mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 22:31:32 +00:00
f1bca824da
consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1924 lines
52 KiB
C
1924 lines
52 KiB
C
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/filter.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/file.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
/* bpf_check() is a static code analyzer that walks eBPF program
|
|
* instruction by instruction and updates register/stack state.
|
|
* All paths of conditional branches are analyzed until 'bpf_exit' insn.
|
|
*
|
|
* The first pass is depth-first-search to check that the program is a DAG.
|
|
* It rejects the following programs:
|
|
* - larger than BPF_MAXINSNS insns
|
|
* - if loop is present (detected via back-edge)
|
|
* - unreachable insns exist (shouldn't be a forest. program = one function)
|
|
* - out of bounds or malformed jumps
|
|
* The second pass is all possible path descent from the 1st insn.
|
|
* Since it's analyzing all pathes through the program, the length of the
|
|
* analysis is limited to 32k insn, which may be hit even if total number of
|
|
* insn is less then 4K, but there are too many branches that change stack/regs.
|
|
* Number of 'branches to be analyzed' is limited to 1k
|
|
*
|
|
* On entry to each instruction, each register has a type, and the instruction
|
|
* changes the types of the registers depending on instruction semantics.
|
|
* If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
|
|
* copied to R1.
|
|
*
|
|
* All registers are 64-bit.
|
|
* R0 - return register
|
|
* R1-R5 argument passing registers
|
|
* R6-R9 callee saved registers
|
|
* R10 - frame pointer read-only
|
|
*
|
|
* At the start of BPF program the register R1 contains a pointer to bpf_context
|
|
* and has type PTR_TO_CTX.
|
|
*
|
|
* Verifier tracks arithmetic operations on pointers in case:
|
|
* BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
|
|
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
|
|
* 1st insn copies R10 (which has FRAME_PTR) type into R1
|
|
* and 2nd arithmetic instruction is pattern matched to recognize
|
|
* that it wants to construct a pointer to some element within stack.
|
|
* So after 2nd insn, the register R1 has type PTR_TO_STACK
|
|
* (and -20 constant is saved for further stack bounds checking).
|
|
* Meaning that this reg is a pointer to stack plus known immediate constant.
|
|
*
|
|
* Most of the time the registers have UNKNOWN_VALUE type, which
|
|
* means the register has some value, but it's not a valid pointer.
|
|
* (like pointer plus pointer becomes UNKNOWN_VALUE type)
|
|
*
|
|
* When verifier sees load or store instructions the type of base register
|
|
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
|
|
* types recognized by check_mem_access() function.
|
|
*
|
|
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
|
|
* and the range of [ptr, ptr + map's value_size) is accessible.
|
|
*
|
|
* registers used to pass values to function calls are checked against
|
|
* function argument constraints.
|
|
*
|
|
* ARG_PTR_TO_MAP_KEY is one of such argument constraints.
|
|
* It means that the register type passed to this function must be
|
|
* PTR_TO_STACK and it will be used inside the function as
|
|
* 'pointer to map element key'
|
|
*
|
|
* For example the argument constraints for bpf_map_lookup_elem():
|
|
* .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
|
|
* .arg1_type = ARG_CONST_MAP_PTR,
|
|
* .arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
*
|
|
* ret_type says that this function returns 'pointer to map elem value or null'
|
|
* function expects 1st argument to be a const pointer to 'struct bpf_map' and
|
|
* 2nd argument should be a pointer to stack, which will be used inside
|
|
* the helper function as a pointer to map element key.
|
|
*
|
|
* On the kernel side the helper function looks like:
|
|
* u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
|
|
* {
|
|
* struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
|
|
* void *key = (void *) (unsigned long) r2;
|
|
* void *value;
|
|
*
|
|
* here kernel can access 'key' and 'map' pointers safely, knowing that
|
|
* [key, key + map->key_size) bytes are valid and were initialized on
|
|
* the stack of eBPF program.
|
|
* }
|
|
*
|
|
* Corresponding eBPF program may look like:
|
|
* BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
|
|
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
|
|
* BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
|
|
* BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
|
|
* here verifier looks at prototype of map_lookup_elem() and sees:
|
|
* .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
|
|
* Now verifier knows that this map has key of R1->map_ptr->key_size bytes
|
|
*
|
|
* Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
|
|
* Now verifier checks that [R2, R2 + map's key_size) are within stack limits
|
|
* and were initialized prior to this call.
|
|
* If it's ok, then verifier allows this BPF_CALL insn and looks at
|
|
* .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
|
|
* R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
|
|
* returns ether pointer to map value or NULL.
|
|
*
|
|
* When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
|
|
* insn, the register holding that pointer in the true branch changes state to
|
|
* PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
|
|
* branch. See check_cond_jmp_op().
|
|
*
|
|
* After the call R0 is set to return type of the function and registers R1-R5
|
|
* are set to NOT_INIT to indicate that they are no longer readable.
|
|
*/
|
|
|
|
/* types of values stored in eBPF registers */
|
|
enum bpf_reg_type {
|
|
NOT_INIT = 0, /* nothing was written into register */
|
|
UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
|
|
PTR_TO_CTX, /* reg points to bpf_context */
|
|
CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
|
|
PTR_TO_MAP_VALUE, /* reg points to map element value */
|
|
PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
|
|
FRAME_PTR, /* reg == frame_pointer */
|
|
PTR_TO_STACK, /* reg == frame_pointer + imm */
|
|
CONST_IMM, /* constant integer value */
|
|
};
|
|
|
|
struct reg_state {
|
|
enum bpf_reg_type type;
|
|
union {
|
|
/* valid when type == CONST_IMM | PTR_TO_STACK */
|
|
int imm;
|
|
|
|
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
|
|
* PTR_TO_MAP_VALUE_OR_NULL
|
|
*/
|
|
struct bpf_map *map_ptr;
|
|
};
|
|
};
|
|
|
|
enum bpf_stack_slot_type {
|
|
STACK_INVALID, /* nothing was stored in this stack slot */
|
|
STACK_SPILL, /* 1st byte of register spilled into stack */
|
|
STACK_SPILL_PART, /* other 7 bytes of register spill */
|
|
STACK_MISC /* BPF program wrote some data into this slot */
|
|
};
|
|
|
|
struct bpf_stack_slot {
|
|
enum bpf_stack_slot_type stype;
|
|
struct reg_state reg_st;
|
|
};
|
|
|
|
/* state of the program:
|
|
* type of all registers and stack info
|
|
*/
|
|
struct verifier_state {
|
|
struct reg_state regs[MAX_BPF_REG];
|
|
struct bpf_stack_slot stack[MAX_BPF_STACK];
|
|
};
|
|
|
|
/* linked list of verifier states used to prune search */
|
|
struct verifier_state_list {
|
|
struct verifier_state state;
|
|
struct verifier_state_list *next;
|
|
};
|
|
|
|
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
|
|
struct verifier_stack_elem {
|
|
/* verifer state is 'st'
|
|
* before processing instruction 'insn_idx'
|
|
* and after processing instruction 'prev_insn_idx'
|
|
*/
|
|
struct verifier_state st;
|
|
int insn_idx;
|
|
int prev_insn_idx;
|
|
struct verifier_stack_elem *next;
|
|
};
|
|
|
|
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
|
|
|
|
/* single container for all structs
|
|
* one verifier_env per bpf_check() call
|
|
*/
|
|
struct verifier_env {
|
|
struct bpf_prog *prog; /* eBPF program being verified */
|
|
struct verifier_stack_elem *head; /* stack of verifier states to be processed */
|
|
int stack_size; /* number of states to be processed */
|
|
struct verifier_state cur_state; /* current verifier state */
|
|
struct verifier_state_list **explored_states; /* search pruning optimization */
|
|
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
|
|
u32 used_map_cnt; /* number of used maps */
|
|
};
|
|
|
|
/* verbose verifier prints what it's seeing
|
|
* bpf_check() is called under lock, so no race to access these global vars
|
|
*/
|
|
static u32 log_level, log_size, log_len;
|
|
static char *log_buf;
|
|
|
|
static DEFINE_MUTEX(bpf_verifier_lock);
|
|
|
|
/* log_level controls verbosity level of eBPF verifier.
