV color correction\n");
/* Set color correction */
regmap_write(engine->regs, SUN4I_BACKEND_OCCTL_REG,
SUN4I_BACKEND_OCCTL_ENABLE);
for (i = 0; i < 12; i++)
regmap_write(engine->regs, SUN4I_BACKEND_OCRCOEF_REG(i),
sunxi_rgb2yuv_coef[i]);
}
static void sun4i_backend_disable_color_correction(struct sunxi_engine *engine)
{
DRM_DEBUG_DRIVER("Disabling color correction\n");
/* Disable color correction */
regmap_update_bits(engine->regs, SUN4I_BACKEND_OCCTL_REG,
SUN4I_BACKEND_OCCTL_ENABLE, 0);
}
static void sun4i_backend_commit(struct sunxi_engine *engine)
{
DRM_DEBUG_DRIVER("Committing changes\n");
regmap_write(engine->regs, SUN4I_BACKEND_REGBUFFCTL_REG,
SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS |
SUN4I_BACKEND_REGBUFFCTL_LOADCTL);
}
void sun4i_backend_layer_enable(struct sun4i_backend *backend,
int layer, bool enable)
{
u32 val;
DRM_DEBUG_DRIVER("%sabling layer %d\n", enable ? "En" : "Dis",
layer);
if (enable)
val = SUN4I_BACKEND_MODCTL_LAY_EN(layer);
else
val = 0;
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG,
SUN4I_BACKEND_MODCTL_LAY_EN(layer), val);
}
static int sun4i_backend_drm_format_to_layer(u32 format, u32 *mode)
{
switch (format) {
case DRM_FORMAT_ARGB8888:
*mode = SUN4I_BACKEND_LAY_FBFMT_ARGB8888;
break;
case DRM_FORMAT_ARGB4444:
*mode = SUN4I_BACKEND_LAY_FBFMT_ARGB4444;
break;
case DRM_FORMAT_ARGB1555:
*mode = SUN4I_BACKEND_LAY_FBFMT_ARGB1555;
break;
case DRM_FORMAT_RGBA5551:
*mode = SUN4I_BACKEND_LAY_FBFMT_RGBA5551;
break;
case DRM_FORMAT_RGBA4444:
*mode = SUN4I_BACKEND_LAY_FBFMT_RGBA4444;
break;
case DRM_FORMAT_XRGB8888:
*mode = SUN4I_BACKEND_LAY_FBFMT_XRGB8888;
break;
case DRM_FORMAT_RGB888:
*mode = SUN4I_BACKEND_LAY_FBFMT_RGB888;
break;
case DRM_FORMAT_RGB565:
*mode = SUN4I_BACKEND_LAY_FBFMT_RGB565;
break;
default:
return -EINVAL;
}
return 0;
}
static const uint32_t sun4i_backend_formats[] = {
DRM_FORMAT_ARGB1555,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_BGRX8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGB888,
DRM_FORMAT_RGBA4444,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_YUYV,
DRM_FORMAT_YVYU,
};
bool sun4i_backend_format_is_supported(uint32_t fmt, uint64_t modifier)
{
unsigned int i;
if (modifier != DRM_FORMAT_MOD_LINEAR)
return false;
for (i = 0; i < ARRAY_SIZE(sun4i_backend_formats); i++)
if (sun4i_backend_formats[i] == fmt)
return true;
return false;
}
int sun4i_backend_update_layer_coord(struct sun4i_backend *backend,
int layer, struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
DRM_DEBUG_DRIVER("Updating layer %d\n", layer);
if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
DRM_DEBUG_DRIVER("Primary layer, updating global size W: %u H: %u\n",
state->crtc_w, state->crtc_h);
regmap_write(backend->engine.regs, SUN4I_BACKEND_DISSIZE_REG,
SUN4I_BACKEND_DISSIZE(state->crtc_w,
state->crtc_h));
}
/* Set height and width */
DRM_DEBUG_DRIVER("Layer size W: %u H: %u\n",
state->crtc_w, state->crtc_h);
regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYSIZE_REG(layer),
SUN4I_BACKEND_LAYSIZE(state->crtc_w,
state->crtc_h));
/* Set base coordinates */
DRM_DEBUG_DRIVER("Layer coordinates X: %d Y: %d\n",
state->crtc_x, state->crtc_y);
regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYCOOR_REG(layer),
SUN4I_BACKEND_LAYCOOR(state->crtc_x,
state->crtc_y));
return 0;
}
static int sun4i_backend_update_yuv_format(struct sun4i_backend *backend,
int layer, struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
const struct drm_format_info *format = fb->format;
const uint32_t fmt = format->format;
u32 val = SUN4I_BACKEND_IYUVCTL_EN;
int i;
for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++)
regmap_write(backend->engine.regs,
SUN4I_BACKEND_YGCOEF_REG(i),
sunxi_bt601_yuv2rgb_coef[i]);
/*
* We should do that only for a single plane, but the
* framebuffer's atomic_check has our back on this.
