mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
3cc754c237
list_head can be initialized automatically with LIST_HEAD() instead of calling INIT_LIST_HEAD(). Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Tested-by: Charlie Jenkins <charlie@rivosinc.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240904013344.2026738-1-ruanjinjie@huawei.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
917 lines
25 KiB
C
917 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Copyright (C) 2017 Zihao Yu
|
|
*/
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/pgtable.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/sections.h>
|
|
|
|
struct used_bucket {
|
|
struct list_head head;
|
|
struct hlist_head *bucket;
|
|
};
|
|
|
|
struct relocation_head {
|
|
struct hlist_node node;
|
|
struct list_head *rel_entry;
|
|
void *location;
|
|
};
|
|
|
|
struct relocation_entry {
|
|
struct list_head head;
|
|
Elf_Addr value;
|
|
unsigned int type;
|
|
};
|
|
|
|
struct relocation_handlers {
|
|
int (*reloc_handler)(struct module *me, void *location, Elf_Addr v);
|
|
int (*accumulate_handler)(struct module *me, void *location,
|
|
long buffer);
|
|
};
|
|
|
|
/*
|
|
* The auipc+jalr instruction pair can reach any PC-relative offset
|
|
* in the range [-2^31 - 2^11, 2^31 - 2^11)
|
|
*/
|
|
static bool riscv_insn_valid_32bit_offset(ptrdiff_t val)
|
|
{
|
|
#ifdef CONFIG_32BIT
|
|
return true;
|
|
#else
|
|
return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11));
|
|
#endif
|
|
}
|
|
|
|
static int riscv_insn_rmw(void *location, u32 keep, u32 set)
|
|
{
|
|
__le16 *parcel = location;
|
|
u32 insn = (u32)le16_to_cpu(parcel[0]) | (u32)le16_to_cpu(parcel[1]) << 16;
|
|
|
|
insn &= keep;
|
|
insn |= set;
|
|
|
|
parcel[0] = cpu_to_le16(insn);
|
|
parcel[1] = cpu_to_le16(insn >> 16);
|
|
return 0;
|
|
}
|
|
|
|
static int riscv_insn_rvc_rmw(void *location, u16 keep, u16 set)
|
|
{
|
|
__le16 *parcel = location;
|
|
u16 insn = le16_to_cpu(*parcel);
|
|
|
|
insn &= keep;
|
|
insn |= set;
|
|
|
|
*parcel = cpu_to_le16(insn);
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_32_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
if (v != (u32)v) {
|
|
pr_err("%s: value %016llx out of range for 32-bit field\n",
|
|
me->name, (long long)v);
|
|
return -EINVAL;
|
|
}
|
|
*(u32 *)location = v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_64_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(u64 *)location = v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_branch_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u32 imm12 = (offset & 0x1000) << (31 - 12);
|
|
u32 imm11 = (offset & 0x800) >> (11 - 7);
|
|
u32 imm10_5 = (offset & 0x7e0) << (30 - 10);
|
|
u32 imm4_1 = (offset & 0x1e) << (11 - 4);
|
|
|
|
return riscv_insn_rmw(location, 0x1fff07f, imm12 | imm11 | imm10_5 | imm4_1);
|
|
}
|
|
|
|
static int apply_r_riscv_jal_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u32 imm20 = (offset & 0x100000) << (31 - 20);
|
|
u32 imm19_12 = (offset & 0xff000);
|
|
u32 imm11 = (offset & 0x800) << (20 - 11);
|
|
u32 imm10_1 = (offset & 0x7fe) << (30 - 10);
|
|
|
|
return riscv_insn_rmw(location, 0xfff, imm20 | imm19_12 | imm11 | imm10_1);
|
|
}
|
|
|
|
static int apply_r_riscv_rvc_branch_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u16 imm8 = (offset & 0x100) << (12 - 8);
|
|
u16 imm7_6 = (offset & 0xc0) >> (6 - 5);
|
|
u16 imm5 = (offset & 0x20) >> (5 - 2);
|
|
u16 imm4_3 = (offset & 0x18) << (12 - 5);
|
|
u16 imm2_1 = (offset & 0x6) << (12 - 10);
|
|
|
|
return riscv_insn_rvc_rmw(location, 0xe383,
|
|
imm8 | imm7_6 | imm5 | imm4_3 | imm2_1);
|
|
}
|
|
|
|
static int apply_r_riscv_rvc_jump_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u16 imm11 = (offset & 0x800) << (12 - 11);
|
|
u16 imm10 = (offset & 0x400) >> (10 - 8);
|
|
u16 imm9_8 = (offset & 0x300) << (12 - 11);
|
|
u16 imm7 = (offset & 0x80) >> (7 - 6);
|
|
u16 imm6 = (offset & 0x40) << (12 - 11);
|
|
u16 imm5 = (offset & 0x20) >> (5 - 2);
|
|
u16 imm4 = (offset & 0x10) << (12 - 5);
|
|
u16 imm3_1 = (offset & 0xe) << (12 - 10);
|
|
|
|
return riscv_insn_rvc_rmw(location, 0xe003,
|
|
imm11 | imm10 | imm9_8 | imm7 | imm6 | imm5 | imm4 | imm3_1);
|
|
}
|
|
|
|
static int apply_r_riscv_pcrel_hi20_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
|
|
if (!riscv_insn_valid_32bit_offset(offset)) {
|
|
