linux/drivers/net/ixgbe/ixgbe_common.c
Peter P Waskiewicz b46172402f ixgbe: Whitespace, copyright update and version number change patch
This patch cleans up a bit of whitespace issues with the driver, updates
the copyright information, and bumps the version number up.

Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-09-24 18:55:05 -04:00

1600 lines
43 KiB
C

/*******************************************************************************
Intel 10 Gigabit PCI Express Linux driver
Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
/**
* ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware by filling the bus info structure and media type, clears
* all on chip counters, initializes receive address registers, multicast
* table, VLAN filter table, calls routine to set up link and flow control
* settings, and leaves transmit and receive units disabled and uninitialized
**/
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
{
u32 ctrl_ext;
/* Set the media type */
hw->phy.media_type = hw->mac.ops.get_media_type(hw);
/* Identify the PHY */
hw->phy.ops.identify(hw);
/*
* Store MAC address from RAR0, clear receive address registers, and
* clear the multicast table
*/
hw->mac.ops.init_rx_addrs(hw);
/* Clear the VLAN filter table */
hw->mac.ops.clear_vfta(hw);
/* Set up link */
hw->mac.ops.setup_link(hw);
/* Clear statistics registers */
hw->mac.ops.clear_hw_cntrs(hw);
/* Set No Snoop Disable */
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
IXGBE_WRITE_FLUSH(hw);
/* Clear adapter stopped flag */
hw->adapter_stopped = false;
return 0;
}
/**
* ixgbe_init_hw_generic - Generic hardware initialization
* @hw: pointer to hardware structure
*
* Initialize the hardware by resetting the hardware, filling the bus info
* structure and media type, clears all on chip counters, initializes receive
* address registers, multicast table, VLAN filter table, calls routine to set
* up link and flow control settings, and leaves transmit and receive units
* disabled and uninitialized
**/
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
{
/* Reset the hardware */
hw->mac.ops.reset_hw(hw);
/* Start the HW */
hw->mac.ops.start_hw(hw);
return 0;
}
/**
* ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
* @hw: pointer to hardware structure
*
* Clears all hardware statistics counters by reading them from the hardware
* Statistics counters are clear on read.
**/
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
{
u16 i = 0;
IXGBE_READ_REG(hw, IXGBE_CRCERRS);
IXGBE_READ_REG(hw, IXGBE_ILLERRC);
IXGBE_READ_REG(hw, IXGBE_ERRBC);
IXGBE_READ_REG(hw, IXGBE_MSPDC);
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_MPC(i));
IXGBE_READ_REG(hw, IXGBE_MLFC);
IXGBE_READ_REG(hw, IXGBE_MRFC);
IXGBE_READ_REG(hw, IXGBE_RLEC);
IXGBE_READ_REG(hw, IXGBE_LXONTXC);
IXGBE_READ_REG(hw, IXGBE_LXONRXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
for (i = 0; i < 8; i++) {
IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
}
IXGBE_READ_REG(hw, IXGBE_PRC64);
IXGBE_READ_REG(hw, IXGBE_PRC127);
IXGBE_READ_REG(hw, IXGBE_PRC255);
IXGBE_READ_REG(hw, IXGBE_PRC511);
IXGBE_READ_REG(hw, IXGBE_PRC1023);
IXGBE_READ_REG(hw, IXGBE_PRC1522);
IXGBE_READ_REG(hw, IXGBE_GPRC);
IXGBE_READ_REG(hw, IXGBE_BPRC);
IXGBE_READ_REG(hw, IXGBE_MPRC);
IXGBE_READ_REG(hw, IXGBE_GPTC);
IXGBE_READ_REG(hw, IXGBE_GORCL);
IXGBE_READ_REG(hw, IXGBE_GORCH);
IXGBE_READ_REG(hw, IXGBE_GOTCL);
IXGBE_READ_REG(hw, IXGBE_GOTCH);
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_RNBC(i));
IXGBE_READ_REG(hw, IXGBE_RUC);
IXGBE_READ_REG(hw, IXGBE_RFC);
IXGBE_READ_REG(hw, IXGBE_ROC);
IXGBE_READ_REG(hw, IXGBE_RJC);
IXGBE_READ_REG(hw, IXGBE_MNGPRC);