*/
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN,
SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN);
/* TODO: Add support for the multi-planar YUV formats */
if (format->num_planes == 1)
val |= SUN4I_BACKEND_IYUVCTL_FBFMT_PACKED_YUV422;
else
DRM_DEBUG_DRIVER("Unsupported YUV format (0x%x)\n", fmt);
/*
* Allwinner seems to list the pixel sequence from right to left, while
* DRM lists it from left to right.
*/
switch (fmt) {
case DRM_FORMAT_YUYV:
val |= SUN4I_BACKEND_IYUVCTL_FBPS_VYUY;
break;
case DRM_FORMAT_YVYU:
val |= SUN4I_BACKEND_IYUVCTL_FBPS_UYVY;
break;
case DRM_FORMAT_UYVY:
val |= SUN4I_BACKEND_IYUVCTL_FBPS_YVYU;
break;
case DRM_FORMAT_VYUY:
val |= SUN4I_BACKEND_IYUVCTL_FBPS_YUYV;
break;
default:
DRM_DEBUG_DRIVER("Unsupported YUV pixel sequence (0x%x)\n",
fmt);
}
regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVCTL_REG, val);
return 0;
}
int sun4i_backend_update_layer_formats(struct sun4i_backend *backend,
int layer, struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
bool interlaced = false;
u32 val;
int ret;
/* Clear the YUV mode */
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 0);
if (plane->state->crtc)
interlaced = plane->state->crtc->state->adjusted_mode.flags
& DRM_MODE_FLAG_INTERLACE;
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG,
SUN4I_BACKEND_MODCTL_ITLMOD_EN,
interlaced ? SUN4I_BACKEND_MODCTL_ITLMOD_EN : 0);
DRM_DEBUG_DRIVER("Switching display backend interlaced mode %s\n",
interlaced ? "on" : "off");
val = SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA(state->alpha >> 8);
if (state->alpha != DRM_BLEND_ALPHA_OPAQUE)
val |= SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN;
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_MASK |
SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN,
val);
if (fb->format->is_yuv)
return sun4i_backend_update_yuv_format(backend, layer, plane);
ret = sun4i_backend_drm_format_to_layer(fb->format->format, &val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid format\n");
return ret;
}
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_ATTCTL_REG1(layer),
SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val);
return 0;
}
int sun4i_backend_update_layer_frontend(struct sun4i_backend *backend,
int layer, uint32_t fmt)
{
u32 val;
int ret;
ret = sun4i_backend_drm_format_to_layer(fmt, &val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid format\n");
return ret;
}
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN,
SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN);
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_ATTCTL_REG1(layer),
SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val);
return 0;
}
static int sun4i_backend_update_yuv_buffer(struct sun4i_backend *backend,
struct drm_framebuffer *fb,
dma_addr_t paddr)
{
/* TODO: Add support for the multi-planar YUV formats */
DRM_DEBUG_DRIVER("Setting packed YUV buffer address to %pad\n", &paddr);
regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVADD_REG(0), paddr);
DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8);
regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVLINEWIDTH_REG(0),
fb->pitches[0] * 8);
return 0;
}
int sun4i_backend_update_layer_buffer(struct sun4i_backend *backend,
int layer, struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
u32 lo_paddr, hi_paddr;
dma_addr_t paddr;
/* Set the line width */
DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8);
regmap_write(backend->engine.regs,
SUN4I_BACKEND_LAYLINEWIDTH_REG(layer),
fb->pitches[0] * 8);
/* Get the start of the displayed memory */
paddr = drm_fb_cma_get_gem_addr(fb, state, 0);
DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr);
/*
* backend DMA accesses DRAM directly, bypassing the system
* bus. As such, the address range is different and the buffer
* address needs to be corrected.