|
|
* verbose() is used to dump the verification trace to the log, so the user
|
|
* can figure out what's wrong with the program
|
|
*/
|
|
static void verbose(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (log_level == 0 || log_len >= log_size - 1)
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
/* string representation of 'enum bpf_reg_type' */
|
|
static const char * const reg_type_str[] = {
|
|
[NOT_INIT] = "?",
|
|
[UNKNOWN_VALUE] = "inv",
|
|
[PTR_TO_CTX] = "ctx",
|
|
[CONST_PTR_TO_MAP] = "map_ptr",
|
|
[PTR_TO_MAP_VALUE] = "map_value",
|
|
[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
|
|
[FRAME_PTR] = "fp",
|
|
[PTR_TO_STACK] = "fp",
|
|
[CONST_IMM] = "imm",
|
|
};
|
|
|
|
static void print_verifier_state(struct verifier_env *env)
|
|
{
|
|
enum bpf_reg_type t;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++) {
|
|
t = env->cur_state.regs[i].type;
|
|
if (t == NOT_INIT)
|
|
continue;
|
|
verbose(" R%d=%s", i, reg_type_str[t]);
|
|
if (t == CONST_IMM || t == PTR_TO_STACK)
|
|
verbose("%d", env->cur_state.regs[i].imm);
|
|
else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
|
|
t == PTR_TO_MAP_VALUE_OR_NULL)
|
|
verbose("(ks=%d,vs=%d)",
|
|
env->cur_state.regs[i].map_ptr->key_size,
|
|
env->cur_state.regs[i].map_ptr->value_size);
|
|
}
|
|
for (i = 0; i < MAX_BPF_STACK; i++) {
|
|
if (env->cur_state.stack[i].stype == STACK_SPILL)
|
|
verbose(" fp%d=%s", -MAX_BPF_STACK + i,
|
|
reg_type_str[env->cur_state.stack[i].reg_st.type]);
|
|
}
|
|
verbose("\n");
|
|
}
|
|
|
|
static const char *const bpf_class_string[] = {
|
|
[BPF_LD] = "ld",
|
|
[BPF_LDX] = "ldx",
|
|
[BPF_ST] = "st",
|
|
[BPF_STX] = "stx",
|
|
[BPF_ALU] = "alu",
|
|
[BPF_JMP] = "jmp",
|
|
[BPF_RET] = "BUG",
|
|
[BPF_ALU64] = "alu64",
|
|
};
|
|
|
|
static const char *const bpf_alu_string[] = {
|
|
[BPF_ADD >> 4] = "+=",
|
|
[BPF_SUB >> 4] = "-=",
|
|
[BPF_MUL >> 4] = "*=",
|
|
[BPF_DIV >> 4] = "/=",
|
|
[BPF_OR >> 4] = "|=",
|
|
[BPF_AND >> 4] = "&=",
|
|
[BPF_LSH >> 4] = "<<=",
|
|
[BPF_RSH >> 4] = ">>=",
|
|
[BPF_NEG >> 4] = "neg",
|
|
[BPF_MOD >> 4] = "%=",
|
|
[BPF_XOR >> 4] = "^=",
|
|
[BPF_MOV >> 4] = "=",
|
|
[BPF_ARSH >> 4] = "s>>=",
|
|
[BPF_END >> 4] = "endian",
|
|
};
|
|
|
|
static const char *const bpf_ldst_string[] = {
|
|
[BPF_W >> 3] = "u32",
|
|
[BPF_H >> 3] = "u16",
|
|
[BPF_B >> 3] = "u8",
|
|
[BPF_DW >> 3] = "u64",
|
|
};
|
|
|
|
static const char *const bpf_jmp_string[] = {
|
|
[BPF_JA >> 4] = "jmp",
|
|
[BPF_JEQ >> 4] = "==",
|
|
[BPF_JGT >> 4] = ">",
|
|
[BPF_JGE >> 4] = ">=",
|
|
[BPF_JSET >> 4] = "&",
|
|
[BPF_JNE >> 4] = "!=",
|
|
[BPF_JSGT >> 4] = "s>",
|
|
[BPF_JSGE >> 4] = "s>=",
|
|
[BPF_CALL >> 4] = "call",
|
|
[BPF_EXIT >> 4] = "exit",
|
|
};
|
|
|
|
static void print_bpf_insn(struct bpf_insn *insn)
|
|
{
|
|
u8 class = BPF_CLASS(insn->code);
|
|
|
|
if (class == BPF_ALU || class == BPF_ALU64) {
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
|
verbose("(%02x) %sr%d %s %sr%d\n",
|
|
insn->code, class == BPF_ALU ? "(u32) " : "",
|
|
insn->dst_reg,
|
|
bpf_alu_string[BPF_OP(insn->code) >> 4],
|
|
class == BPF_ALU ? "(u32) " : "",
|
|
insn->src_reg);
|
|
else
|
|
verbose("(%02x) %sr%d %s %s%d\n",
|
|
insn->code, class == BPF_ALU ? "(u32) " : "",
|
|
insn->dst_reg,
|
|
bpf_alu_string[BPF_OP(insn->code) >> 4],
|
|
class == BPF_ALU ? "(u32) " : "",
|
|
insn->imm);
|
|
} else if (class == BPF_STX) {
|
|
if (BPF_MODE(insn->code) == BPF_MEM)
|
|
verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
|
|
insn->code,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->dst_reg,
|
|
insn->off, insn->src_reg);
|
|
else if (BPF_MODE(insn->code) == BPF_XADD)
|
|
verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
|
|
insn->code,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->dst_reg, insn->off,
|
|
insn->src_reg);
|
|
else
|
|
verbose("BUG_%02x\n", insn->code);
|
|
} else if (class == BPF_ST) {
|
|
if (BPF_MODE(insn->code) != BPF_MEM) {
|
|
verbose("BUG_st_%02x\n", insn->code);
|
|
return;
|
|
}
|
|
verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
|
|
insn->code,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->dst_reg,
|
|
insn->off, insn->imm);
|
|
} else if (class == BPF_LDX) {
|
|
if (BPF_MODE(insn->code) != BPF_MEM) {
|
|
verbose("BUG_ldx_%02x\n", insn->code);
|
|
return;
|
|
}
|
|
verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
|
|
insn->code, insn->dst_reg,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->src_reg, insn->off);
|
|
} else if (class == BPF_LD) {
|
|
if (BPF_MODE(insn->code) == BPF_ABS) {
|
|
verbose("(%02x) r0 = *(%s *)skb[%d]\n",
|
|
insn->code,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->imm);
|
|
} else if (BPF_MODE(insn->code) == BPF_IND) {
|
|
verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
|
|
insn->code,
|
|
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
insn->src_reg, insn->imm);
|
|
} else if (BPF_MODE(insn->code) == BPF_IMM) {
|
|
verbose("(%02x) r%d = 0x%x\n",
|
|
insn->code, insn->dst_reg, insn->imm);
|
|
} else {
|
|
verbose("BUG_ld_%02x\n", insn->code);
|
|
return;
|
|
}
|
|
} else if (class == BPF_JMP) {
|
|
u8 opcode = BPF_OP(insn->code);
|
|
|
|
if (opcode == BPF_CALL) {
|
|
verbose("(%02x) call %d\n", insn->code, insn->imm);
|
|
} else if (insn->code == (BPF_JMP | BPF_JA)) {
|
|
verbose("(%02x) goto pc%+d\n",
|
|
insn->code, insn->off);
|
|
} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
|
|
verbose("(%02x) exit\n", insn->code);
|
|
} else if (BPF_SRC(insn->code) == BPF_X) {
|
|
verbose("(%02x) if r%d %s r%d goto pc%+d\n",
|
|
insn->code, insn->dst_reg,
|
|
bpf_jmp_string[BPF_OP(insn->code) >> 4],
|
|
insn->src_reg, insn->off);
|
|
} else {
|
|
verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
|
|
insn->code, insn->dst_reg,
|
|
bpf_jmp_string[BPF_OP(insn->code) >> 4],
|
|
insn->imm, insn->off);
|
|
}
|
|
} else {
|
|
verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
|
|
}
|
|
}
|
|
|
|
static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
|
|
{
|
|
struct verifier_stack_elem *elem;
|
|
int insn_idx;
|
|
|
|
if (env->head == NULL)
|
|
return -1;
|
|
|
|
memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
|
|
insn_idx = env->head->insn_idx;
|
|
if (prev_insn_idx)
|
|
*prev_insn_idx = env->head->prev_insn_idx;
|
|
elem = env->head->next;
|
|
kfree(env->head);
|
|
env->head = elem;
|
|
env->stack_size--;
|
|
return insn_idx;
|
|
}
|
|
|
|
static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
