mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 22:02:28 +00:00
363b02dab0
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:
(1) The instantiation state can be modified/read atomically.
(2) The error can be accessed atomically with the state.
(3) The error isn't stored unioned with the payload pointers.
This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.
The main side effect of this problem is that what was held in the payload
may change, depending on the state. For instance, you might observe the
key to be in the rejected state. You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.
The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated. The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.
Additionally, barriering is included:
(1) Order payload-set before state-set during instantiation.
(2) Order state-read before payload-read when using the key.
Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.
Fixes: 146aa8b145
("KEYS: Merge the type-specific data with the payload data")
Cc: stable@vger.kernel.org # v4.4+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
383 lines
8.8 KiB
C
383 lines
8.8 KiB
C
/* Large capacity key type
|
|
*
|
|
* Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public Licence
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the Licence, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "big_key: "fmt
|
|
#include <linux/init.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/file.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/err.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/random.h>
|
|
#include <keys/user-type.h>
|
|
#include <keys/big_key-type.h>
|
|
#include <crypto/aead.h>
|
|
|
|
/*
|
|
* Layout of key payload words.
|
|
*/
|
|
enum {
|
|
big_key_data,
|
|
big_key_path,
|
|
big_key_path_2nd_part,
|
|
big_key_len,
|
|
};
|
|
|
|
/*
|
|
* Crypto operation with big_key data
|
|
*/
|
|
enum big_key_op {
|
|
BIG_KEY_ENC,
|
|
BIG_KEY_DEC,
|
|
};
|
|
|
|
/*
|
|
* If the data is under this limit, there's no point creating a shm file to
|
|
* hold it as the permanently resident metadata for the shmem fs will be at
|
|
* least as large as the data.
|
|
*/
|
|
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
|
|
|
|
/*
|
|
* Key size for big_key data encryption
|
|
*/
|
|
#define ENC_KEY_SIZE 32
|
|
|
|
/*
|
|
* Authentication tag length
|
|
*/
|
|
#define ENC_AUTHTAG_SIZE 16
|
|
|
|
/*
|
|
* big_key defined keys take an arbitrary string as the description and an
|
|
* arbitrary blob of data as the payload
|
|
*/
|
|
struct key_type key_type_big_key = {
|
|
.name = "big_key",
|
|
.preparse = big_key_preparse,
|
|
.free_preparse = big_key_free_preparse,
|
|
.instantiate = generic_key_instantiate,
|
|
.revoke = big_key_revoke,
|
|
.destroy = big_key_destroy,
|
|
.describe = big_key_describe,
|
|
.read = big_key_read,
|
|
/* no ->update(); don't add it without changing big_key_crypt() nonce */
|
|
};
|
|
|
|
/*
|
|
* Crypto names for big_key data authenticated encryption
|
|
*/
|
|
static const char big_key_alg_name[] = "gcm(aes)";
|
|
|
|
/*
|
|
* Crypto algorithms for big_key data authenticated encryption
|
|
*/
|
|
static struct crypto_aead *big_key_aead;
|
|
|
|
/*
|
|
* Since changing the key affects the entire object, we need a mutex.
|
|
*/
|
|
static DEFINE_MUTEX(big_key_aead_lock);
|
|
|
|
/*
|
|
* Encrypt/decrypt big_key data
|
|
*/
|
|
static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
|
|
{
|
|
int ret;
|
|
struct scatterlist sgio;
|
|
struct aead_request *aead_req;
|
|
/* We always use a zero nonce. The reason we can get away with this is
|
|
* because we're using a different randomly generated key for every
|
|
* different encryption. Notably, too, key_type_big_key doesn't define
|
|
* an .update function, so there's no chance we'll wind up reusing the
|
|
* key to encrypt updated data. Simply put: one key, one encryption.
|
|
*/
|
|
u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
|
|
|
|
aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
|
|
if (!aead_req)
|
|
return -ENOMEM;
|
|
|
|
memset(zero_nonce, 0, sizeof(zero_nonce));
|
|
sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0));
|
|
aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce);
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
aead_request_set_ad(aead_req, 0);
|
|
|
|
mutex_lock(&big_key_aead_lock);
|
|
if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
|
|
ret = -EAGAIN;
|
|
goto error;
|
|
}
|
|
if (op == BIG_KEY_ENC)
|
|
ret = crypto_aead_encrypt(aead_req);
|
|
else
|
|
ret = crypto_aead_decrypt(aead_req);
|
|
error:
|
|
mutex_unlock(&big_key_aead_lock);
|
|
aead_request_free(aead_req);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Preparse a big key
|
|
*/
|
|
int big_key_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
struct path *path = (struct path *)&prep->payload.data[big_key_path];
|
|
struct file *file;
|
|
u8 *enckey;
|
|
u8 *data = NULL;
|
|
ssize_t written;
|
|
size_t datalen = prep->datalen;
|
|
int ret;
|
|
|
|
ret = -EINVAL;
|
|
if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
|
|
goto error;
|
|
|
|
/* Set an arbitrary quota */
|
|
prep->quotalen = 16;
|
|
|
|
prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
/* Create a shmem file to store the data in. This will permit the data
|
|
* to be swapped out if needed.
|
|
*
|
|
* File content is stored encrypted with randomly generated key.