*/
paddr -= PHYS_OFFSET;
if (fb->format->is_yuv)
return sun4i_backend_update_yuv_buffer(backend, fb, paddr);
/* Write the 32 lower bits of the address (in bits) */
lo_paddr = paddr << 3;
DRM_DEBUG_DRIVER("Setting address lower bits to 0x%x\n", lo_paddr);
regmap_write(backend->engine.regs,
SUN4I_BACKEND_LAYFB_L32ADD_REG(layer),
lo_paddr);
/* And the upper bits */
hi_paddr = paddr >> 29;
DRM_DEBUG_DRIVER("Setting address high bits to 0x%x\n", hi_paddr);
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_LAYFB_H4ADD_REG,
SUN4I_BACKEND_LAYFB_H4ADD_MSK(layer),
SUN4I_BACKEND_LAYFB_H4ADD(layer, hi_paddr));
return 0;
}
int sun4i_backend_update_layer_zpos(struct sun4i_backend *backend, int layer,
struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct sun4i_layer_state *p_state = state_to_sun4i_layer_state(state);
unsigned int priority = state->normalized_zpos;
unsigned int pipe = p_state->pipe;
DRM_DEBUG_DRIVER("Setting layer %d's priority to %d and pipe %d\n",
layer, priority, pipe);
regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL_MASK |
SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL_MASK,
SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL(p_state->pipe) |
SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL(priority));
return 0;
}
void sun4i_backend_cleanup_layer(struct sun4i_backend *backend,
int layer)
{
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_ATTCTL_REG0(layer),
SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN |
SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 0);
}
static bool sun4i_backend_plane_uses_scaler(struct drm_plane_state *state)
{
u16 src_h = state->src_h >> 16;
u16 src_w = state->src_w >> 16;
DRM_DEBUG_DRIVER("Input size %dx%d, output size %dx%d\n",
src_w, src_h, state->crtc_w, state->crtc_h);
if ((state->crtc_h != src_h) || (state->crtc_w != src_w))
return true;
return false;
}
static bool sun4i_backend_plane_uses_frontend(struct drm_plane_state *state)
{
struct sun4i_layer *layer = plane_to_sun4i_layer(state->plane);
struct sun4i_backend *backend = layer->backend;
uint32_t format = state->fb->format->format;
uint64_t modifier = state->fb->modifier;
if (IS_ERR(backend->frontend))
return false;
if (!sun4i_frontend_format_is_supported(format, modifier))
return false;
if (!sun4i_backend_format_is_supported(format, modifier))
return true;
/*
* TODO: The backend alone allows 2x and 4x integer scaling, including
* support for an alpha component (which the frontend doesn't support).
* Use the backend directly instead of the frontend in this case, with
* another test to return false.
*/
if (sun4i_backend_plane_uses_scaler(state))
return true;
/*
* Here the format is supported by both the frontend and the backend
* and no frontend scaling is required, so use the backend directly.
