mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
59dbee7d4d
When the WARN_ON_ONCE() triggers, the printk() of the additional information related to the warning will not happen in print level "warn". When reading dmesg with a restriction to level "warn", the information published by the printk_once() will not show up there. Transform WARN_ON_ONCE() and printk_once() into a WARN_ONCE(). Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20240610103552.25252-1-anna-maria@linutronix.de
1682 lines
44 KiB
C
1682 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* NOHZ implementation for low and high resolution timers
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*/
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/sched/nohz.h>
|
|
#include <linux/sched/loadavg.h>
|
|
#include <linux/module.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
#include <trace/events/timer.h>
|
|
|
|
/*
|
|
* Per-CPU nohz control structure
|
|
*/
|
|
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
|
|
|
|
struct tick_sched *tick_get_tick_sched(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_sched, cpu);
|
|
}
|
|
|
|
/*
|
|
* The time when the last jiffy update happened. Write access must hold
|
|
* jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
|
|
* consistent view of jiffies and last_jiffies_update.
|
|
*/
|
|
static ktime_t last_jiffies_update;
|
|
|
|
/*
|
|
* Must be called with interrupts disabled !
|
|
*/
|
|
static void tick_do_update_jiffies64(ktime_t now)
|
|
{
|
|
unsigned long ticks = 1;
|
|
ktime_t delta, nextp;
|
|
|
|
/*
|
|
* 64-bit can do a quick check without holding the jiffies lock and
|
|
* without looking at the sequence count. The smp_load_acquire()
|
|
* pairs with the update done later in this function.
|
|
*
|
|
* 32-bit cannot do that because the store of 'tick_next_period'
|
|
* consists of two 32-bit stores, and the first store could be
|
|
* moved by the CPU to a random point in the future.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT)) {
|
|
if (ktime_before(now, smp_load_acquire(&tick_next_period)))
|
|
return;
|
|
} else {
|
|
unsigned int seq;
|
|
|
|
/*
|
|
* Avoid contention on 'jiffies_lock' and protect the quick
|
|
* check with the sequence count.
|
|
*/
|
|
do {
|
|
seq = read_seqcount_begin(&jiffies_seq);
|
|
nextp = tick_next_period;
|
|
} while (read_seqcount_retry(&jiffies_seq, seq));
|
|
|
|
if (ktime_before(now, nextp))
|
|
return;
|
|
}
|
|
|
|
/* Quick check failed, i.e. update is required. */
|
|
raw_spin_lock(&jiffies_lock);
|
|
/*
|
|
* Re-evaluate with the lock held. Another CPU might have done the
|
|
* update already.
|
|
*/
|
|
if (ktime_before(now, tick_next_period)) {
|
|
raw_spin_unlock(&jiffies_lock);
|
|
return;
|
|
}
|
|
|
|
write_seqcount_begin(&jiffies_seq);
|
|
|
|
delta = ktime_sub(now, tick_next_period);
|
|
if (unlikely(delta >= TICK_NSEC)) {
|
|
/* Slow path for long idle sleep times */
|
|
s64 incr = TICK_NSEC;
|
|
|
|
ticks += ktime_divns(delta, incr);
|
|
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
incr * ticks);
|
|
} else {
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
TICK_NSEC);
|
|
}
|
|
|
|
/* Advance jiffies to complete the 'jiffies_seq' protected job */
|
|
jiffies_64 += ticks;
|
|
|
|
/* Keep the tick_next_period variable up to date */
|
|
nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
|
|
|
|
if (IS_ENABLED(CONFIG_64BIT)) {
|
|
/*
|
|
* Pairs with smp_load_acquire() in the lockless quick
|
|
* check above, and ensures that the update to 'jiffies_64' is
|
|
* not reordered vs. the store to 'tick_next_period', neither
|
|
* by the compiler nor by the CPU.
|
|
*/
|
|
smp_store_release(&tick_next_period, nextp);
|
|
} else {
|
|
/*
|
|
* A plain store is good enough on 32-bit, as the quick check
|
|
* above is protected by the sequence count.
|
|
*/
|
|
tick_next_period = nextp;
|
|
}
|
|
|
|
/*
|
|
* Release the sequence count. calc_global_load() below is not
|
|
* protected by it, but 'jiffies_lock' needs to be held to prevent
|
|
* concurrent invocations.
|
|
*/
|
|
write_seqcount_end(&jiffies_seq);
|
|
|
|
calc_global_load();
|
|
|
|
raw_spin_unlock(&jiffies_lock);
|
|
update_wall_time();
|
|
}
|
|
|
|
/*
|
|
* Initialize and return retrieve the jiffies update.
|
|
*/
|
|
static ktime_t tick_init_jiffy_update(void)
|
|
{
|
|
ktime_t period;
|
|
|
|
raw_spin_lock(&jiffies_lock);
|
|
write_seqcount_begin(&jiffies_seq);
|
|
|
|
/* Have we started the jiffies update yet ? */
|
|
if (last_jiffies_update == 0) {
|
|
u32 rem;
|
|
|
|
/*
|
|
* Ensure that the tick is aligned to a multiple of
|
|
* TICK_NSEC.
|
|
*/
|
|
div_u64_rem(tick_next_period, TICK_NSEC, &rem);
|
|
if (rem)
|
|
tick_next_period += TICK_NSEC - rem;
|
|
|
|
last_jiffies_update = tick_next_period;
|
|
}
|
|
period = last_jiffies_update;
|
|
|
|
write_seqcount_end(&jiffies_seq);
|
|
raw_spin_unlock(&jiffies_lock);
|
|
|
|
return period;
|
|
}
|
|
|
|
static inline int tick_sched_flag_test(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
return !!(ts->flags & flag);
|
|
}
|
|
|
|
static inline void tick_sched_flag_set(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
ts->flags |= flag;
|
|
}
|
|
|
|
static inline void tick_sched_flag_clear(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
ts->flags &= ~flag;
|
|
}
|
|
|
|
#define MAX_STALLED_JIFFIES 5
|
|
|
|
static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
int tick_cpu, cpu = smp_processor_id();
|
|
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the CPU in charge went
|
|
* into a long sleep. If two CPUs happen to assign themselves to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* 'jiffies_lock'.