pr_err(
|
|
"%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000);
|
|
}
|
|
|
|
static int apply_r_riscv_pcrel_lo12_i_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
/*
|
|
* v is the lo12 value to fill. It is calculated before calling this
|
|
* handler.
|
|
*/
|
|
return riscv_insn_rmw(location, 0xfffff, (v & 0xfff) << 20);
|
|
}
|
|
|
|
static int apply_r_riscv_pcrel_lo12_s_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
/*
|
|
* v is the lo12 value to fill. It is calculated before calling this
|
|
* handler.
|
|
*/
|
|
u32 imm11_5 = (v & 0xfe0) << (31 - 11);
|
|
u32 imm4_0 = (v & 0x1f) << (11 - 4);
|
|
|
|
return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0);
|
|
}
|
|
|
|
static int apply_r_riscv_hi20_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
if (IS_ENABLED(CONFIG_CMODEL_MEDLOW)) {
|
|
pr_err(
|
|
"%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return riscv_insn_rmw(location, 0xfff, ((s32)v + 0x800) & 0xfffff000);
|
|
}
|
|
|
|
static int apply_r_riscv_lo12_i_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
/* Skip medlow checking because of filtering by HI20 already */
|
|
s32 hi20 = ((s32)v + 0x800) & 0xfffff000;
|
|
s32 lo12 = ((s32)v - hi20);
|
|
|
|
return riscv_insn_rmw(location, 0xfffff, (lo12 & 0xfff) << 20);
|
|
}
|
|
|
|
static int apply_r_riscv_lo12_s_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
/* Skip medlow checking because of filtering by HI20 already */
|
|
s32 hi20 = ((s32)v + 0x800) & 0xfffff000;
|
|
s32 lo12 = ((s32)v - hi20);
|
|
u32 imm11_5 = (lo12 & 0xfe0) << (31 - 11);
|
|
u32 imm4_0 = (lo12 & 0x1f) << (11 - 4);
|
|
|
|
return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0);
|
|
}
|
|
|
|
static int apply_r_riscv_got_hi20_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
|
|
/* Always emit the got entry */
|
|
if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
|
|
offset = (void *)module_emit_got_entry(me, v) - location;
|
|
} else {
|
|
pr_err(
|
|
"%s: can not generate the GOT entry for symbol = %016llx from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000);
|
|
}
|
|
|
|
static int apply_r_riscv_call_plt_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u32 hi20, lo12;
|
|
|
|
if (!riscv_insn_valid_32bit_offset(offset)) {
|
|
/* Only emit the plt entry if offset over 32-bit range */
|
|
if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
|
|
offset = (void *)module_emit_plt_entry(me, v) - location;
|
|
} else {
|
|
pr_err(
|
|
"%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
hi20 = (offset + 0x800) & 0xfffff000;
|
|
lo12 = (offset - hi20) & 0xfff;
|
|
riscv_insn_rmw(location, 0xfff, hi20);
|
|
return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20);
|
|
}
|
|
|
|
static int apply_r_riscv_call_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
u32 hi20, lo12;
|
|
|
|
if (!riscv_insn_valid_32bit_offset(offset)) {
|
|
pr_err(
|
|
"%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hi20 = (offset + 0x800) & 0xfffff000;
|
|
lo12 = (offset - hi20) & 0xfff;
|
|
riscv_insn_rmw(location, 0xfff, hi20);
|
|
return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20);
|
|
}
|
|
|
|
static int apply_r_riscv_relax_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_align_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
pr_err(
|
|
"%s: The unexpected relocation type 'R_RISCV_ALIGN' from PC = %p\n",
|
|
me->name, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int apply_r_riscv_add8_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(u8 *)location += (u8)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_add16_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u16 *)location += (u16)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_add32_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u32 *)location += (u32)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_add64_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u64 *)location += (u64)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_sub8_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(u8 *)location -= (u8)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_sub16_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u16 *)location -= (u16)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_sub32_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u32 *)location -= (u32)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_sub64_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u64 *)location -= (u64)v;