|
|
*/
|
|
size_t enclen = datalen + ENC_AUTHTAG_SIZE;
|
|
loff_t pos = 0;
|
|
|
|
data = kmalloc(enclen, GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
memcpy(data, prep->data, datalen);
|
|
|
|
/* generate random key */
|
|
enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
|
|
if (!enckey) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
|
|
if (unlikely(ret))
|
|
goto err_enckey;
|
|
|
|
/* encrypt aligned data */
|
|
ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey);
|
|
if (ret)
|
|
goto err_enckey;
|
|
|
|
/* save aligned data to file */
|
|
file = shmem_kernel_file_setup("", enclen, 0);
|
|
if (IS_ERR(file)) {
|
|
ret = PTR_ERR(file);
|
|
goto err_enckey;
|
|
}
|
|
|
|
written = kernel_write(file, data, enclen, &pos);
|
|
if (written != enclen) {
|
|
ret = written;
|
|
if (written >= 0)
|
|
ret = -ENOMEM;
|
|
goto err_fput;
|
|
}
|
|
|
|
/* Pin the mount and dentry to the key so that we can open it again
|
|
* later
|
|
*/
|
|
prep->payload.data[big_key_data] = enckey;
|
|
*path = file->f_path;
|
|
path_get(path);
|
|
fput(file);
|
|
kzfree(data);
|
|
} else {
|
|
/* Just store the data in a buffer */
|
|
void *data = kmalloc(datalen, GFP_KERNEL);
|
|
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
prep->payload.data[big_key_data] = data;
|
|
memcpy(data, prep->data, prep->datalen);
|
|
}
|
|
return 0;
|
|
|
|
err_fput:
|
|
fput(file);
|
|
err_enckey:
|
|
kzfree(enckey);
|
|
error:
|
|
kzfree(data);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clear preparsement.
|
|
*/
|
|
void big_key_free_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct path *path = (struct path *)&prep->payload.data[big_key_path];
|
|
|
|
path_put(path);
|
|
}
|
|
kzfree(prep->payload.data[big_key_data]);
|
|
}
|
|
|
|
/*
|
|
* dispose of the links from a revoked keyring
|
|
* - called with the key sem write-locked
|
|
*/
|
|
void big_key_revoke(struct key *key)
|
|
{
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
|
|
/* clear the quota */
|
|
key_payload_reserve(key, 0);
|
|
if (key_is_positive(key) &&
|
|
(size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
|
|
vfs_truncate(path, 0);
|
|
}
|
|
|
|
/*
|
|
* dispose of the data dangling from the corpse of a big_key key
|
|
*/
|
|
void big_key_destroy(struct key *key)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
|
|
path_put(path);
|
|
path->mnt = NULL;
|
|
path->dentry = NULL;
|
|
}
|
|
kzfree(key->payload.data[big_key_data]);
|
|
key->payload.data[big_key_data] = NULL;
|
|
}
|
|
|
|
/*
|
|
* describe the big_key key
|
|
*/
|
|
void big_key_describe(const struct key *key, struct seq_file *m)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
|
|
seq_puts(m, key->description);
|
|
|
|
if (key_is_positive(key))
|
|
seq_printf(m, ": %zu [%s]",
|
|
datalen,
|
|
datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
|
|
}
|
|
|
|
/*
|
|
* read the key data
|
|
* - the key's semaphore is read-locked
|
|
*/
|
|
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
|
|
{
|
|
size_t datalen = (size_t)key->payload.data[big_key_len];
|
|
long ret;
|
|
|
|
if (!buffer || buflen < datalen)
|
|
return datalen;
|
|
|
|
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
|
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
|
struct file *file;
|
|
u8 *data;
|
|
u8 *enckey = (u8 *)key->payload.data[big_key_data];
|
|
size_t enclen = datalen + ENC_AUTHTAG_SIZE;
|
|
loff_t pos = 0;
|
|
|
|
data = kmalloc(enclen, GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
file = dentry_open(path, O_RDONLY, current_cred());
|
|
if (IS_ERR(file)) {
|
|
ret = PTR_ERR(file);
|
|
goto error;
|
|
}
|
|
|
|
/* read file to kernel and decrypt */
|
|
ret = kernel_read(file, data, enclen, &pos);
|
|
if (ret >= 0 && ret != enclen) {
|
|
ret = -EIO;
|
|
goto err_fput;
|
|
}
|
|
|
|
ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey);
|
|
if (ret)
|
|
goto err_fput;
|
|
|
|
ret = datalen;
|
|
|
|
/* copy decrypted data to user */
|
|
if (copy_to_user(buffer, data, datalen) != 0)
|
|
ret = -EFAULT;
|
|
|
|
err_fput:
|
|
fput(file);
|
|
error:
|
|
kzfree(data);
|
|
} else {
|
|
ret = datalen;
|
|
if (copy_to_user(buffer, key->payload.data[big_key_data],
|
|
datalen) != 0)
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Register key type
|
|
*/
|
|
static int __init big_key_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* init block cipher */
|
|
big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(big_key_aead)) {
|
|
ret = PTR_ERR(big_key_aead);
|
|
pr_err("Can't alloc crypto: %d\n", ret);
|
|
return ret;
|
|
}
|
|
ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
|
|
if (ret < 0) {
|
|
pr_err("Can't set crypto auth tag len: %d\n", ret);
|
|
goto free_aead;
|
|
}
|
|
|
|
ret = register_key_type(&key_type_big_key);
|
|
if (ret < 0) {
|
|
pr_err("Can't register type: %d\n", ret);
|
|
goto free_aead;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_aead:
|
|
crypto_free_aead(big_key_aead);
|
|
return ret;
|
|
}
|
|
|
|
late_initcall(big_key_init);
|