|
|
*
|
|
* If nohz_full is enabled, this should not happen because the
|
|
* 'tick_do_timer_cpu' CPU never relinquishes.
|
|
*/
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
|
|
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
WARN_ON_ONCE(tick_nohz_full_running);
|
|
#endif
|
|
WRITE_ONCE(tick_do_timer_cpu, cpu);
|
|
tick_cpu = cpu;
|
|
}
|
|
|
|
/* Check if jiffies need an update */
|
|
if (tick_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* If the jiffies update stalled for too long (timekeeper in stop_machine()
|
|
* or VMEXIT'ed for several msecs), force an update.
|
|
*/
|
|
if (ts->last_tick_jiffies != jiffies) {
|
|
ts->stalled_jiffies = 0;
|
|
ts->last_tick_jiffies = READ_ONCE(jiffies);
|
|
} else {
|
|
if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
|
|
tick_do_update_jiffies64(now);
|
|
ts->stalled_jiffies = 0;
|
|
ts->last_tick_jiffies = READ_ONCE(jiffies);
|
|
}
|
|
}
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
|
|
ts->got_idle_tick = 1;
|
|
}
|
|
|
|
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on completely idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start of
|
|
* idle" jiffy stamp so the idle accounting adjustment we do
|
|
* when we go busy again does not account too many ticks.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
|
|
tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
touch_softlockup_watchdog_sched();
|
|
if (is_idle_task(current))
|
|
ts->idle_jiffies++;
|
|
/*
|
|
* In case the current tick fired too early past its expected
|
|
* expiration, make sure we don't bypass the next clock reprogramming
|
|
* to the same deadline.
|
|
*/
|
|
ts->next_tick = 0;
|
|
}
|
|
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
/*
|
|
* We rearm the timer until we get disabled by the idle code.
|
|
* Called with interrupts disabled.
|
|
*/
|
|
static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
|
|
{
|
|
struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
ktime_t now = ktime_get();
|
|
|
|
tick_sched_do_timer(ts, now);
|
|
|
|
/*
|
|
* Do not call when we are not in IRQ context and have
|
|
* no valid 'regs' pointer
|
|
*/
|
|
if (regs)
|
|
tick_sched_handle(ts, regs);
|
|
else
|
|
ts->next_tick = 0;
|
|
|
|
/*
|
|
* In dynticks mode, tick reprogram is deferred:
|
|
* - to the idle task if in dynticks-idle
|
|
* - to IRQ exit if in full-dynticks.
|
|
*/
|
|
if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
|
|
return HRTIMER_NORESTART;
|
|
|
|
hrtimer_forward(timer, now, TICK_NSEC);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static void tick_sched_timer_cancel(struct tick_sched *ts)
|
|
{
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
tick_program_event(KTIME_MAX, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
cpumask_var_t tick_nohz_full_mask;
|
|
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
|
|
bool tick_nohz_full_running;
|
|
EXPORT_SYMBOL_GPL(tick_nohz_full_running);
|
|
static atomic_t tick_dep_mask;
|
|
|
|
static bool check_tick_dependency(atomic_t *dep)
|
|
{
|
|
int val = atomic_read(dep);
|
|
|
|
if (val & TICK_DEP_MASK_POSIX_TIMER) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_PERF_EVENTS) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_SCHED) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_SCHED);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_RCU) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_RCU);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_RCU_EXP) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
if (unlikely(!cpu_online(cpu)))
|
|
return false;
|
|
|
|
if (check_tick_dependency(&tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(&ts->tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(¤t->tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(¤t->signal->tick_dep_mask))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nohz_full_kick_func(struct irq_work *work)
|
|
{
|
|
/* Empty, the tick restart happens on tick_nohz_irq_exit() */
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
|
|
IRQ_WORK_INIT_HARD(nohz_full_kick_func);
|
|
|
|
/*
|
|
* Kick this CPU if it's full dynticks in order to force it to
|
|
* re-evaluate its dependency on the tick and restart it if necessary.
|
|
* This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
|
|
* is NMI safe.
|
|
*/
|
|
static void tick_nohz_full_kick(void)
|
|
{
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
|
|
}
|
|
|
|
/*
|
|
* Kick the CPU if it's full dynticks in order to force it to
|
|
* re-evaluate its dependency on the tick and restart it if necessary.
|
|
*/
|
|
void tick_nohz_full_kick_cpu(int cpu)
|
|
{
|
|
if (!tick_nohz_full_cpu(cpu))
|
|
return;
|
|
|
|
irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
|
|
}
|
|
|
|
static void tick_nohz_kick_task(struct task_struct *tsk)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* If the task is not running, run_posix_cpu_timers()
|
|
* has nothing to elapse, and an IPI can then be optimized out.
|
|
*
|
|
* activate_task() STORE p->tick_dep_mask
|
|
* STORE p->on_rq
|
|
* __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
|
|
* LOCK rq->lock LOAD p->on_rq
|
|
* smp_mb__after_spin_lock()
|
|
* tick_nohz_task_switch()
|
|
* LOAD p->tick_dep_mask
|
|
*/
|
|
if (!sched_task_on_rq(tsk))
|
|
return;
|
|
|
|
/*
|
|
* If the task concurrently migrates to another CPU,
|
|
* we guarantee it sees the new tick dependency upon
|
|
* schedule.