|
|
int prev_insn_idx)
|
|
{
|
|
struct verifier_stack_elem *elem;
|
|
|
|
elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
|
|
if (!elem)
|
|
goto err;
|
|
|
|
memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
|
|
elem->insn_idx = insn_idx;
|
|
elem->prev_insn_idx = prev_insn_idx;
|
|
elem->next = env->head;
|
|
env->head = elem;
|
|
env->stack_size++;
|
|
if (env->stack_size > 1024) {
|
|
verbose("BPF program is too complex\n");
|
|
goto err;
|
|
}
|
|
return &elem->st;
|
|
err:
|
|
/* pop all elements and return */
|
|
while (pop_stack(env, NULL) >= 0);
|
|
return NULL;
|
|
}
|
|
|
|
#define CALLER_SAVED_REGS 6
|
|
static const int caller_saved[CALLER_SAVED_REGS] = {
|
|
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
|
|
};
|
|
|
|
static void init_reg_state(struct reg_state *regs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++) {
|
|
regs[i].type = NOT_INIT;
|
|
regs[i].imm = 0;
|
|
regs[i].map_ptr = NULL;
|
|
}
|
|
|
|
/* frame pointer */
|
|
regs[BPF_REG_FP].type = FRAME_PTR;
|
|
|
|
/* 1st arg to a function */
|
|
regs[BPF_REG_1].type = PTR_TO_CTX;
|
|
}
|
|
|
|
static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
|
|
{
|
|
BUG_ON(regno >= MAX_BPF_REG);
|
|
regs[regno].type = UNKNOWN_VALUE;
|
|
regs[regno].imm = 0;
|
|
regs[regno].map_ptr = NULL;
|
|
}
|
|
|
|
enum reg_arg_type {
|
|
SRC_OP, /* register is used as source operand */
|
|
DST_OP, /* register is used as destination operand */
|
|
DST_OP_NO_MARK /* same as above, check only, don't mark */
|
|
};
|
|
|
|
static int check_reg_arg(struct reg_state *regs, u32 regno,
|
|
enum reg_arg_type t)
|
|
{
|
|
if (regno >= MAX_BPF_REG) {
|
|
verbose("R%d is invalid\n", regno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t == SRC_OP) {
|
|
/* check whether register used as source operand can be read */
|
|
if (regs[regno].type == NOT_INIT) {
|
|
verbose("R%d !read_ok\n", regno);
|
|
return -EACCES;
|
|
}
|
|
} else {
|
|
/* check whether register used as dest operand can be written to */
|
|
if (regno == BPF_REG_FP) {
|
|
verbose("frame pointer is read only\n");
|
|
return -EACCES;
|
|
}
|
|
if (t == DST_OP)
|
|
mark_reg_unknown_value(regs, regno);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bpf_size_to_bytes(int bpf_size)
|
|
{
|
|
if (bpf_size == BPF_W)
|
|
return 4;
|
|
else if (bpf_size == BPF_H)
|
|
return 2;
|
|
else if (bpf_size == BPF_B)
|
|
return 1;
|
|
else if (bpf_size == BPF_DW)
|
|
return 8;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check_stack_read/write functions track spill/fill of registers,
|
|
* stack boundary and alignment are checked in check_mem_access()
|
|
*/
|
|
static int check_stack_write(struct verifier_state *state, int off, int size,
|
|
int value_regno)
|
|
{
|
|
struct bpf_stack_slot *slot;
|
|
int i;
|
|
|
|
if (value_regno >= 0 &&
|
|
(state->regs[value_regno].type == PTR_TO_MAP_VALUE ||
|
|
state->regs[value_regno].type == PTR_TO_STACK ||
|
|
state->regs[value_regno].type == PTR_TO_CTX)) {
|
|
|
|
/* register containing pointer is being spilled into stack */
|
|
if (size != 8) {
|
|
verbose("invalid size of register spill\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
slot = &state->stack[MAX_BPF_STACK + off];
|
|
slot->stype = STACK_SPILL;
|
|
/* save register state */
|
|
slot->reg_st = state->regs[value_regno];
|
|
for (i = 1; i < 8; i++) {
|
|
slot = &state->stack[MAX_BPF_STACK + off + i];
|
|
slot->stype = STACK_SPILL_PART;
|
|
slot->reg_st.type = UNKNOWN_VALUE;
|
|
slot->reg_st.map_ptr = NULL;
|
|
}
|
|
} else {
|
|
|
|
/* regular write of data into stack */
|
|
for (i = 0; i < size; i++) {
|
|
slot = &state->stack[MAX_BPF_STACK + off + i];
|
|
slot->stype = STACK_MISC;
|
|
slot->reg_st.type = UNKNOWN_VALUE;
|
|
slot->reg_st.map_ptr = NULL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_stack_read(struct verifier_state *state, int off, int size,
|
|
int value_regno)
|
|
{
|
|
int i;
|
|
struct bpf_stack_slot *slot;
|
|
|
|
slot = &state->stack[MAX_BPF_STACK + off];
|
|
|
|
if (slot->stype == STACK_SPILL) {
|
|
if (size != 8) {
|
|
verbose("invalid size of register spill\n");
|
|
return -EACCES;
|
|
}
|
|
for (i = 1; i < 8; i++) {
|
|
if (state->stack[MAX_BPF_STACK + off + i].stype !=
|
|
STACK_SPILL_PART) {
|
|
verbose("corrupted spill memory\n");
|
|
return -EACCES;
|
|
}
|
|
}
|
|
|
|
if (value_regno >= 0)
|
|
/* restore register state from stack */
|
|
state->regs[value_regno] = slot->reg_st;
|
|
return 0;
|
|
} else {
|
|
for (i = 0; i < size; i++) {
|
|
if (state->stack[MAX_BPF_STACK + off + i].stype !=
|
|
STACK_MISC) {
|
|
verbose("invalid read from stack off %d+%d size %d\n",
|
|
off, i, size);
|
|
return -EACCES;
|
|
}
|
|
}
|
|
if (value_regno >= 0)
|
|
/* have read misc data from the stack */
|
|
mark_reg_unknown_value(state->regs, value_regno);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* check read/write into map element returned by bpf_map_lookup_elem() */
|
|
static int check_map_access(struct verifier_env *env, u32 regno, int off,
|
|
int size)
|
|
{
|
|
struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
|
|
|
|
if (off < 0 || off + size > map->value_size) {
|
|
verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
|
|
map->value_size, off, size);
|
|
return -EACCES;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* check access to 'struct bpf_context' fields */
|
|
static int check_ctx_access(struct verifier_env *env, int off, int size,
|
|
enum bpf_access_type t)
|
|
{
|
|
if (env->prog->aux->ops->is_valid_access &&
|
|
env->prog->aux->ops->is_valid_access(off, size, t))
|
|
return 0;
|
|
|
|
verbose("invalid bpf_context access off=%d size=%d\n", off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check whether memory at (regno + off) is accessible for t = (read | write)
|
|
* if t==write, value_regno is a register which value is stored into memory
|
|
* if t==read, value_regno is a register which will receive the value from memory
|
|
* if t==write && value_regno==-1, some unknown value is stored into memory
|
|
* if t==read && value_regno==-1, don't care what we read from memory
|
|
*/
|
|
static int check_mem_access(struct verifier_env *env, u32 regno, int off,
|
|
int bpf_size, enum bpf_access_type t,
|
|
int value_regno)
|
|
{
|
|
struct verifier_state *state = &env->cur_state;
|
|
int size, err = 0;
|
|
|
|
size = bpf_size_to_bytes(bpf_size);
|
|
if (size < 0)
|
|
return size;
|
|
|
|
if (off % size != 0) {