|
|
return 0;
|
|
}
|
|
|
|
static int dynamic_linking_not_supported(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
pr_err("%s: Dynamic linking not supported in kernel modules PC = %p\n",
|
|
me->name, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int tls_not_supported(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
pr_err("%s: Thread local storage not supported in kernel modules PC = %p\n",
|
|
me->name, location);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int apply_r_riscv_sub6_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
u8 *byte = location;
|
|
u8 value = v;
|
|
|
|
*byte = (*byte - (value & 0x3f)) & 0x3f;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_set6_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
u8 *byte = location;
|
|
u8 value = v;
|
|
|
|
*byte = (*byte & 0xc0) | (value & 0x3f);
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_set8_rela(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(u8 *)location = (u8)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_set16_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u16 *)location = (u16)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_set32_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u32 *)location = (u32)v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_32_pcrel_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
*(u32 *)location = v - (uintptr_t)location;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_plt32_rela(struct module *me, void *location,
|
|
Elf_Addr v)
|
|
{
|
|
ptrdiff_t offset = (void *)v - location;
|
|
|
|
if (!riscv_insn_valid_32bit_offset(offset)) {
|
|
/* Only emit the plt entry if offset over 32-bit range */
|
|
if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
|
|
offset = (void *)module_emit_plt_entry(me, v) - location;
|
|
} else {
|
|
pr_err("%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
|
|
me->name, (long long)v, location);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
*(u32 *)location = (u32)offset;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_set_uleb128(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(long *)location = v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_riscv_sub_uleb128(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
*(long *)location -= v;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_6_bit_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
u8 *byte = location;
|
|
u8 value = buffer;
|
|
|
|
if (buffer > 0x3f) {
|
|
pr_err("%s: value %ld out of range for 6-bit relocation.\n",
|
|
me->name, buffer);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*byte = (*byte & 0xc0) | (value & 0x3f);
|
|
return 0;
|
|
}
|
|
|
|
static int apply_8_bit_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
if (buffer > U8_MAX) {
|
|
pr_err("%s: value %ld out of range for 8-bit relocation.\n",
|
|
me->name, buffer);
|
|
return -EINVAL;
|
|
}
|
|
*(u8 *)location = (u8)buffer;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_16_bit_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
if (buffer > U16_MAX) {
|
|
pr_err("%s: value %ld out of range for 16-bit relocation.\n",
|
|
me->name, buffer);
|
|
return -EINVAL;
|
|
}
|
|
*(u16 *)location = (u16)buffer;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_32_bit_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
if (buffer > U32_MAX) {
|
|
pr_err("%s: value %ld out of range for 32-bit relocation.\n",
|
|
me->name, buffer);
|
|
return -EINVAL;
|
|
}
|
|
*(u32 *)location = (u32)buffer;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_64_bit_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
*(u64 *)location = (u64)buffer;
|
|
return 0;
|
|
}
|
|
|
|
static int apply_uleb128_accumulation(struct module *me, void *location, long buffer)
|
|
{
|
|
/*
|
|
* ULEB128 is a variable length encoding. Encode the buffer into
|
|
* the ULEB128 data format.
|
|
*/
|
|
u8 *p = location;
|
|
|
|
while (buffer != 0) {
|
|
u8 value = buffer & 0x7f;
|
|
|
|
buffer >>= 7;
|
|
value |= (!!buffer) << 7;
|
|
|
|
*p++ = value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Relocations defined in the riscv-elf-psabi-doc.
|
|
* This handles static linking only.