|
|
*
|
|
* set_task_cpu(p, cpu);
|
|
* STORE p->cpu = @cpu
|
|
* __schedule() (switch to task 'p')
|
|
* LOCK rq->lock
|
|
* smp_mb__after_spin_lock() STORE p->tick_dep_mask
|
|
* tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
|
|
* LOAD p->tick_dep_mask LOAD p->cpu
|
|
*/
|
|
cpu = task_cpu(tsk);
|
|
|
|
preempt_disable();
|
|
if (cpu_online(cpu))
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Kick all full dynticks CPUs in order to force these to re-evaluate
|
|
* their dependency on the tick and restart it if necessary.
|
|
*/
|
|
static void tick_nohz_full_kick_all(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (!tick_nohz_full_running)
|
|
return;
|
|
|
|
preempt_disable();
|
|
for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void tick_nohz_dep_set_all(atomic_t *dep,
|
|
enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = atomic_fetch_or(BIT(bit), dep);
|
|
if (!prev)
|
|
tick_nohz_full_kick_all();
|
|
}
|
|
|
|
/*
|
|
* Set a global tick dependency. Used by perf events that rely on freq and
|
|
* unstable clocks.
|
|
*/
|
|
void tick_nohz_dep_set(enum tick_dep_bits bit)
|
|
{
|
|
tick_nohz_dep_set_all(&tick_dep_mask, bit);
|
|
}
|
|
|
|
void tick_nohz_dep_clear(enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &tick_dep_mask);
|
|
}
|
|
|
|
/*
|
|
* Set per-CPU tick dependency. Used by scheduler and perf events in order to
|
|
* manage event-throttling.
|
|
*/
|
|
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
struct tick_sched *ts;
|
|
|
|
ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
|
|
if (!prev) {
|
|
preempt_disable();
|
|
/* Perf needs local kick that is NMI safe */
|
|
if (cpu == smp_processor_id()) {
|
|
tick_nohz_full_kick();
|
|
} else {
|
|
/* Remote IRQ work not NMI-safe */
|
|
if (!WARN_ON_ONCE(in_nmi()))
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
|
|
|
|
void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
|
|
{
|
|
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
atomic_andnot(BIT(bit), &ts->tick_dep_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
|
|
|
|
/*
|
|
* Set a per-task tick dependency. RCU needs this. Also posix CPU timers
|
|
* in order to elapse per task timers.
|
|
*/
|
|
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
|
{
|
|
if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
|
|
tick_nohz_kick_task(tsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
|
|
|
|
void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
|
|
|
|
/*
|
|
* Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
|
|
* per process timers.
|
|
*/
|
|
void tick_nohz_dep_set_signal(struct task_struct *tsk,
|
|
enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
struct signal_struct *sig = tsk->signal;
|
|
|
|
prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
|
|
if (!prev) {
|
|
struct task_struct *t;
|
|
|
|
lockdep_assert_held(&tsk->sighand->siglock);
|
|
__for_each_thread(sig, t)
|
|
tick_nohz_kick_task(t);
|
|
}
|
|
}
|
|
|
|
void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &sig->tick_dep_mask);
|
|
}
|
|
|
|
/*
|
|
* Re-evaluate the need for the tick as we switch the current task.
|
|
* It might need the tick due to per task/process properties:
|
|
* perf events, posix CPU timers, ...
|
|
*/
|
|
void __tick_nohz_task_switch(void)
|
|
{
|
|
struct tick_sched *ts;
|
|
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
if (atomic_read(¤t->tick_dep_mask) ||
|
|
atomic_read(¤t->signal->tick_dep_mask))
|
|
tick_nohz_full_kick();
|
|
}
|
|
}
|
|
|
|
/* Get the boot-time nohz CPU list from the kernel parameters. */
|
|
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
|
|
{
|
|
alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
|
|
cpumask_copy(tick_nohz_full_mask, cpumask);
|
|
tick_nohz_full_running = true;
|
|
}
|
|
|
|
bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
|
|
{
|
|
/*
|
|
* The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
|
|
* timers, workqueues, timekeeping, ...) on behalf of full dynticks
|
|
* CPUs. It must remain online when nohz full is enabled.
|
|
*/
|
|
if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static int tick_nohz_cpu_down(unsigned int cpu)
|
|
{
|
|
return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
|
|
}
|
|
|
|
void __init tick_nohz_init(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
if (!tick_nohz_full_running)
|
|
return;
|
|
|
|
/*
|
|
* Full dynticks uses IRQ work to drive the tick rescheduling on safe
|
|
* locking contexts. But then we need IRQ work to raise its own
|
|
* interrupts to avoid circular dependency on the tick.
|
|
*/
|
|
if (!arch_irq_work_has_interrupt()) {
|
|
pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
|
|
cpumask_clear(tick_nohz_full_mask);
|
|
tick_nohz_full_running = false;
|
|
return;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
|
|
!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
|
|
cpu = smp_processor_id();
|
|
|
|
if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
|
|
pr_warn("NO_HZ: Clearing %d from nohz_full range "
|
|
"for timekeeping\n", cpu);
|
|
cpumask_clear_cpu(cpu, tick_nohz_full_mask);
|
|
}
|
|
}
|
|
|
|
for_each_cpu(cpu, tick_nohz_full_mask)
|
|
ct_cpu_track_user(cpu);
|
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"kernel/nohz:predown", NULL,
|
|
tick_nohz_cpu_down);
|
|
WARN_ON(ret < 0);
|
|
pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
|
|
cpumask_pr_args(tick_nohz_full_mask));
|
|
}
|
|
#endif /* #ifdef CONFIG_NO_HZ_FULL */
|
|
|
|
/*
|
|
* NOHZ - aka dynamic tick functionality
|
|
*/
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
/*
|
|
* NO HZ enabled ?