|
|
verbose("misaligned access off %d size %d\n", off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
|
|
err = check_map_access(env, regno, off, size);
|
|
if (!err && t == BPF_READ && value_regno >= 0)
|
|
mark_reg_unknown_value(state->regs, value_regno);
|
|
|
|
} else if (state->regs[regno].type == PTR_TO_CTX) {
|
|
err = check_ctx_access(env, off, size, t);
|
|
if (!err && t == BPF_READ && value_regno >= 0)
|
|
mark_reg_unknown_value(state->regs, value_regno);
|
|
|
|
} else if (state->regs[regno].type == FRAME_PTR) {
|
|
if (off >= 0 || off < -MAX_BPF_STACK) {
|
|
verbose("invalid stack off=%d size=%d\n", off, size);
|
|
return -EACCES;
|
|
}
|
|
if (t == BPF_WRITE)
|
|
err = check_stack_write(state, off, size, value_regno);
|
|
else
|
|
err = check_stack_read(state, off, size, value_regno);
|
|
} else {
|
|
verbose("R%d invalid mem access '%s'\n",
|
|
regno, reg_type_str[state->regs[regno].type]);
|
|
return -EACCES;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
struct reg_state *regs = env->cur_state.regs;
|
|
int err;
|
|
|
|
if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
|
|
insn->imm != 0) {
|
|
verbose("BPF_XADD uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src1 operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check whether atomic_add can read the memory */
|
|
err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_READ, -1);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check whether atomic_add can write into the same memory */
|
|
return check_mem_access(env, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_WRITE, -1);
|
|
}
|
|
|
|
/* when register 'regno' is passed into function that will read 'access_size'
|
|
* bytes from that pointer, make sure that it's within stack boundary
|
|
* and all elements of stack are initialized
|
|
*/
|
|
static int check_stack_boundary(struct verifier_env *env,
|
|
int regno, int access_size)
|
|
{
|
|
struct verifier_state *state = &env->cur_state;
|
|
struct reg_state *regs = state->regs;
|
|
int off, i;
|
|
|
|
if (regs[regno].type != PTR_TO_STACK)
|
|
return -EACCES;
|
|
|
|
off = regs[regno].imm;
|
|
if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
|
|
access_size <= 0) {
|
|
verbose("invalid stack type R%d off=%d access_size=%d\n",
|
|
regno, off, access_size);
|
|
return -EACCES;
|
|
}
|
|
|
|
for (i = 0; i < access_size; i++) {
|
|
if (state->stack[MAX_BPF_STACK + off + i].stype != STACK_MISC) {
|
|
verbose("invalid indirect read from stack off %d+%d size %d\n",
|
|
off, i, access_size);
|
|
return -EACCES;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_func_arg(struct verifier_env *env, u32 regno,
|
|
enum bpf_arg_type arg_type, struct bpf_map **mapp)
|
|
{
|
|
struct reg_state *reg = env->cur_state.regs + regno;
|
|
enum bpf_reg_type expected_type;
|
|
int err = 0;
|
|
|
|
if (arg_type == ARG_ANYTHING)
|
|
return 0;
|
|
|
|
if (reg->type == NOT_INIT) {
|
|
verbose("R%d !read_ok\n", regno);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
|
|
arg_type == ARG_PTR_TO_MAP_VALUE) {
|
|
expected_type = PTR_TO_STACK;
|
|
} else if (arg_type == ARG_CONST_STACK_SIZE) {
|
|
expected_type = CONST_IMM;
|
|
} else if (arg_type == ARG_CONST_MAP_PTR) {
|
|
expected_type = CONST_PTR_TO_MAP;
|
|
} else {
|
|
verbose("unsupported arg_type %d\n", arg_type);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (reg->type != expected_type) {
|
|
verbose("R%d type=%s expected=%s\n", regno,
|
|
reg_type_str[reg->type], reg_type_str[expected_type]);
|
|
return -EACCES;
|
|
}
|
|
|
|
if (arg_type == ARG_CONST_MAP_PTR) {
|
|
/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
|
|
*mapp = reg->map_ptr;
|
|
|
|
} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
|
|
/* bpf_map_xxx(..., map_ptr, ..., key) call:
|
|
* check that [key, key + map->key_size) are within
|
|
* stack limits and initialized
|
|
*/
|
|
if (!*mapp) {
|
|
/* in function declaration map_ptr must come before
|
|
* map_key, so that it's verified and known before
|
|
* we have to check map_key here. Otherwise it means
|
|
* that kernel subsystem misconfigured verifier
|
|
*/
|
|
verbose("invalid map_ptr to access map->key\n");
|
|
return -EACCES;
|
|
}
|
|
err = check_stack_boundary(env, regno, (*mapp)->key_size);
|
|
|
|
} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
|
|
/* bpf_map_xxx(..., map_ptr, ..., value) call:
|
|
* check [value, value + map->value_size) validity
|
|
*/
|
|
if (!*mapp) {
|
|
/* kernel subsystem misconfigured verifier */
|
|
verbose("invalid map_ptr to access map->value\n");
|
|
return -EACCES;
|
|
}
|
|
err = check_stack_boundary(env, regno, (*mapp)->value_size);
|
|
|
|
} else if (arg_type == ARG_CONST_STACK_SIZE) {
|
|
/* bpf_xxx(..., buf, len) call will access 'len' bytes
|
|
* from stack pointer 'buf'. Check it
|
|
* note: regno == len, regno - 1 == buf
|
|
*/
|
|
if (regno == 0) {
|
|
/* kernel subsystem misconfigured verifier */
|
|
verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
|
|
return -EACCES;
|
|
}
|
|
err = check_stack_boundary(env, regno - 1, reg->imm);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int check_call(struct verifier_env *env, int func_id)
|
|
{
|
|
struct verifier_state *state = &env->cur_state;
|
|
const struct bpf_func_proto *fn = NULL;
|
|
struct reg_state *regs = state->regs;
|
|
struct bpf_map *map = NULL;
|
|
struct reg_state *reg;
|
|
int i, err;
|
|
|
|
/* find function prototype */
|
|
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
|
|
verbose("invalid func %d\n", func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->prog->aux->ops->get_func_proto)
|
|
fn = env->prog->aux->ops->get_func_proto(func_id);
|
|
|
|
if (!fn) {
|
|
verbose("unknown func %d\n", func_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* eBPF programs must be GPL compatible to use GPL-ed functions */
|
|
if (!env->prog->aux->is_gpl_compatible && fn->gpl_only) {
|
|
verbose("cannot call GPL only function from proprietary program\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check args */
|
|
err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
|
|
if (err)
|
|
return err;
|
|
err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
|
|
if (err)
|
|
return err;
|
|
err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
|
|
if (err)
|
|
return err;
|
|
err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
|
|
if (err)
|
|
return err;
|
|
err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