|
|
*/
|
|
static const struct relocation_handlers reloc_handlers[] = {
|
|
[R_RISCV_32] = { .reloc_handler = apply_r_riscv_32_rela },
|
|
[R_RISCV_64] = { .reloc_handler = apply_r_riscv_64_rela },
|
|
[R_RISCV_RELATIVE] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_COPY] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_JUMP_SLOT] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_DTPMOD32] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_DTPMOD64] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_DTPREL32] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_DTPREL64] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_TPREL32] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_TLS_TPREL64] = { .reloc_handler = dynamic_linking_not_supported },
|
|
/* 12-15 undefined */
|
|
[R_RISCV_BRANCH] = { .reloc_handler = apply_r_riscv_branch_rela },
|
|
[R_RISCV_JAL] = { .reloc_handler = apply_r_riscv_jal_rela },
|
|
[R_RISCV_CALL] = { .reloc_handler = apply_r_riscv_call_rela },
|
|
[R_RISCV_CALL_PLT] = { .reloc_handler = apply_r_riscv_call_plt_rela },
|
|
[R_RISCV_GOT_HI20] = { .reloc_handler = apply_r_riscv_got_hi20_rela },
|
|
[R_RISCV_TLS_GOT_HI20] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_TLS_GD_HI20] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_PCREL_HI20] = { .reloc_handler = apply_r_riscv_pcrel_hi20_rela },
|
|
[R_RISCV_PCREL_LO12_I] = { .reloc_handler = apply_r_riscv_pcrel_lo12_i_rela },
|
|
[R_RISCV_PCREL_LO12_S] = { .reloc_handler = apply_r_riscv_pcrel_lo12_s_rela },
|
|
[R_RISCV_HI20] = { .reloc_handler = apply_r_riscv_hi20_rela },
|
|
[R_RISCV_LO12_I] = { .reloc_handler = apply_r_riscv_lo12_i_rela },
|
|
[R_RISCV_LO12_S] = { .reloc_handler = apply_r_riscv_lo12_s_rela },
|
|
[R_RISCV_TPREL_HI20] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_TPREL_LO12_I] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_TPREL_LO12_S] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_TPREL_ADD] = { .reloc_handler = tls_not_supported },
|
|
[R_RISCV_ADD8] = { .reloc_handler = apply_r_riscv_add8_rela,
|
|
.accumulate_handler = apply_8_bit_accumulation },
|
|
[R_RISCV_ADD16] = { .reloc_handler = apply_r_riscv_add16_rela,
|
|
.accumulate_handler = apply_16_bit_accumulation },
|
|
[R_RISCV_ADD32] = { .reloc_handler = apply_r_riscv_add32_rela,
|
|
.accumulate_handler = apply_32_bit_accumulation },
|
|
[R_RISCV_ADD64] = { .reloc_handler = apply_r_riscv_add64_rela,
|
|
.accumulate_handler = apply_64_bit_accumulation },
|
|
[R_RISCV_SUB8] = { .reloc_handler = apply_r_riscv_sub8_rela,
|
|
.accumulate_handler = apply_8_bit_accumulation },
|
|
[R_RISCV_SUB16] = { .reloc_handler = apply_r_riscv_sub16_rela,
|
|
.accumulate_handler = apply_16_bit_accumulation },
|
|
[R_RISCV_SUB32] = { .reloc_handler = apply_r_riscv_sub32_rela,
|
|
.accumulate_handler = apply_32_bit_accumulation },
|
|
[R_RISCV_SUB64] = { .reloc_handler = apply_r_riscv_sub64_rela,
|
|
.accumulate_handler = apply_64_bit_accumulation },
|
|
/* 41-42 reserved for future standard use */
|
|
[R_RISCV_ALIGN] = { .reloc_handler = apply_r_riscv_align_rela },
|
|
[R_RISCV_RVC_BRANCH] = { .reloc_handler = apply_r_riscv_rvc_branch_rela },
|
|
[R_RISCV_RVC_JUMP] = { .reloc_handler = apply_r_riscv_rvc_jump_rela },
|
|
/* 46-50 reserved for future standard use */
|
|
[R_RISCV_RELAX] = { .reloc_handler = apply_r_riscv_relax_rela },
|
|
[R_RISCV_SUB6] = { .reloc_handler = apply_r_riscv_sub6_rela,
|
|
.accumulate_handler = apply_6_bit_accumulation },
|
|
[R_RISCV_SET6] = { .reloc_handler = apply_r_riscv_set6_rela,
|
|
.accumulate_handler = apply_6_bit_accumulation },
|
|
[R_RISCV_SET8] = { .reloc_handler = apply_r_riscv_set8_rela,
|
|
.accumulate_handler = apply_8_bit_accumulation },
|
|
[R_RISCV_SET16] = { .reloc_handler = apply_r_riscv_set16_rela,
|
|
.accumulate_handler = apply_16_bit_accumulation },