*/
return false;
}
static bool sun4i_backend_plane_is_supported(struct drm_plane_state *state,
bool *uses_frontend)
{
if (sun4i_backend_plane_uses_frontend(state)) {
*uses_frontend = true;
return true;
}
*uses_frontend = false;
/* Scaling is not supported without the frontend. */
if (sun4i_backend_plane_uses_scaler(state))
return false;
return true;
}
static void sun4i_backend_atomic_begin(struct sunxi_engine *engine,
struct drm_crtc_state *old_state)
{
u32 val;
WARN_ON(regmap_read_poll_timeout(engine->regs,
SUN4I_BACKEND_REGBUFFCTL_REG,
val, !(val & SUN4I_BACKEND_REGBUFFCTL_LOADCTL),
100, 50000));
}
static int sun4i_backend_atomic_check(struct sunxi_engine *engine,
struct drm_crtc_state *crtc_state)
{
struct drm_plane_state *plane_states[SUN4I_BACKEND_NUM_LAYERS] = { 0 };
struct sun4i_backend *backend = engine_to_sun4i_backend(engine);
struct drm_atomic_state *state = crtc_state->state;
struct drm_device *drm = state->dev;
struct drm_plane *plane;
unsigned int num_planes = 0;
unsigned int num_alpha_planes = 0;
unsigned int num_frontend_planes = 0;
unsigned int num_alpha_planes_max = 1;
unsigned int num_yuv_planes = 0;
unsigned int current_pipe = 0;
unsigned int i;
DRM_DEBUG_DRIVER("Starting checking our planes\n");
if (!crtc_state->planes_changed)
return 0;
drm_for_each_plane_mask(plane, drm, crtc_state->plane_mask) {
struct drm_plane_state *plane_state =
drm_atomic_get_plane_state(state, plane);
struct sun4i_layer_state *layer_state =
state_to_sun4i_layer_state(plane_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_format_name_buf format_name;
if (!sun4i_backend_plane_is_supported(plane_state,
&layer_state->uses_frontend))
return -EINVAL;
if (layer_state->uses_frontend) {
DRM_DEBUG_DRIVER("Using the frontend for plane %d\n",
plane->index);
num_frontend_planes++;
} else {
if (fb->format->is_yuv) {
DRM_DEBUG_DRIVER("Plane FB format is YUV\n");
num_yuv_planes++;
}
}
DRM_DEBUG_DRIVER("Plane FB format is %s\n",
drm_get_format_name(fb->format->format,
&format_name));
if (fb->format->has_alpha || (plane_state->alpha != DRM_BLEND_ALPHA_OPAQUE))
num_alpha_planes++;
DRM_DEBUG_DRIVER("Plane zpos is %d\n",
plane_state->normalized_zpos);
/* Sort our planes by Zpos */
plane_states[plane_state->normalized_zpos] = plane_state;
num_planes++;
}
/* All our planes were disabled, bail out */
if (!num_planes)
return 0;
/*
* The hardware is a bit unusual here.
*
* Even though it supports 4 layers, it does the composition
* in two separate steps.
*
* The first one is assigning a layer to one of its two
* pipes. If more that 1 layer is assigned to the same pipe,
* and if pixels overlaps, the pipe will take the pixel from
* the layer with the highest priority.
*
* The second step is the actual alpha blending, that takes
* the two pipes as input, and uses the potential alpha
* component to do the transparency between the two.
*
* This two-step scenario makes us unable to guarantee a
* robust alpha blending between the 4 layers in all
* situations, since this means that we need to have one layer
* with alpha at the lowest position of our two pipes.
*
* However, we cannot even do that on every platform, since
* the hardware has a bug where the lowest plane of the lowest
* pipe (pipe 0, priority 0), if it has any alpha, will
* discard the pixel data entirely and just display the pixels
* in the background color (black by default).
*
* This means that on the affected platforms, we effectively
* have only three valid configurations with alpha, all of
* them with the alpha being on pipe1 with the lowest
* position, which can be 1, 2 or 3 depending on the number of
* planes and their zpos.
*/
/* For platforms that are not affected by the issue described above. */
if (backend->quirks->supports_lowest_plane_alpha)
num_alpha_planes_max++;
if (num_alpha_planes > num_alpha_planes_max) {
DRM_DEBUG_DRIVER("Too many planes with alpha, rejecting...\n");
return -EINVAL;
}
/* We can't have an alpha plane at the lowest position */
if (!backend->quirks->supports_lowest_plane_alpha &&
(plane_states[0]->fb->format->has_alpha ||
(plane_states[0]->alpha != DRM_BLEND_ALPHA_OPAQUE)))
return -EINVAL;
for (i = 1; i < num_planes; i++) {
struct drm_plane_state *p_state = plane_states[i];
struct drm_framebuffer *fb = p_state->fb;
struct sun4i_layer_state *s_state = state_to_sun4i_layer_state(p_state);
/*
* The only alpha position is the lowest plane of the
* second pipe.