|
|
*/
|
|
bool tick_nohz_enabled __read_mostly = true;
|
|
unsigned long tick_nohz_active __read_mostly;
|
|
/*
|
|
* Enable / Disable tickless mode
|
|
*/
|
|
static int __init setup_tick_nohz(char *str)
|
|
{
|
|
return (kstrtobool(str, &tick_nohz_enabled) == 0);
|
|
}
|
|
|
|
__setup("nohz=", setup_tick_nohz);
|
|
|
|
bool tick_nohz_tick_stopped(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
}
|
|
|
|
bool tick_nohz_tick_stopped_cpu(int cpu)
|
|
{
|
|
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
|
|
* @now: current ktime_t
|
|
*
|
|
* Called from interrupt entry when the CPU was idle
|
|
*
|
|
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
|
|
* must be updated. Otherwise an interrupt handler could use a stale jiffy
|
|
* value. We do this unconditionally on any CPU, as we don't know whether the
|
|
* CPU, which has the update task assigned, is in a long sleep.
|
|
*/
|
|
static void tick_nohz_update_jiffies(ktime_t now)
|
|
{
|
|
unsigned long flags;
|
|
|
|
__this_cpu_write(tick_cpu_sched.idle_waketime, now);
|
|
|
|
local_irq_save(flags);
|
|
tick_do_update_jiffies64(now);
|
|
local_irq_restore(flags);
|
|
|
|
touch_softlockup_watchdog_sched();
|
|
}
|
|
|
|
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
ktime_t delta;
|
|
|
|
if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
|
|
return;
|
|
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
write_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
if (nr_iowait_cpu(smp_processor_id()) > 0)
|
|
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
|
|
else
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
|
|
ts->idle_entrytime = now;
|
|
tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
|
|
write_seqcount_end(&ts->idle_sleeptime_seq);
|
|
|
|
sched_clock_idle_wakeup_event();
|
|
}
|
|
|
|
static void tick_nohz_start_idle(struct tick_sched *ts)
|
|
{
|
|
write_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
ts->idle_entrytime = ktime_get();
|
|
tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
|
|
write_seqcount_end(&ts->idle_sleeptime_seq);
|
|
|
|
sched_clock_idle_sleep_event();
|
|
}
|
|
|
|
static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
|
|
bool compute_delta, u64 *last_update_time)
|
|
{
|
|
ktime_t now, idle;
|
|
unsigned int seq;
|
|
|
|
if (!tick_nohz_active)
|
|
return -1;
|
|
|
|
now = ktime_get();
|
|
if (last_update_time)
|
|
*last_update_time = ktime_to_us(now);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
|
|
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
idle = ktime_add(*sleeptime, delta);
|
|
} else {
|
|
idle = *sleeptime;
|
|
}
|
|
} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
|
|
|
|
return ktime_to_us(idle);
|
|
|
|
}
|
|
|
|
/**
|
|
* get_cpu_idle_time_us - get the total idle time of a CPU
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cumulative idle time (since boot) for a given
|
|
* CPU, in microseconds. Note that this is partially broken due to
|
|
* the counter of iowait tasks that can be remotely updated without
|
|
* any synchronization. Therefore it is possible to observe backward
|
|
* values within two consecutive reads.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
|
|
*/
|
|
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
|
|
!nr_iowait_cpu(cpu), last_update_time);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
|
|
|
|
/**
|
|
* get_cpu_iowait_time_us - get the total iowait time of a CPU
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cumulative iowait time (since boot) for a given
|
|
* CPU, in microseconds. Note this is partially broken due to
|
|
* the counter of iowait tasks that can be remotely updated without
|
|
* any synchronization. Therefore it is possible to observe backward
|
|
* values within two consecutive reads.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
|
|
*/
|
|
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
|
|
nr_iowait_cpu(cpu), last_update_time);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
|
|
|
|
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
|
|
|
|
/* Forward the time to expire in the future */
|
|
hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
|
|
hrtimer_start_expires(&ts->sched_timer,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
} else {
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
}
|
|
|
|
/*
|
|
* Reset to make sure the next tick stop doesn't get fooled by past
|
|
* cached clock deadline.
|
|
*/
|
|
ts->next_tick = 0;
|
|
}
|
|
|
|
static inline bool local_timer_softirq_pending(void)
|
|
{
|
|
return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
|
|
}
|
|
|
|
/*
|
|
* Read jiffies and the time when jiffies were updated last
|
|
*/
|
|
u64 get_jiffies_update(unsigned long *basej)
|
|
{
|
|
unsigned long basejiff;
|
|
unsigned int seq;
|
|
u64 basemono;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&jiffies_seq);
|
|
basemono = last_jiffies_update;
|
|
basejiff = jiffies;
|
|
} while (read_seqcount_retry(&jiffies_seq, seq));
|
|
*basej = basejiff;
|
|
return basemono;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_next_event() - return the clock monotonic based next event
|
|
* @ts: pointer to tick_sched struct
|
|
* @cpu: CPU number
|
|
*
|
|
* Return:
|
|
* *%0 - When the next event is a maximum of TICK_NSEC in the future
|
|
* and the tick is not stopped yet
|
|
* *%next_event - Next event based on clock monotonic
|
|
*/
|
|
static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
|
|
{
|
|
u64 basemono, next_tick, delta, expires;
|
|
unsigned long basejiff;
|
|
int tick_cpu;
|
|
|
|
basemono = get_jiffies_update(&basejiff);
|
|
ts->last_jiffies = basejiff;
|
|
ts->timer_expires_base = basemono;
|
|
|
|
/*
|
|
* Keep the periodic tick, when RCU, architecture or irq_work
|
|
* requests it.