|
|
[R_RISCV_SET32] = { .reloc_handler = apply_r_riscv_set32_rela,
|
|
.accumulate_handler = apply_32_bit_accumulation },
|
|
[R_RISCV_32_PCREL] = { .reloc_handler = apply_r_riscv_32_pcrel_rela },
|
|
[R_RISCV_IRELATIVE] = { .reloc_handler = dynamic_linking_not_supported },
|
|
[R_RISCV_PLT32] = { .reloc_handler = apply_r_riscv_plt32_rela },
|
|
[R_RISCV_SET_ULEB128] = { .reloc_handler = apply_r_riscv_set_uleb128,
|
|
.accumulate_handler = apply_uleb128_accumulation },
|
|
[R_RISCV_SUB_ULEB128] = { .reloc_handler = apply_r_riscv_sub_uleb128,
|
|
.accumulate_handler = apply_uleb128_accumulation },
|
|
/* 62-191 reserved for future standard use */
|
|
/* 192-255 nonstandard ABI extensions */
|
|
};
|
|
|
|
static void
|
|
process_accumulated_relocations(struct module *me,
|
|
struct hlist_head **relocation_hashtable,
|
|
struct list_head *used_buckets_list)
|
|
{
|
|
/*
|
|
* Only ADD/SUB/SET/ULEB128 should end up here.
|
|
*
|
|
* Each bucket may have more than one relocation location. All
|
|
* relocations for a location are stored in a list in a bucket.
|
|
*
|
|
* Relocations are applied to a temp variable before being stored to the
|
|
* provided location to check for overflow. This also allows ULEB128 to
|
|
* properly decide how many entries are needed before storing to
|
|
* location. The final value is stored into location using the handler
|
|
* for the last relocation to an address.
|
|
*
|
|
* Three layers of indexing:
|
|
* - Each of the buckets in use
|
|
* - Groups of relocations in each bucket by location address
|
|
* - Each relocation entry for a location address
|
|
*/
|
|
struct used_bucket *bucket_iter;
|
|
struct used_bucket *bucket_iter_tmp;
|
|
struct relocation_head *rel_head_iter;
|
|
struct hlist_node *rel_head_iter_tmp;
|
|
struct relocation_entry *rel_entry_iter;
|
|
struct relocation_entry *rel_entry_iter_tmp;
|
|
int curr_type;
|
|
void *location;
|
|
long buffer;
|
|
|
|
list_for_each_entry_safe(bucket_iter, bucket_iter_tmp,
|
|
used_buckets_list, head) {
|
|
hlist_for_each_entry_safe(rel_head_iter, rel_head_iter_tmp,
|
|
bucket_iter->bucket, node) {
|
|
buffer = 0;
|
|
location = rel_head_iter->location;
|
|
list_for_each_entry_safe(rel_entry_iter,
|
|
rel_entry_iter_tmp,
|
|
rel_head_iter->rel_entry,
|
|
head) {
|
|
curr_type = rel_entry_iter->type;
|
|
reloc_handlers[curr_type].reloc_handler(
|
|
me, &buffer, rel_entry_iter->value);
|
|
kfree(rel_entry_iter);
|
|
}
|
|
reloc_handlers[curr_type].accumulate_handler(
|
|
me, location, buffer);
|
|
kfree(rel_head_iter);
|
|
}
|
|
kfree(bucket_iter);
|
|
}
|
|
|
|
kfree(*relocation_hashtable);
|
|
}
|
|
|
|
static int add_relocation_to_accumulate(struct module *me, int type,
|
|
void *location,
|
|
unsigned int hashtable_bits, Elf_Addr v,
|
|
struct hlist_head *relocation_hashtable,
|
|
struct list_head *used_buckets_list)
|
|
{
|
|
struct relocation_entry *entry;
|
|
struct relocation_head *rel_head;
|
|
struct hlist_head *current_head;
|
|
struct used_bucket *bucket;
|
|
unsigned long hash;
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&entry->head);
|
|
entry->type = type;
|
|
entry->value = v;
|
|
|
|
hash = hash_min((uintptr_t)location, hashtable_bits);
|
|
|
|
current_head = &relocation_hashtable[hash];
|
|
|
|
/*
|
|
* Search for the relocation_head for the relocations that happen at the
|
|
* provided location
|
|
*/
|
|
bool found = false;
|
|
struct relocation_head *rel_head_iter;
|
|
|
|
hlist_for_each_entry(rel_head_iter, current_head, node) {
|
|
if (rel_head_iter->location == location) {
|
|
found = true;
|
|
rel_head = rel_head_iter;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there has not yet been any relocations at the provided location,
|
|
* create a relocation_head for that location and populate it with this
|
|
* relocation_entry.