|
|
if (err)
|
|
return err;
|
|
|
|
/* reset caller saved regs */
|
|
for (i = 0; i < CALLER_SAVED_REGS; i++) {
|
|
reg = regs + caller_saved[i];
|
|
reg->type = NOT_INIT;
|
|
reg->imm = 0;
|
|
}
|
|
|
|
/* update return register */
|
|
if (fn->ret_type == RET_INTEGER) {
|
|
regs[BPF_REG_0].type = UNKNOWN_VALUE;
|
|
} else if (fn->ret_type == RET_VOID) {
|
|
regs[BPF_REG_0].type = NOT_INIT;
|
|
} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
|
|
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
|
|
/* remember map_ptr, so that check_map_access()
|
|
* can check 'value_size' boundary of memory access
|
|
* to map element returned from bpf_map_lookup_elem()
|
|
*/
|
|
if (map == NULL) {
|
|
verbose("kernel subsystem misconfigured verifier\n");
|
|
return -EINVAL;
|
|
}
|
|
regs[BPF_REG_0].map_ptr = map;
|
|
} else {
|
|
verbose("unknown return type %d of func %d\n",
|
|
fn->ret_type, func_id);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* check validity of 32-bit and 64-bit arithmetic operations */
|
|
static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn)
|
|
{
|
|
u8 opcode = BPF_OP(insn->code);
|
|
int err;
|
|
|
|
if (opcode == BPF_END || opcode == BPF_NEG) {
|
|
if (opcode == BPF_NEG) {
|
|
if (BPF_SRC(insn->code) != 0 ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->off != 0 || insn->imm != 0) {
|
|
verbose("BPF_NEG uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
|
|
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
|
|
verbose("BPF_END uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check dest operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (opcode == BPF_MOV) {
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0 || insn->off != 0) {
|
|
verbose("BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
|
|
verbose("BPF_MOV uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check dest operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64) {
|
|
/* case: R1 = R2
|
|
* copy register state to dest reg
|
|
*/
|
|
regs[insn->dst_reg] = regs[insn->src_reg];
|
|
} else {
|
|
regs[insn->dst_reg].type = UNKNOWN_VALUE;
|
|
regs[insn->dst_reg].map_ptr = NULL;
|
|
}
|
|
} else {
|
|
/* case: R = imm
|
|
* remember the value we stored into this reg
|
|
*/
|
|
regs[insn->dst_reg].type = CONST_IMM;
|
|
regs[insn->dst_reg].imm = insn->imm;
|
|
}
|
|
|
|
} else if (opcode > BPF_END) {
|
|
verbose("invalid BPF_ALU opcode %x\n", opcode);
|
|
return -EINVAL;
|
|
|
|
} else { /* all other ALU ops: and, sub, xor, add, ... */
|
|
|
|
bool stack_relative = false;
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0 || insn->off != 0) {
|
|
verbose("BPF_ALU uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src1 operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
|
|
verbose("BPF_ALU uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
|
|
BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
|
|
verbose("div by zero\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* pattern match 'bpf_add Rx, imm' instruction */
|
|
if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
|
|
regs[insn->dst_reg].type == FRAME_PTR &&
|
|
BPF_SRC(insn->code) == BPF_K)
|
|
stack_relative = true;
|
|
|
|
/* check dest operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (stack_relative) {
|
|
regs[insn->dst_reg].type = PTR_TO_STACK;
|
|
regs[insn->dst_reg].imm = insn->imm;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_cond_jmp_op(struct verifier_env *env,
|
|
struct bpf_insn *insn, int *insn_idx)
|
|
{
|
|
struct reg_state *regs = env->cur_state.regs;
|
|
struct verifier_state *other_branch;
|
|
u8 opcode = BPF_OP(insn->code);
|
|
int err;
|
|
|
|
if (opcode > BPF_EXIT) {
|
|
verbose("invalid BPF_JMP opcode %x\n", opcode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (insn->imm != 0) {
|
|
verbose("BPF_JMP uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check src1 operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
if (insn->src_reg != BPF_REG_0) {
|
|
verbose("BPF_JMP uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* check src2 operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* detect if R == 0 where R was initialized to zero earlier */
|
|
if (BPF_SRC(insn->code) == BPF_K &&
|
|
(opcode == BPF_JEQ || opcode == BPF_JNE) &&
|
|
regs[insn->dst_reg].type == CONST_IMM &&
|
|
regs[insn->dst_reg].imm == insn->imm) {
|
|
if (opcode == BPF_JEQ) {
|
|
/* if (imm == imm) goto pc+off;
|
|
* only follow the goto, ignore fall-through
|
|
*/
|
|
*insn_idx += insn->off;
|
|
return 0;
|
|
} else {
|
|
/* if (imm != imm) goto pc+off;
|
|
* only follow fall-through branch, since
|
|
* that's where the program will go
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
|
|
if (!other_branch)
|
|
return -EFAULT;
|
|
|
|
/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
|
|
if (BPF_SRC(insn->code) == BPF_K &&
|
|
insn->imm == 0 && (opcode == BPF_JEQ ||
|
|
opcode == BPF_JNE) &&
|
|
regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
|
|
if (opcode == BPF_JEQ) {
|
|
/* next fallthrough insn can access memory via
|
|
* this register
|
|
*/
|
|
regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
|
|
/* branch targer cannot access it, since reg == 0 */
|
|
other_branch->regs[insn->dst_reg].type = CONST_IMM;
|
|
other_branch->regs[insn->dst_reg].imm = 0;
|
|
} else {
|
|
other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
|
|
regs[insn->dst_reg].type = CONST_IMM;
|
|
regs[insn->dst_reg].imm = 0;
|
|
}
|
|
} else if (BPF_SRC(insn->code) == BPF_K &&
|
|
(opcode == BPF_JEQ || opcode == BPF_JNE)) {
|
|
|
|
if (opcode == BPF_JEQ) {
|
|
/* detect if (R == imm) goto
|
|
* and in the target state recognize that R = imm
|
|
*/
|
|
other_branch->regs[insn->dst_reg].type = CONST_IMM;
|
|
other_branch->regs[insn->dst_reg].imm = insn->imm;
|
|
} else {
|
|
/* detect if (R != imm) goto
|
|
* and in the fall-through state recognize that R = imm
|
|
*/
|
|
regs[insn->dst_reg].type = CONST_IMM;
|
|
regs[insn->dst_reg].imm = insn->imm;
|
|
}
|
|
}
|
|
if (log_level)
|
|
print_verifier_state(env);
|
|
return 0;
|
|
}
|
|
|
|
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
|
|
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
|
|
{
|
|
u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
|
|
|
|
return (struct bpf_map *) (unsigned long) imm64;
|
|
}
|
|
|
|
/* verify BPF_LD_IMM64 instruction */
|
|
static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