*/
if (fb->format->has_alpha || (p_state->alpha != DRM_BLEND_ALPHA_OPAQUE))
current_pipe++;
s_state->pipe = current_pipe;
}
/* We can only have a single YUV plane at a time */
if (num_yuv_planes > SUN4I_BACKEND_NUM_YUV_PLANES) {
DRM_DEBUG_DRIVER("Too many planes with YUV, rejecting...\n");
return -EINVAL;
}
if (num_frontend_planes > SUN4I_BACKEND_NUM_FRONTEND_LAYERS) {
DRM_DEBUG_DRIVER("Too many planes going through the frontend, rejecting\n");
return -EINVAL;
}
DRM_DEBUG_DRIVER("State valid with %u planes, %u alpha, %u video, %u YUV\n",
num_planes, num_alpha_planes, num_frontend_planes,
num_yuv_planes);
return 0;
}
static void sun4i_backend_vblank_quirk(struct sunxi_engine *engine)
{
struct sun4i_backend *backend = engine_to_sun4i_backend(engine);
struct sun4i_frontend *frontend = backend->frontend;
if (!frontend)
return;
/*
* In a teardown scenario with the frontend involved, we have
* to keep the frontend enabled until the next vblank, and
* only then disable it.
*
* This is due to the fact that the backend will not take into
* account the new configuration (with the plane that used to
* be fed by the frontend now disabled) until we write to the
* commit bit and the hardware fetches the new configuration
* during the next vblank.
*
* So we keep the frontend around in order to prevent any
* visual artifacts.
*/
spin_lock(&backend->frontend_lock);
if (backend->frontend_teardown) {
sun4i_frontend_exit(frontend);
backend->frontend_teardown = false;
}
spin_unlock(&backend->frontend_lock);
};
static int sun4i_backend_init_sat(struct device *dev) {
struct sun4i_backend *backend = dev_get_drvdata(dev);
int ret;
backend->sat_reset = devm_reset_control_get(dev, "sat");
if (IS_ERR(backend->sat_reset)) {
dev_err(dev, "Couldn't get the SAT reset line\n");
return PTR_ERR(backend->sat_reset);
}
ret = reset_control_deassert(backend->sat_reset);
if (ret) {
dev_err(dev, "Couldn't deassert the SAT reset line\n");
return ret;
}
backend->sat_clk = devm_clk_get(dev, "sat");
if (IS_ERR(backend->sat_clk)) {
dev_err(dev, "Couldn't get our SAT clock\n");
ret = PTR_ERR(backend->sat_clk);
goto err_assert_reset;
}
ret = clk_prepare_enable(backend->sat_clk);
if (ret) {
dev_err(dev, "Couldn't enable the SAT clock\n");
return ret;
}
return 0;
err_assert_reset:
reset_control_assert(backend->sat_reset);
return ret;
}
static int sun4i_backend_free_sat(struct device *dev) {
struct sun4i_backend *backend = dev_get_drvdata(dev);
clk_disable_unprepare(backend->sat_clk);
reset_control_assert(backend->sat_reset);
return 0;
}
/*
* The display backend can take video output from the display frontend, or
* the display enhancement unit on the A80, as input for one it its layers.
* This relationship within the display pipeline is encoded in the device
* tree with of_graph, and we use it here to figure out which backend, if
* there are 2 or more, we are currently probing. The number would be in
* the "reg" property of the upstream output port endpoint.