|
|
* Aside of that, check whether the local timer softirq is
|
|
* pending. If so, its a bad idea to call get_next_timer_interrupt(),
|
|
* because there is an already expired timer, so it will request
|
|
* immediate expiry, which rearms the hardware timer with a
|
|
* minimal delta, which brings us back to this place
|
|
* immediately. Lather, rinse and repeat...
|
|
*/
|
|
if (rcu_needs_cpu() || arch_needs_cpu() ||
|
|
irq_work_needs_cpu() || local_timer_softirq_pending()) {
|
|
next_tick = basemono + TICK_NSEC;
|
|
} else {
|
|
/*
|
|
* Get the next pending timer. If high resolution
|
|
* timers are enabled this only takes the timer wheel
|
|
* timers into account. If high resolution timers are
|
|
* disabled this also looks at the next expiring
|
|
* hrtimer.
|
|
*/
|
|
next_tick = get_next_timer_interrupt(basejiff, basemono);
|
|
ts->next_timer = next_tick;
|
|
}
|
|
|
|
/* Make sure next_tick is never before basemono! */
|
|
if (WARN_ON_ONCE(basemono > next_tick))
|
|
next_tick = basemono;
|
|
|
|
/*
|
|
* If the tick is due in the next period, keep it ticking or
|
|
* force prod the timer.
|
|
*/
|
|
delta = next_tick - basemono;
|
|
if (delta <= (u64)TICK_NSEC) {
|
|
/*
|
|
* We've not stopped the tick yet, and there's a timer in the
|
|
* next period, so no point in stopping it either, bail.
|
|
*/
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ts->timer_expires = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this CPU is the one which had the do_timer() duty last, we limit
|
|
* the sleep time to the timekeeping 'max_deferment' value.
|
|
* Otherwise we can sleep as long as we want.
|
|
*/
|
|
delta = timekeeping_max_deferment();
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
if (tick_cpu != cpu &&
|
|
(tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
|
|
delta = KTIME_MAX;
|
|
|
|
/* Calculate the next expiry time */
|
|
if (delta < (KTIME_MAX - basemono))
|
|
expires = basemono + delta;
|
|
else
|
|
expires = KTIME_MAX;
|
|
|
|
ts->timer_expires = min_t(u64, expires, next_tick);
|
|
|
|
out:
|
|
return ts->timer_expires;
|
|
}
|
|
|
|
static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
unsigned long basejiff = ts->last_jiffies;
|
|
u64 basemono = ts->timer_expires_base;
|
|
bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
int tick_cpu;
|
|
u64 expires;
|
|
|
|
/* Make sure we won't be trying to stop it twice in a row. */
|
|
ts->timer_expires_base = 0;
|
|
|
|
/*
|
|
* Now the tick should be stopped definitely - so the timer base needs
|
|
* to be marked idle as well to not miss a newly queued timer.
|
|
*/
|
|
expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
|
|
if (expires > ts->timer_expires) {
|
|
/*
|
|
* This path could only happen when the first timer was removed
|
|
* between calculating the possible sleep length and now (when
|
|
* high resolution mode is not active, timer could also be a
|
|
* hrtimer).
|
|
*
|
|
* We have to stick to the original calculated expiry value to
|
|
* not stop the tick for too long with a shallow C-state (which
|
|
* was programmed by cpuidle because of an early next expiration
|
|
* value).
|
|
*/
|
|
expires = ts->timer_expires;
|
|
}
|
|
|
|
/* If the timer base is not idle, retain the not yet stopped tick. */
|
|
if (!timer_idle)
|
|
return;
|
|
|
|
/*
|
|
* If this CPU is the one which updates jiffies, then give up
|
|
* the assignment and let it be taken by the CPU which runs
|
|
* the tick timer next, which might be this CPU as well. If we
|
|
* don't drop this here, the jiffies might be stale and
|
|
* do_timer() never gets invoked. Keep track of the fact that it
|
|
* was the one which had the do_timer() duty last.
|
|
*/
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
if (tick_cpu == cpu) {
|
|
WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
|
|
tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
|
|
} else if (tick_cpu != TICK_DO_TIMER_NONE) {
|
|
tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
|
|
}
|
|
|
|
/* Skip reprogram of event if it's not changed */
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
|
|
/* Sanity check: make sure clockevent is actually programmed */
|
|
if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
|
|
return;
|
|
|
|
WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
|
|
"timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
|
|
dev->next_event, hrtimer_active(&ts->sched_timer),
|
|
hrtimer_get_expires(&ts->sched_timer));
|
|
}
|
|
|
|
/*
|
|
* tick_nohz_stop_tick() can be called several times before
|
|
* tick_nohz_restart_sched_tick() is called. This happens when
|
|
* interrupts arrive which do not cause a reschedule. In the first
|
|
* call we save the current tick time, so we can restart the
|
|
* scheduler tick in tick_nohz_restart_sched_tick().
|
|
*/
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
calc_load_nohz_start();
|
|
quiet_vmstat();
|
|
|
|
ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
|
|
tick_sched_flag_set(ts, TS_FLAG_STOPPED);
|
|
trace_tick_stop(1, TICK_DEP_MASK_NONE);
|
|
}
|
|
|
|
ts->next_tick = expires;
|
|
|
|
/*
|
|
* If the expiration time == KTIME_MAX, then we simply stop
|
|
* the tick timer.