|
|
{
|
|
struct reg_state *regs = env->cur_state.regs;
|
|
int err;
|
|
|
|
if (BPF_SIZE(insn->code) != BPF_DW) {
|
|
verbose("invalid BPF_LD_IMM insn\n");
|
|
return -EINVAL;
|
|
}
|
|
if (insn->off != 0) {
|
|
verbose("BPF_LD_IMM64 uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
if (insn->src_reg == 0)
|
|
/* generic move 64-bit immediate into a register */
|
|
return 0;
|
|
|
|
/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
|
|
BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
|
|
|
|
regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
|
|
regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
|
|
return 0;
|
|
}
|
|
|
|
/* non-recursive DFS pseudo code
|
|
* 1 procedure DFS-iterative(G,v):
|
|
* 2 label v as discovered
|
|
* 3 let S be a stack
|
|
* 4 S.push(v)
|
|
* 5 while S is not empty
|
|
* 6 t <- S.pop()
|
|
* 7 if t is what we're looking for:
|
|
* 8 return t
|
|
* 9 for all edges e in G.adjacentEdges(t) do
|
|
* 10 if edge e is already labelled
|
|
* 11 continue with the next edge
|
|
* 12 w <- G.adjacentVertex(t,e)
|
|
* 13 if vertex w is not discovered and not explored
|
|
* 14 label e as tree-edge
|
|
* 15 label w as discovered
|
|
* 16 S.push(w)
|
|
* 17 continue at 5
|
|
* 18 else if vertex w is discovered
|
|
* 19 label e as back-edge
|
|
* 20 else
|
|
* 21 // vertex w is explored
|
|
* 22 label e as forward- or cross-edge
|
|
* 23 label t as explored
|
|
* 24 S.pop()
|
|
*
|
|
* convention:
|
|
* 0x10 - discovered
|
|
* 0x11 - discovered and fall-through edge labelled
|
|
* 0x12 - discovered and fall-through and branch edges labelled
|
|
* 0x20 - explored
|
|
*/
|
|
|
|
enum {
|
|
DISCOVERED = 0x10,
|
|
EXPLORED = 0x20,
|
|
FALLTHROUGH = 1,
|
|
BRANCH = 2,
|
|
};
|
|
|
|
#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
|
|
|
|
static int *insn_stack; /* stack of insns to process */
|
|
static int cur_stack; /* current stack index */
|
|
static int *insn_state;
|
|
|
|
/* t, w, e - match pseudo-code above:
|
|
* t - index of current instruction
|
|
* w - next instruction
|
|
* e - edge
|
|
*/
|
|
static int push_insn(int t, int w, int e, struct verifier_env *env)
|
|
{
|
|
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
|
|
return 0;
|
|
|
|
if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
|
|
return 0;
|
|
|
|
if (w < 0 || w >= env->prog->len) {
|
|
verbose("jump out of range from insn %d to %d\n", t, w);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (e == BRANCH)
|
|
/* mark branch target for state pruning */
|
|
env->explored_states[w] = STATE_LIST_MARK;
|
|
|
|
if (insn_state[w] == 0) {
|
|
/* tree-edge */
|
|
insn_state[t] = DISCOVERED | e;
|
|
insn_state[w] = DISCOVERED;
|
|
if (cur_stack >= env->prog->len)
|
|
return -E2BIG;
|
|
insn_stack[cur_stack++] = w;
|
|
return 1;
|
|
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
|
|
verbose("back-edge from insn %d to %d\n", t, w);
|
|
return -EINVAL;
|
|
} else if (insn_state[w] == EXPLORED) {
|
|
/* forward- or cross-edge */
|
|
insn_state[t] = DISCOVERED | e;
|
|
} else {
|
|
verbose("insn state internal bug\n");
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* non-recursive depth-first-search to detect loops in BPF program
|
|
* loop == back-edge in directed graph
|
|
*/
|
|
static int check_cfg(struct verifier_env *env)
|
|
{
|
|
struct bpf_insn *insns = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int ret = 0;
|
|
int i, t;
|
|
|
|
insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
if (!insn_state)
|
|
return -ENOMEM;
|
|
|
|
insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
if (!insn_stack) {
|
|
kfree(insn_state);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
|
|
insn_stack[0] = 0; /* 0 is the first instruction */
|
|
cur_stack = 1;
|
|
|
|
peek_stack:
|
|
if (cur_stack == 0)
|
|
goto check_state;
|
|
t = insn_stack[cur_stack - 1];
|
|
|
|
if (BPF_CLASS(insns[t].code) == BPF_JMP) {
|
|
u8 opcode = BPF_OP(insns[t].code);
|
|
|
|
if (opcode == BPF_EXIT) {
|
|
goto mark_explored;
|
|
} else if (opcode == BPF_CALL) {
|
|
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
if (ret == 1)
|
|
goto peek_stack;
|
|
else if (ret < 0)
|
|
goto err_free;
|
|
} else if (opcode == BPF_JA) {
|
|
if (BPF_SRC(insns[t].code) != BPF_K) {
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
/* unconditional jump with single edge */
|
|
ret = push_insn(t, t + insns[t].off + 1,
|
|
FALLTHROUGH, env);
|
|
if (ret == 1)
|
|
goto peek_stack;
|
|
else if (ret < 0)
|
|
goto err_free;
|
|
/* tell verifier to check for equivalent states
|
|
* after every call and jump
|
|
*/
|
|
env->explored_states[t + 1] = STATE_LIST_MARK;
|
|
} else {
|
|
/* conditional jump with two edges */
|
|
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
if (ret == 1)
|
|
goto peek_stack;
|
|
else if (ret < 0)
|
|
goto err_free;
|
|
|
|
ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
|
|
if (ret == 1)
|
|
goto peek_stack;
|
|
else if (ret < 0)
|
|
goto err_free;
|
|
}
|
|
} else {
|
|
/* all other non-branch instructions with single
|
|
* fall-through edge
|
|
*/
|
|
ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
if (ret == 1)
|
|
goto peek_stack;
|
|
else if (ret < 0)
|
|
goto err_free;
|
|
}
|
|
|
|
mark_explored:
|
|
insn_state[t] = EXPLORED;
|
|
if (cur_stack-- <= 0) {
|
|
verbose("pop stack internal bug\n");
|
|
ret = -EFAULT;
|
|
goto err_free;
|
|
}
|
|
goto peek_stack;
|
|
|
|
check_state:
|
|
for (i = 0; i < insn_cnt; i++) {
|
|
if (insn_state[i] != EXPLORED) {
|
|
verbose("unreachable insn %d\n", i);
|
|
ret = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
}
|
|
ret = 0; /* cfg looks good */
|
|
|
|
err_free:
|
|
kfree(insn_state);
|
|
kfree(insn_stack);
|
|
return ret;
|
|
}
|
|
|
|
/* compare two verifier states
|
|
*
|
|
* all states stored in state_list are known to be valid, since
|
|
* verifier reached 'bpf_exit' instruction through them
|
|
*
|
|
* this function is called when verifier exploring different branches of
|
|
* execution popped from the state stack. If it sees an old state that has
|
|
* more strict register state and more strict stack state then this execution
|
|
* branch doesn't need to be explored further, since verifier already
|
|
* concluded that more strict state leads to valid finish.
|
|
*
|
|
* Therefore two states are equivalent if register state is more conservative
|
|
* and explored stack state is more conservative than the current one.