|
|
*/
|
|
if (!found) {
|
|
rel_head = kmalloc(sizeof(*rel_head), GFP_KERNEL);
|
|
|
|
if (!rel_head) {
|
|
kfree(entry);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rel_head->rel_entry =
|
|
kmalloc(sizeof(struct list_head), GFP_KERNEL);
|
|
|
|
if (!rel_head->rel_entry) {
|
|
kfree(entry);
|
|
kfree(rel_head);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
INIT_LIST_HEAD(rel_head->rel_entry);
|
|
rel_head->location = location;
|
|
INIT_HLIST_NODE(&rel_head->node);
|
|
if (!current_head->first) {
|
|
bucket =
|
|
kmalloc(sizeof(struct used_bucket), GFP_KERNEL);
|
|
|
|
if (!bucket) {
|
|
kfree(entry);
|
|
kfree(rel_head->rel_entry);
|
|
kfree(rel_head);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&bucket->head);
|
|
bucket->bucket = current_head;
|
|
list_add(&bucket->head, used_buckets_list);
|
|
}
|
|
hlist_add_head(&rel_head->node, current_head);
|
|
}
|
|
|
|
/* Add relocation to head of discovered rel_head */
|
|
list_add_tail(&entry->head, rel_head->rel_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
initialize_relocation_hashtable(unsigned int num_relocations,
|
|
struct hlist_head **relocation_hashtable)
|
|
{
|
|
/* Can safely assume that bits is not greater than sizeof(long) */
|
|
unsigned long hashtable_size = roundup_pow_of_two(num_relocations);
|
|
/*
|
|
* When hashtable_size == 1, hashtable_bits == 0.
|
|
* This is valid because the hashing algorithm returns 0 in this case.
|
|
*/
|
|
unsigned int hashtable_bits = ilog2(hashtable_size);
|
|
|
|
/*
|
|
* Double size of hashtable if num_relocations * 1.25 is greater than
|
|
* hashtable_size.
|
|
*/
|
|
int should_double_size = ((num_relocations + (num_relocations >> 2)) > (hashtable_size));
|
|
|
|
hashtable_bits += should_double_size;
|
|
|
|
hashtable_size <<= should_double_size;
|
|
|
|
*relocation_hashtable = kmalloc_array(hashtable_size,
|
|
sizeof(**relocation_hashtable),
|
|
GFP_KERNEL);
|
|
if (!*relocation_hashtable)
|
|
return 0;
|
|
|
|
__hash_init(*relocation_hashtable, hashtable_size);
|
|
|
|
return hashtable_bits;
|
|
}
|
|
|
|
int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
|
|
unsigned int symindex, unsigned int relsec,
|
|
struct module *me)
|
|
{
|
|
Elf_Rela *rel = (void *) sechdrs[relsec].sh_addr;
|
|
int (*handler)(struct module *me, void *location, Elf_Addr v);
|
|
Elf_Sym *sym;
|
|
void *location;
|
|
unsigned int i, type;
|
|
unsigned int j_idx = 0;
|
|
Elf_Addr v;
|
|
int res;
|
|
unsigned int num_relocations = sechdrs[relsec].sh_size / sizeof(*rel);
|
|
struct hlist_head *relocation_hashtable;
|
|
unsigned int hashtable_bits;
|
|
LIST_HEAD(used_buckets_list);
|
|
|
|
hashtable_bits = initialize_relocation_hashtable(num_relocations,
|
|
&relocation_hashtable);
|
|
|
|
if (!relocation_hashtable)
|
|
return -ENOMEM;
|
|
|
|
pr_debug("Applying relocate section %u to %u\n", relsec,
|
|
sechdrs[relsec].sh_info);
|
|
|
|
for (i = 0; i < num_relocations; i++) {