*/
static int sun4i_backend_of_get_id(struct device_node *node)
{
struct device_node *port, *ep;
int ret = -EINVAL;
/* input is port 0 */
port = of_graph_get_port_by_id(node, 0);
if (!port)
return -EINVAL;
/* try finding an upstream endpoint */
for_each_available_child_of_node(port, ep) {
struct device_node *remote;
u32 reg;
remote = of_graph_get_remote_endpoint(ep);
if (!remote)
continue;
ret = of_property_read_u32(remote, "reg", &reg);
if (ret)
continue;
ret = reg;
}
of_node_put(port);
return ret;
}
/* TODO: This needs to take multiple pipelines into account */
static struct sun4i_frontend *sun4i_backend_find_frontend(struct sun4i_drv *drv,
struct device_node *node)
{
struct device_node *port, *ep, *remote;
struct sun4i_frontend *frontend;
port = of_graph_get_port_by_id(node, 0);
if (!port)
return ERR_PTR(-EINVAL);
for_each_available_child_of_node(port, ep) {
remote = of_graph_get_remote_port_parent(ep);
if (!remote)
continue;
/* does this node match any registered engines? */
list_for_each_entry(frontend, &drv->frontend_list, list) {
if (remote == frontend->node) {
of_node_put(remote);
of_node_put(port);
return frontend;
}
}
}
return ERR_PTR(-EINVAL);
}
static const struct sunxi_engine_ops sun4i_backend_engine_ops = {
.atomic_begin = sun4i_backend_atomic_begin,
.atomic_check = sun4i_backend_atomic_check,
.commit = sun4i_backend_commit,
.layers_init = sun4i_layers_init,
.apply_color_correction = sun4i_backend_apply_color_correction,
.disable_color_correction = sun4i_backend_disable_color_correction,
.vblank_quirk = sun4i_backend_vblank_quirk,
};
static struct regmap_config sun4i_backend_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x5800,
};
static int sun4i_backend_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = data;
struct sun4i_drv *drv = drm->dev_private;
struct sun4i_backend *backend;
const struct sun4i_backend_quirks *quirks;
struct resource *res;
void __iomem *regs;
int i, ret;
backend = devm_kzalloc(dev, sizeof(*backend), GFP_KERNEL);
if (!backend)
return -ENOMEM;
dev_set_drvdata(dev, backend);
spin_lock_init(&backend->frontend_lock);
backend->engine.node = dev->of_node;
backend->engine.ops = &sun4i_backend_engine_ops;
backend->engine.id = sun4i_backend_of_get_id(dev->of_node);
if (backend->engine.id < 0)
return backend->engine.id;
backend->frontend = sun4i_backend_find_frontend(drv, dev->of_node);
if (IS_ERR(backend->frontend))
dev_warn(dev, "Couldn't find matching frontend, frontend features disabled\n");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
backend->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(backend->reset)) {
dev_err(dev, "Couldn't get our reset line\n");
return PTR_ERR(backend->reset);
}
ret = reset_control_deassert(backend->reset);
if (ret) {
dev_err(dev, "Couldn't deassert our reset line\n");
return ret;
}
backend->bus_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(backend->bus_clk)) {
dev_err(dev, "Couldn't get the backend bus clock\n");
ret = PTR_ERR(backend->bus_clk);
goto err_assert_reset;
}
clk_prepare_enable(backend->bus_clk);
backend->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(backend->mod_clk)) {
dev_err(dev, "Couldn't get the backend module clock\n");
ret = PTR_ERR(backend->mod_clk);
goto err_disable_bus_clk;
}
clk_prepare_enable(backend->mod_clk);
backend->ram_clk = devm_clk_get(dev, "ram");
if (IS_ERR(backend->ram_clk)) {
dev_err(dev, "Couldn't get the backend RAM clock\n");
ret = PTR_ERR(backend->ram_clk);
goto err_disable_mod_clk;
}
clk_prepare_enable(backend->ram_clk);
if (of_device_is_compatible(dev->of_node,
"allwinner,sun8i-a33-display-backend")) {
ret = sun4i_backend_init_sat(dev);
if (ret) {
dev_err(dev, "Couldn't init SAT resources\n");
goto err_disable_ram_clk;
}
}
backend->engine.regs = devm_regmap_init_mmio(dev, regs,
&sun4i_backend_regmap_config);
if (IS_ERR(backend->engine.regs)) {
dev_err(dev, "Couldn't create the backend regmap\n");
return PTR_ERR(backend->engine.regs);
}
list_add_tail(&backend->engine.list, &drv->engine_list);
/*
* Many of the backend's layer configuration registers have
* undefined default values. This poses a risk as we use
* regmap_update_bits in some places, and don't overwrite
* the whole register.
*
* Clear the registers here to have something predictable.