|
|
*/
|
|
if (unlikely(expires == KTIME_MAX)) {
|
|
tick_sched_timer_cancel(ts);
|
|
return;
|
|
}
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
|
|
hrtimer_start(&ts->sched_timer, expires,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
} else {
|
|
hrtimer_set_expires(&ts->sched_timer, expires);
|
|
tick_program_event(expires, 1);
|
|
}
|
|
}
|
|
|
|
static void tick_nohz_retain_tick(struct tick_sched *ts)
|
|
{
|
|
ts->timer_expires_base = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
|
|
{
|
|
if (tick_nohz_next_event(ts, cpu))
|
|
tick_nohz_stop_tick(ts, cpu);
|
|
else
|
|
tick_nohz_retain_tick(ts);
|
|
}
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
|
|
|
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
/* Update jiffies first */
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* Clear the timer idle flag, so we avoid IPIs on remote queueing and
|
|
* the clock forward checks in the enqueue path:
|
|
*/
|
|
timer_clear_idle();
|
|
|
|
calc_load_nohz_stop();
|
|
touch_softlockup_watchdog_sched();
|
|
|
|
/* Cancel the scheduled timer and restore the tick: */
|
|
tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
|
|
tick_nohz_restart(ts, now);
|
|
}
|
|
|
|
static void __tick_nohz_full_update_tick(struct tick_sched *ts,
|
|
ktime_t now)
|
|
{
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
int cpu = smp_processor_id();
|
|
|
|
if (can_stop_full_tick(cpu, ts))
|
|
tick_nohz_full_stop_tick(ts, cpu);
|
|
else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
#endif
|
|
}
|
|
|
|
static void tick_nohz_full_update_tick(struct tick_sched *ts)
|
|
{
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
return;
|
|
|
|
__tick_nohz_full_update_tick(ts, ktime_get());
|
|
}
|
|
|
|
/*
|
|
* A pending softirq outside an IRQ (or softirq disabled section) context
|
|
* should be waiting for ksoftirqd to handle it. Therefore we shouldn't
|
|
* reach this code due to the need_resched() early check in can_stop_idle_tick().
|
|
*
|
|
* However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
|
|
* cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
|
|
* triggering the code below, since wakep_softirqd() is ignored.
|
|
*
|
|
*/
|
|
static bool report_idle_softirq(void)
|
|
{
|
|
static int ratelimit;
|
|
unsigned int pending = local_softirq_pending();
|
|
|
|
if (likely(!pending))
|
|
return false;
|
|
|
|
/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
|
|
if (!cpu_active(smp_processor_id())) {
|
|
pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
|
|
if (!pending)
|
|
return false;
|
|
}
|
|
|
|
if (ratelimit >= 10)
|
|
return false;
|
|
|
|
/* On RT, softirq handling may be waiting on some lock */
|
|
if (local_bh_blocked())
|
|
return false;
|
|
|
|
pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
|
|
pending);
|
|
ratelimit++;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
|
|
{
|
|
WARN_ON_ONCE(cpu_is_offline(cpu));
|
|
|
|
if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
|
|
return false;
|
|
|
|
if (need_resched())
|
|
return false;
|
|
|
|
if (unlikely(report_idle_softirq()))
|
|
return false;
|
|
|
|
if (tick_nohz_full_enabled()) {
|
|
int tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
|
|
/*
|
|
* Keep the tick alive to guarantee timekeeping progression
|
|
* if there are full dynticks CPUs around
|
|
*/
|
|
if (tick_cpu == cpu)
|
|
return false;
|
|
|
|
/* Should not happen for nohz-full */
|
|
if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_stop_tick - stop the idle tick from the idle task
|
|
*
|
|
* When the next event is more than a tick into the future, stop the idle tick
|
|
*/
|
|
void tick_nohz_idle_stop_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
int cpu = smp_processor_id();
|
|
ktime_t expires;
|
|
|
|
/*
|
|
* If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
|
|
* tick timer expiration time is known already.
|
|
*/
|
|
if (ts->timer_expires_base)
|
|
expires = ts->timer_expires;
|
|
else if (can_stop_idle_tick(cpu, ts))
|
|
expires = tick_nohz_next_event(ts, cpu);
|
|
else
|
|
return;
|
|
|
|
ts->idle_calls++;
|
|
|
|
if (expires > 0LL) {
|
|
int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
|
|
tick_nohz_stop_tick(ts, cpu);
|
|
|
|
ts->idle_sleeps++;
|
|
ts->idle_expires = expires;
|
|
|
|
if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ts->idle_jiffies = ts->last_jiffies;
|
|
nohz_balance_enter_idle(cpu);
|
|
}
|
|
} else {
|
|
tick_nohz_retain_tick(ts);
|
|
}
|
|
}
|
|
|
|
void tick_nohz_idle_retain_tick(void)
|
|
{
|
|
tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_enter - prepare for entering idle on the current CPU
|
|
*
|
|
* Called when we start the idle loop.
|
|
*/
|
|
void tick_nohz_idle_enter(void)
|
|
{
|
|
struct tick_sched *ts;
|
|
|
|
lockdep_assert_irqs_enabled();
|
|
|
|
local_irq_disable();
|
|
|
|
ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
WARN_ON_ONCE(ts->timer_expires_base);
|
|
|
|
tick_sched_flag_set(ts, TS_FLAG_INIDLE);
|
|
tick_nohz_start_idle(ts);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_irq_exit - Notify the tick about IRQ exit
|
|
*
|
|
* A timer may have been added/modified/deleted either by the current IRQ,
|
|
* or by another place using this IRQ as a notification. This IRQ may have
|
|
* also updated the RCU callback list. These events may require a
|
|
* re-evaluation of the next tick. Depending on the context:
|
|
*
|
|
* 1) If the CPU is idle and no resched is pending, just proceed with idle
|
|
* time accounting. The next tick will be re-evaluated on the next idle
|
|
* loop iteration.