|
|
* Example:
|
|
* explored current
|
|
* (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
|
|
* (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
|
|
*
|
|
* In other words if current stack state (one being explored) has more
|
|
* valid slots than old one that already passed validation, it means
|
|
* the verifier can stop exploring and conclude that current state is valid too
|
|
*
|
|
* Similarly with registers. If explored state has register type as invalid
|
|
* whereas register type in current state is meaningful, it means that
|
|
* the current state will reach 'bpf_exit' instruction safely
|
|
*/
|
|
static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_BPF_REG; i++) {
|
|
if (memcmp(&old->regs[i], &cur->regs[i],
|
|
sizeof(old->regs[0])) != 0) {
|
|
if (old->regs[i].type == NOT_INIT ||
|
|
old->regs[i].type == UNKNOWN_VALUE)
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < MAX_BPF_STACK; i++) {
|
|
if (memcmp(&old->stack[i], &cur->stack[i],
|
|
sizeof(old->stack[0])) != 0) {
|
|
if (old->stack[i].stype == STACK_INVALID)
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int is_state_visited(struct verifier_env *env, int insn_idx)
|
|
{
|
|
struct verifier_state_list *new_sl;
|
|
struct verifier_state_list *sl;
|
|
|
|
sl = env->explored_states[insn_idx];
|
|
if (!sl)
|
|
/* this 'insn_idx' instruction wasn't marked, so we will not
|
|
* be doing state search here
|
|
*/
|
|
return 0;
|
|
|
|
while (sl != STATE_LIST_MARK) {
|
|
if (states_equal(&sl->state, &env->cur_state))
|
|
/* reached equivalent register/stack state,
|
|
* prune the search
|
|
*/
|
|
return 1;
|
|
sl = sl->next;
|
|
}
|
|
|
|
/* there were no equivalent states, remember current one.
|
|
* technically the current state is not proven to be safe yet,
|
|
* but it will either reach bpf_exit (which means it's safe) or
|
|
* it will be rejected. Since there are no loops, we won't be
|
|
* seeing this 'insn_idx' instruction again on the way to bpf_exit
|
|
*/
|
|
new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
|
|
if (!new_sl)
|
|
return -ENOMEM;
|
|
|
|
/* add new state to the head of linked list */
|
|
memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
|
|
new_sl->next = env->explored_states[insn_idx];
|
|
env->explored_states[insn_idx] = new_sl;
|
|
return 0;
|
|
}
|
|
|
|
static int do_check(struct verifier_env *env)
|
|
{
|
|
struct verifier_state *state = &env->cur_state;
|
|
struct bpf_insn *insns = env->prog->insnsi;
|
|
struct reg_state *regs = state->regs;
|
|
int insn_cnt = env->prog->len;
|
|
int insn_idx, prev_insn_idx = 0;
|
|
int insn_processed = 0;
|
|
bool do_print_state = false;
|
|
|
|
init_reg_state(regs);
|
|
insn_idx = 0;
|
|
for (;;) {
|
|
struct bpf_insn *insn;
|
|
u8 class;
|
|
int err;
|
|
|
|
if (insn_idx >= insn_cnt) {
|
|
verbose("invalid insn idx %d insn_cnt %d\n",
|
|
insn_idx, insn_cnt);
|
|
return -EFAULT;
|
|
}
|
|
|
|
insn = &insns[insn_idx];
|
|
class = BPF_CLASS(insn->code);
|
|
|
|
if (++insn_processed > 32768) {
|
|
verbose("BPF program is too large. Proccessed %d insn\n",
|
|
insn_processed);
|
|
return -E2BIG;
|
|
}
|
|
|
|
err = is_state_visited(env, insn_idx);
|
|
if (err < 0)
|
|
return err;
|
|
if (err == 1) {
|
|
/* found equivalent state, can prune the search */
|
|
if (log_level) {
|
|
if (do_print_state)
|
|
verbose("\nfrom %d to %d: safe\n",
|
|
prev_insn_idx, insn_idx);
|
|
else
|
|
verbose("%d: safe\n", insn_idx);
|
|
}
|
|
goto process_bpf_exit;
|
|
}
|
|
|
|
if (log_level && do_print_state) {
|
|
verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
|
|
print_verifier_state(env);
|
|
do_print_state = false;
|
|
}
|
|
|
|
if (log_level) {
|
|
verbose("%d: ", insn_idx);
|
|
print_bpf_insn(insn);
|
|
}
|
|
|
|
if (class == BPF_ALU || class == BPF_ALU64) {
|
|
err = check_alu_op(regs, insn);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (class == BPF_LDX) {
|
|
if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
insn->imm != 0) {
|
|
verbose("BPF_LDX uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check that memory (src_reg + off) is readable,
|
|
* the state of dst_reg will be updated by this func
|
|
*/
|
|
err = check_mem_access(env, insn->src_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_READ,
|
|
insn->dst_reg);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (class == BPF_STX) {
|
|
if (BPF_MODE(insn->code) == BPF_XADD) {
|
|
err = check_xadd(env, insn);
|
|
if (err)
|
|
return err;
|
|
insn_idx++;
|
|
continue;
|
|
}
|
|
|
|
if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
insn->imm != 0) {
|
|
verbose("BPF_STX uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src1 operand */
|
|
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
/* check src2 operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check that memory (dst_reg + off) is writeable */
|
|
err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_WRITE,
|
|
insn->src_reg);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (class == BPF_ST) {
|
|
if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
insn->src_reg != BPF_REG_0) {
|
|
verbose("BPF_ST uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
/* check src operand */
|
|
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
/* check that memory (dst_reg + off) is writeable */
|
|
err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
BPF_SIZE(insn->code), BPF_WRITE,
|
|
-1);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (class == BPF_JMP) {
|
|
u8 opcode = BPF_OP(insn->code);
|
|
|
|
if (opcode == BPF_CALL) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->off != 0 ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->dst_reg != BPF_REG_0) {
|
|
verbose("BPF_CALL uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = check_call(env, insn->imm);
|
|
if (err)
|
|
return err;
|
|
|
|
} else if (opcode == BPF_JA) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->imm != 0 ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->dst_reg != BPF_REG_0) {
|
|
verbose("BPF_JA uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
insn_idx += insn->off + 1;
|
|
continue;
|
|
|
|
} else if (opcode == BPF_EXIT) {
|
|
if (BPF_SRC(insn->code) != BPF_K ||
|
|
insn->imm != 0 ||
|
|
insn->src_reg != BPF_REG_0 ||
|
|
insn->dst_reg != BPF_REG_0) {
|
|
verbose("BPF_EXIT uses reserved fields\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* eBPF calling convetion is such that R0 is used
|
|
* to return the value from eBPF program.