*/
for (i = 0x800; i < 0x1000; i += 4)
regmap_write(backend->engine.regs, i, 0);
/* Disable registers autoloading */
regmap_write(backend->engine.regs, SUN4I_BACKEND_REGBUFFCTL_REG,
SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS);
/* Enable the backend */
regmap_write(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG,
SUN4I_BACKEND_MODCTL_DEBE_EN |
SUN4I_BACKEND_MODCTL_START_CTL);
/* Set output selection if needed */
quirks = of_device_get_match_data(dev);
if (quirks->needs_output_muxing) {
/*
* We assume there is no dynamic muxing of backends
* and TCONs, so we select the backend with same ID.
*
* While dynamic selection might be interesting, since
* the CRTC is tied to the TCON, while the layers are
* tied to the backends, this means, we will need to
* switch between groups of layers. There might not be
* a way to represent this constraint in DRM.
*/
regmap_update_bits(backend->engine.regs,
SUN4I_BACKEND_MODCTL_REG,
SUN4I_BACKEND_MODCTL_OUT_SEL,
(backend->engine.id
? SUN4I_BACKEND_MODCTL_OUT_LCD1
: SUN4I_BACKEND_MODCTL_OUT_LCD0));
}
backend->quirks = quirks;
return 0;
err_disable_ram_clk:
clk_disable_unprepare(backend->ram_clk);
err_disable_mod_clk:
clk_disable_unprepare(backend->mod_clk);
err_disable_bus_clk:
clk_disable_unprepare(backend->bus_clk);
err_assert_reset:
reset_control_assert(backend->reset);
return ret;
}
static void sun4i_backend_unbind(struct device *dev, struct device *master,
void *data)
{
struct sun4i_backend *backend = dev_get_drvdata(dev);
list_del(&backend->engine.list);
if (of_device_is_compatible(dev->of_node,
"allwinner,sun8i-a33-display-backend"))
sun4i_backend_free_sat(dev);
clk_disable_unprepare(backend->ram_clk);
clk_disable_unprepare(backend->mod_clk);
clk_disable_unprepare(backend->bus_clk);
reset_control_assert(backend->reset);
}
static const struct component_ops sun4i_backend_ops = {
.bind = sun4i_backend_bind,
.unbind = sun4i_backend_unbind,
};
static int sun4i_backend_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &sun4i_backend_ops);
}
static int sun4i_backend_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &sun4i_backend_ops);
return 0;
}
static const struct sun4i_backend_quirks sun4i_backend_quirks = {
.needs_output_muxing = true,
};
static const struct sun4i_backend_quirks sun5i_backend_quirks = {
};
static const struct sun4i_backend_quirks sun6i_backend_quirks = {
};
static const struct sun4i_backend_quirks sun7i_backend_quirks = {
.needs_output_muxing = true,
.supports_lowest_plane_alpha = true,
};
static const struct sun4i_backend_quirks sun8i_a33_backend_quirks = {
.supports_lowest_plane_alpha = true,
};
static const struct sun4i_backend_quirks sun9i_backend_quirks = {
};
static const struct of_device_id sun4i_backend_of_table[] = {
{
.compatible = "allwinner,sun4i-a10-display-backend",
.data = &sun4i_backend_quirks,
},
{
.compatible = "allwinner,sun5i-a13-display-backend",
.data = &sun5i_backend_quirks,
},
{
.compatible = "allwinner,sun6i-a31-display-backend",
.data = &sun6i_backend_quirks,
},
{
.compatible = "allwinner,sun7i-a20-display-backend",
.data = &sun7i_backend_quirks,
},
{
.compatible = "allwinner,sun8i-a33-display-backend",
.data = &sun8i_a33_backend_quirks,
},
{
.compatible = "allwinner,sun9i-a80-display-backend",
.data = &sun9i_backend_quirks,
},
{ }
};
MODULE_DEVICE_TABLE(of, sun4i_backend_of_table);
static struct platform_driver sun4i_backend_platform_driver = {
.probe = sun4i_backend_probe,
.remove = sun4i_backend_remove,
.driver = {
.name = "sun4i-backend",
.of_match_table = sun4i_backend_of_table,
},
};
module_platform_driver(sun4i_backend_platform_driver);
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 Display Backend Driver");
MODULE_LICENSE("GPL");