|
|
*
|
|
* 2) If the CPU is nohz_full:
|
|
*
|
|
* 2.1) If there is any tick dependency, restart the tick if stopped.
|
|
*
|
|
* 2.2) If there is no tick dependency, (re-)evaluate the next tick and
|
|
* stop/update it accordingly.
|
|
*/
|
|
void tick_nohz_irq_exit(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
|
|
tick_nohz_start_idle(ts);
|
|
else
|
|
tick_nohz_full_update_tick(ts);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_got_tick - Check whether or not the tick handler has run
|
|
*
|
|
* Return: %true if the tick handler has run, otherwise %false
|
|
*/
|
|
bool tick_nohz_idle_got_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (ts->got_idle_tick) {
|
|
ts->got_idle_tick = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
|
|
* or the tick, whichever expires first. Note that, if the tick has been
|
|
* stopped, it returns the next hrtimer.
|
|
*
|
|
* Called from power state control code with interrupts disabled
|
|
*
|
|
* Return: the next expiration time
|
|
*/
|
|
ktime_t tick_nohz_get_next_hrtimer(void)
|
|
{
|
|
return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_sleep_length - return the expected length of the current sleep
|
|
* @delta_next: duration until the next event if the tick cannot be stopped
|
|
*
|
|
* Called from power state control code with interrupts disabled.
|
|
*
|
|
* The return value of this function and/or the value returned by it through the
|
|
* @delta_next pointer can be negative which must be taken into account by its
|
|
* callers.
|
|
*
|
|
* Return: the expected length of the current sleep
|
|
*/
|
|
ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
int cpu = smp_processor_id();
|
|
/*
|
|
* The idle entry time is expected to be a sufficient approximation of
|
|
* the current time at this point.
|
|
*/
|
|
ktime_t now = ts->idle_entrytime;
|
|
ktime_t next_event;
|
|
|
|
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
|
|
|
|
*delta_next = ktime_sub(dev->next_event, now);
|
|
|
|
if (!can_stop_idle_tick(cpu, ts))
|
|
return *delta_next;
|
|
|
|
next_event = tick_nohz_next_event(ts, cpu);
|
|
if (!next_event)
|
|
return *delta_next;
|
|
|
|
/*
|
|
* If the next highres timer to expire is earlier than 'next_event', the
|
|
* idle governor needs to know that.
|
|
*/
|
|
next_event = min_t(u64, next_event,
|
|
hrtimer_next_event_without(&ts->sched_timer));
|
|
|
|
return ktime_sub(next_event, now);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
|
|
* for a particular CPU.
|
|
* @cpu: target CPU number
|
|
*
|
|
* Called from the schedutil frequency scaling governor in scheduler context.
|
|
*
|
|
* Return: the current idle calls counter value for @cpu
|
|
*/
|
|
unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
|
|
{
|
|
struct tick_sched *ts = tick_get_tick_sched(cpu);
|
|
|
|
return ts->idle_calls;
|
|
}
|
|
|
|
static void tick_nohz_account_idle_time(struct tick_sched *ts,
|
|
ktime_t now)
|
|
{
|
|
unsigned long ticks;
|
|
|
|
ts->idle_exittime = now;
|
|
|
|
if (vtime_accounting_enabled_this_cpu())
|
|
return;
|
|
/*
|
|
* We stopped the tick in idle. update_process_times() would miss the
|
|
* time we slept, as it does only a 1 tick accounting.
|
|
* Enforce that this is accounted to idle !
|
|
*/
|
|
ticks = jiffies - ts->idle_jiffies;
|
|
/*
|
|
* We might be one off. Do not randomly account a huge number of ticks!
|
|
*/
|
|
if (ticks && ticks < LONG_MAX)
|
|
account_idle_ticks(ticks);
|
|
}
|
|
|
|
void tick_nohz_idle_restart_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ktime_t now = ktime_get();
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
tick_nohz_account_idle_time(ts, now);
|
|
}
|
|
}
|
|
|
|
static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
if (tick_nohz_full_cpu(smp_processor_id()))
|
|
__tick_nohz_full_update_tick(ts, now);
|
|
else
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
|
|
tick_nohz_account_idle_time(ts, now);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_exit - Update the tick upon idle task exit
|
|
*
|
|
* When the idle task exits, update the tick depending on the
|
|
* following situations:
|
|
*
|
|
* 1) If the CPU is not in nohz_full mode (most cases), then
|
|
* restart the tick.
|
|
*
|
|
* 2) If the CPU is in nohz_full mode (corner case):
|
|
* 2.1) If the tick can be kept stopped (no tick dependencies)
|
|
* then re-evaluate the next tick and try to keep it stopped
|
|
* as long as possible.
|
|
* 2.2) If the tick has dependencies, restart the tick.
|
|
*
|
|
*/
|
|
void tick_nohz_idle_exit(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
bool idle_active, tick_stopped;
|
|
ktime_t now;
|
|
|
|
local_irq_disable();
|
|
|
|
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
|
|
WARN_ON_ONCE(ts->timer_expires_base);
|
|
|
|
tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
|
|
idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
|
|
tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
|
|
if (idle_active || tick_stopped)
|
|
now = ktime_get();
|
|
|
|
if (idle_active)
|
|
tick_nohz_stop_idle(ts, now);
|
|
|
|
if (tick_stopped)
|
|
tick_nohz_idle_update_tick(ts, now);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* In low-resolution mode, the tick handler must be implemented directly
|
|
* at the clockevent level. hrtimer can't be used instead, because its
|
|
* infrastructure actually relies on the tick itself as a backend in
|
|
* low-resolution mode (see hrtimer_run_queues()).