|
|
/* This is where to make the change */
|
|
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
|
|
+ rel[i].r_offset;
|
|
/* This is the symbol it is referring to */
|
|
sym = (Elf_Sym *)sechdrs[symindex].sh_addr
|
|
+ ELF_RISCV_R_SYM(rel[i].r_info);
|
|
if (IS_ERR_VALUE(sym->st_value)) {
|
|
/* Ignore unresolved weak symbol */
|
|
if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
|
|
continue;
|
|
pr_warn("%s: Unknown symbol %s\n",
|
|
me->name, strtab + sym->st_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
type = ELF_RISCV_R_TYPE(rel[i].r_info);
|
|
|
|
if (type < ARRAY_SIZE(reloc_handlers))
|
|
handler = reloc_handlers[type].reloc_handler;
|
|
else
|
|
handler = NULL;
|
|
|
|
if (!handler) {
|
|
pr_err("%s: Unknown relocation type %u\n",
|
|
me->name, type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
v = sym->st_value + rel[i].r_addend;
|
|
|
|
if (type == R_RISCV_PCREL_LO12_I || type == R_RISCV_PCREL_LO12_S) {
|
|
unsigned int j = j_idx;
|
|
bool found = false;
|
|
|
|
do {
|
|
unsigned long hi20_loc =
|
|
sechdrs[sechdrs[relsec].sh_info].sh_addr
|
|
+ rel[j].r_offset;
|
|
u32 hi20_type = ELF_RISCV_R_TYPE(rel[j].r_info);
|
|
|
|
/* Find the corresponding HI20 relocation entry */
|
|
if (hi20_loc == sym->st_value
|
|
&& (hi20_type == R_RISCV_PCREL_HI20
|
|
|| hi20_type == R_RISCV_GOT_HI20)) {
|
|
s32 hi20, lo12;
|
|
Elf_Sym *hi20_sym =
|
|
(Elf_Sym *)sechdrs[symindex].sh_addr
|
|
+ ELF_RISCV_R_SYM(rel[j].r_info);
|
|
unsigned long hi20_sym_val =
|
|
hi20_sym->st_value
|
|
+ rel[j].r_addend;
|
|
|
|
/* Calculate lo12 */
|
|
size_t offset = hi20_sym_val - hi20_loc;
|
|
if (IS_ENABLED(CONFIG_MODULE_SECTIONS)
|
|
&& hi20_type == R_RISCV_GOT_HI20) {
|
|
offset = module_emit_got_entry(
|
|
me, hi20_sym_val);
|
|
offset = offset - hi20_loc;
|
|
}
|
|
hi20 = (offset + 0x800) & 0xfffff000;
|
|
lo12 = offset - hi20;
|
|
v = lo12;
|
|
found = true;
|
|
|
|
break;
|
|
}
|
|
|
|
j++;
|
|
if (j > sechdrs[relsec].sh_size / sizeof(*rel))
|
|
j = 0;
|
|
|
|
} while (j_idx != j);
|
|
|
|
if (!found) {
|
|
pr_err(
|
|
"%s: Can not find HI20 relocation information\n",
|
|
me->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Record the previous j-loop end index */
|
|
j_idx = j;
|
|
}
|
|
|
|
if (reloc_handlers[type].accumulate_handler)
|
|
res = add_relocation_to_accumulate(me, type, location,
|
|
hashtable_bits, v,
|
|
relocation_hashtable,
|
|
&used_buckets_list);
|
|
else
|
|
res = handler(me, location, v);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
process_accumulated_relocations(me, &relocation_hashtable,
|
|
&used_buckets_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int module_finalize(const Elf_Ehdr *hdr,
|
|
const Elf_Shdr *sechdrs,
|
|
struct module *me)
|
|
{
|
|
const Elf_Shdr *s;
|
|
|
|
s = find_section(hdr, sechdrs, ".alternative");
|
|
if (s)
|
|
apply_module_alternatives((void *)s->sh_addr, s->sh_size);
|
|
|
|
return 0;
|
|
}
|