|
|
* Make sure that it's readable at this time
|
|
* of bpf_exit, which means that program wrote
|
|
* something into it earlier
|
|
*/
|
|
err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
|
|
if (err)
|
|
return err;
|
|
|
|
process_bpf_exit:
|
|
insn_idx = pop_stack(env, &prev_insn_idx);
|
|
if (insn_idx < 0) {
|
|
break;
|
|
} else {
|
|
do_print_state = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
err = check_cond_jmp_op(env, insn, &insn_idx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
} else if (class == BPF_LD) {
|
|
u8 mode = BPF_MODE(insn->code);
|
|
|
|
if (mode == BPF_ABS || mode == BPF_IND) {
|
|
verbose("LD_ABS is not supported yet\n");
|
|
return -EINVAL;
|
|
} else if (mode == BPF_IMM) {
|
|
err = check_ld_imm(env, insn);
|
|
if (err)
|
|
return err;
|
|
|
|
insn_idx++;
|
|
} else {
|
|
verbose("invalid BPF_LD mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
verbose("unknown insn class %d\n", class);
|
|
return -EINVAL;
|
|
}
|
|
|
|
insn_idx++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* look for pseudo eBPF instructions that access map FDs and
|
|
* replace them with actual map pointers
|
|
*/
|
|
static int replace_map_fd_with_map_ptr(struct verifier_env *env)
|
|
{
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int i, j;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
|
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
|
|
struct bpf_map *map;
|
|
struct fd f;
|
|
|
|
if (i == insn_cnt - 1 || insn[1].code != 0 ||
|
|
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
|
|
insn[1].off != 0) {
|
|
verbose("invalid bpf_ld_imm64 insn\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (insn->src_reg == 0)
|
|
/* valid generic load 64-bit imm */
|
|
goto next_insn;
|
|
|
|
if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
|
|
verbose("unrecognized bpf_ld_imm64 insn\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
f = fdget(insn->imm);
|
|
|
|
map = bpf_map_get(f);
|
|
if (IS_ERR(map)) {
|
|
verbose("fd %d is not pointing to valid bpf_map\n",
|
|
insn->imm);
|
|
fdput(f);
|
|
return PTR_ERR(map);
|
|
}
|
|
|
|
/* store map pointer inside BPF_LD_IMM64 instruction */
|
|
insn[0].imm = (u32) (unsigned long) map;
|
|
insn[1].imm = ((u64) (unsigned long) map) >> 32;
|
|
|
|
/* check whether we recorded this map already */
|
|
for (j = 0; j < env->used_map_cnt; j++)
|
|
if (env->used_maps[j] == map) {
|
|
fdput(f);
|
|
goto next_insn;
|
|
}
|
|
|
|
if (env->used_map_cnt >= MAX_USED_MAPS) {
|
|
fdput(f);
|
|
return -E2BIG;
|
|
}
|
|
|
|
/* remember this map */
|
|
env->used_maps[env->used_map_cnt++] = map;
|
|
|
|
/* hold the map. If the program is rejected by verifier,
|
|
* the map will be released by release_maps() or it
|
|
* will be used by the valid program until it's unloaded
|
|
* and all maps are released in free_bpf_prog_info()
|
|
*/
|
|
atomic_inc(&map->refcnt);
|
|
|
|
fdput(f);
|
|
next_insn:
|
|
insn++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* now all pseudo BPF_LD_IMM64 instructions load valid
|
|
* 'struct bpf_map *' into a register instead of user map_fd.
|
|
* These pointers will be used later by verifier to validate map access.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* drop refcnt of maps used by the rejected program */
|
|
static void release_maps(struct verifier_env *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < env->used_map_cnt; i++)
|
|
bpf_map_put(env->used_maps[i]);
|
|
}
|
|
|
|
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
|
|
static void convert_pseudo_ld_imm64(struct verifier_env *env)
|
|
{
|
|
struct bpf_insn *insn = env->prog->insnsi;
|
|
int insn_cnt = env->prog->len;
|
|
int i;
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++)
|
|
if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
|
|
insn->src_reg = 0;
|
|
}
|
|
|
|
static void free_states(struct verifier_env *env)
|
|
{
|
|
struct verifier_state_list *sl, *sln;
|
|
int i;
|
|
|
|
if (!env->explored_states)
|
|
return;
|
|
|
|
for (i = 0; i < env->prog->len; i++) {
|
|
sl = env->explored_states[i];
|
|
|
|
if (sl)
|
|
while (sl != STATE_LIST_MARK) {
|
|
sln = sl->next;
|
|
kfree(sl);
|
|
sl = sln;
|
|
}
|
|
}
|
|
|
|
kfree(env->explored_states);
|
|
}
|
|
|
|
int bpf_check(struct bpf_prog *prog, union bpf_attr *attr)
|
|
{
|
|
char __user *log_ubuf = NULL;
|
|
struct verifier_env *env;
|
|
int ret = -EINVAL;
|
|
|
|
if (prog->len <= 0 || prog->len > BPF_MAXINSNS)
|
|
return -E2BIG;
|
|
|
|
/* 'struct verifier_env' can be global, but since it's not small,
|
|
* allocate/free it every time bpf_check() is called
|
|
*/
|
|
env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
|
|
if (!env)
|
|
return -ENOMEM;
|
|
|
|
env->prog = prog;
|
|
|
|
/* grab the mutex to protect few globals used by verifier */
|
|
mutex_lock(&bpf_verifier_lock);
|
|
|
|
if (attr->log_level || attr->log_buf || attr->log_size) {
|
|
/* user requested verbose verifier output
|
|
* and supplied buffer to store the verification trace
|
|
*/
|
|
log_level = attr->log_level;
|
|
log_ubuf = (char __user *) (unsigned long) attr->log_buf;
|
|
log_size = attr->log_size;
|
|
log_len = 0;
|
|
|
|
ret = -EINVAL;
|
|
/* log_* values have to be sane */
|
|
if (log_size < 128 || log_size > UINT_MAX >> 8 ||
|
|
log_level == 0 || log_ubuf == NULL)
|
|
goto free_env;
|
|
|
|
ret = -ENOMEM;
|
|
log_buf = vmalloc(log_size);
|
|
if (!log_buf)
|
|
goto free_env;
|
|
} else {
|
|
log_level = 0;
|
|
}
|
|
|
|
ret = replace_map_fd_with_map_ptr(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
env->explored_states = kcalloc(prog->len,
|
|
sizeof(struct verifier_state_list *),
|
|
GFP_USER);
|
|
ret = -ENOMEM;
|
|
if (!env->explored_states)
|
|
goto skip_full_check;
|
|
|
|
ret = check_cfg(env);
|
|
if (ret < 0)
|
|
goto skip_full_check;
|
|
|
|
ret = do_check(env);
|
|
|
|
skip_full_check:
|
|
while (pop_stack(env, NULL) >= 0);
|
|
free_states(env);
|
|
|
|
if (log_level && log_len >= log_size - 1) {
|
|
BUG_ON(log_len >= log_size);
|
|
/* verifier log exceeded user supplied buffer */
|
|
ret = -ENOSPC;
|
|
/* fall through to return what was recorded */
|
|
}
|
|
|
|
/* copy verifier log back to user space including trailing zero */
|
|
if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
|
|
ret = -EFAULT;
|
|
goto free_log_buf;
|
|
}
|
|
|
|
if (ret == 0 && env->used_map_cnt) {
|
|
/* if program passed verifier, update used_maps in bpf_prog_info */
|
|
prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
|
|
sizeof(env->used_maps[0]),
|
|
GFP_KERNEL);
|
|
|
|
if (!prog->aux->used_maps) {
|
|
ret = -ENOMEM;
|
|
goto free_log_buf;
|
|
}
|
|
|
|
memcpy(prog->aux->used_maps, env->used_maps,
|
|
sizeof(env->used_maps[0]) * env->used_map_cnt);
|
|
prog->aux->used_map_cnt = env->used_map_cnt;
|
|
|
|
/* program is valid. Convert pseudo bpf_ld_imm64 into generic
|
|
* bpf_ld_imm64 instructions
|
|
*/
|
|
convert_pseudo_ld_imm64(env);
|
|
}
|
|
|
|
free_log_buf:
|
|
if (log_level)
|
|
vfree(log_buf);
|
|
free_env:
|
|
if (!prog->aux->used_maps)
|
|
/* if we didn't copy map pointers into bpf_prog_info, release
|
|
* them now. Otherwise free_bpf_prog_info() will release them.
|
|
*/
|
|
release_maps(env);
|
|
kfree(env);
|
|
mutex_unlock(&bpf_verifier_lock);
|
|
return ret;
|
|
}
|