|
|
*/
|
|
static void tick_nohz_lowres_handler(struct clock_event_device *dev)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
dev->next_event = KTIME_MAX;
|
|
|
|
if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
}
|
|
|
|
static inline void tick_nohz_activate(struct tick_sched *ts)
|
|
{
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
tick_sched_flag_set(ts, TS_FLAG_NOHZ);
|
|
/* One update is enough */
|
|
if (!test_and_set_bit(0, &tick_nohz_active))
|
|
timers_update_nohz();
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_switch_to_nohz - switch to NOHZ mode
|
|
*/
|
|
static void tick_nohz_switch_to_nohz(void)
|
|
{
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
|
|
if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
|
|
return;
|
|
|
|
/*
|
|
* Recycle the hrtimer in 'ts', so we can share the
|
|
* highres code.
|
|
*/
|
|
tick_setup_sched_timer(false);
|
|
}
|
|
|
|
static inline void tick_nohz_irq_enter(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
ktime_t now;
|
|
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
|
|
return;
|
|
now = ktime_get();
|
|
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
|
|
tick_nohz_stop_idle(ts, now);
|
|
/*
|
|
* If all CPUs are idle we may need to update a stale jiffies value.
|
|
* Note nohz_full is a special case: a timekeeper is guaranteed to stay
|
|
* alive but it might be busy looping with interrupts disabled in some
|
|
* rare case (typically stop machine). So we must make sure we have a
|
|
* last resort.
|
|
*/
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
|
|
tick_nohz_update_jiffies(now);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void tick_nohz_switch_to_nohz(void) { }
|
|
static inline void tick_nohz_irq_enter(void) { }
|
|
static inline void tick_nohz_activate(struct tick_sched *ts) { }
|
|
|
|
#endif /* CONFIG_NO_HZ_COMMON */
|
|
|
|
/*
|
|
* Called from irq_enter() to notify about the possible interruption of idle()
|
|
*/
|
|
void tick_irq_enter(void)
|
|
{
|
|
tick_check_oneshot_broadcast_this_cpu();
|
|
tick_nohz_irq_enter();
|
|
}
|
|
|
|
static int sched_skew_tick;
|
|
|
|
static int __init skew_tick(char *str)
|
|
{
|
|
get_option(&str, &sched_skew_tick);
|
|
|
|
return 0;
|
|
}
|
|
early_param("skew_tick", skew_tick);
|
|
|
|
/**
|
|
* tick_setup_sched_timer - setup the tick emulation timer
|
|
* @hrtimer: whether to use the hrtimer or not
|
|
*/
|
|
void tick_setup_sched_timer(bool hrtimer)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
/* Emulate tick processing via per-CPU hrtimers: */
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
|
|
|
|
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
|
|
tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
|
|
ts->sched_timer.function = tick_nohz_handler;
|
|
}
|
|
|
|
/* Get the next period (per-CPU) */
|
|
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
|
|
|
|
/* Offset the tick to avert 'jiffies_lock' contention. */
|
|
if (sched_skew_tick) {
|
|
u64 offset = TICK_NSEC >> 1;
|
|
do_div(offset, num_possible_cpus());
|
|
offset *= smp_processor_id();
|
|
hrtimer_add_expires_ns(&ts->sched_timer, offset);
|
|
}
|
|
|
|
hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
|
|
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
|
|
hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
|
|
else
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
tick_nohz_activate(ts);
|
|
}
|
|
|
|
/*
|
|
* Shut down the tick and make sure the CPU won't try to retake the timekeeping
|
|
* duty before disabling IRQs in idle for the last time.
|
|
*/
|
|
void tick_sched_timer_dying(int cpu)
|
|
{
|
|
struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
struct clock_event_device *dev = td->evtdev;
|
|
ktime_t idle_sleeptime, iowait_sleeptime;
|
|
unsigned long idle_calls, idle_sleeps;
|
|
|
|
/* This must happen before hrtimers are migrated! */
|
|
tick_sched_timer_cancel(ts);
|
|
|
|
/*
|
|
* If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
|
|
* make sure not to call low-res tick handler.
|
|
*/
|
|
if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
dev->event_handler = clockevents_handle_noop;
|
|
|
|
idle_sleeptime = ts->idle_sleeptime;
|
|
iowait_sleeptime = ts->iowait_sleeptime;
|
|
idle_calls = ts->idle_calls;
|
|
idle_sleeps = ts->idle_sleeps;
|
|
memset(ts, 0, sizeof(*ts));
|
|
ts->idle_sleeptime = idle_sleeptime;
|
|
ts->iowait_sleeptime = iowait_sleeptime;
|
|
ts->idle_calls = idle_calls;
|
|
ts->idle_sleeps = idle_sleeps;
|
|
}
|
|
|
|
/*
|
|
* Async notification about clocksource changes
|
|
*/
|
|
void tick_clock_notify(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Async notification about clock event changes
|
|
*/
|
|
void tick_oneshot_notify(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
set_bit(0, &ts->check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Check if a change happened, which makes oneshot possible.
|
|
*
|
|
* Called cyclically from the hrtimer softirq (driven by the timer
|
|
* softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
|
|
* mode, because high resolution timers are disabled (either compile
|
|
* or runtime). Called with interrupts disabled.
|
|
*/
|
|
int tick_check_oneshot_change(int allow_nohz)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (!test_and_clear_bit(0, &ts->check_clocks))
|
|
return 0;
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
return 0;
|
|
|
|
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
|
|
return 0;
|
|
|
|
if (!allow_nohz)
|
|
return 1;
|
|
|
|
tick_nohz_switch_to_nohz();
|
|
return 0;
|
|
}
|