IXGBE_READ_REG(hw, IXGBE_MNGPDC);
IXGBE_READ_REG(hw, IXGBE_MNGPTC);
IXGBE_READ_REG(hw, IXGBE_TORL);
IXGBE_READ_REG(hw, IXGBE_TORH);
IXGBE_READ_REG(hw, IXGBE_TPR);
IXGBE_READ_REG(hw, IXGBE_TPT);
IXGBE_READ_REG(hw, IXGBE_PTC64);
IXGBE_READ_REG(hw, IXGBE_PTC127);
IXGBE_READ_REG(hw, IXGBE_PTC255);
IXGBE_READ_REG(hw, IXGBE_PTC511);
IXGBE_READ_REG(hw, IXGBE_PTC1023);
IXGBE_READ_REG(hw, IXGBE_PTC1522);
IXGBE_READ_REG(hw, IXGBE_MPTC);
IXGBE_READ_REG(hw, IXGBE_BPTC);
for (i = 0; i < 16; i++) {
IXGBE_READ_REG(hw, IXGBE_QPRC(i));
IXGBE_READ_REG(hw, IXGBE_QBRC(i));
IXGBE_READ_REG(hw, IXGBE_QPTC(i));
IXGBE_READ_REG(hw, IXGBE_QBTC(i));
}
return 0;
}
/**
* ixgbe_read_pba_num_generic - Reads part number from EEPROM
* @hw: pointer to hardware structure
* @pba_num: stores the part number from the EEPROM
*
* Reads the part number from the EEPROM.
**/
s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
{
s32 ret_val;
u16 data;
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
*pba_num = (u32)(data << 16);
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
*pba_num |= data;
return 0;
}
/**
* ixgbe_get_mac_addr_generic - Generic get MAC address
* @hw: pointer to hardware structure
* @mac_addr: Adapter MAC address
*
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
* A reset of the adapter must be performed prior to calling this function
* in order for the MAC address to have been loaded from the EEPROM into RAR0
**/
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
for (i = 0; i < 4; i++)
mac_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < 2; i++)
mac_addr[i+4] = (u8)(rar_high >> (i*8));
return 0;
}
/**
* ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
* @hw: pointer to hardware structure
*
* Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
* disables transmit and receive units. The adapter_stopped flag is used by
* the shared code and drivers to determine if the adapter is in a stopped
* state and should not touch the hardware.
**/
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
{
u32 number_of_queues;
u32 reg_val;
u16 i;
/*
* Set the adapter_stopped flag so other driver functions stop touching
* the hardware
*/
hw->adapter_stopped = true;
/* Disable the receive unit */
reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
reg_val &= ~(IXGBE_RXCTRL_RXEN);
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
IXGBE_WRITE_FLUSH(hw);
msleep(2);
/* Clear interrupt mask to stop from interrupts being generated */
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
/* Clear any pending interrupts */
IXGBE_READ_REG(hw, IXGBE_EICR);
/* Disable the transmit unit. Each queue must be disabled. */
number_of_queues = hw->mac.max_tx_queues;
for (i = 0; i < number_of_queues; i++) {
reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
if (reg_val & IXGBE_TXDCTL_ENABLE) {
reg_val &= ~IXGBE_TXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
}
}
/*
* Prevent the PCI-E bus from from hanging by disabling PCI-E master
* access and verify no pending requests
*/
if (ixgbe_disable_pcie_master(hw) != 0)
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
return 0;
}
/**
* ixgbe_led_on_generic - Turns on the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn on
**/
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn on the LED, set mode to ON. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_led_off_generic - Turns off the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn off
**/
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn off the LED, set mode to OFF. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_init_eeprom_params_generic - Initialize EEPROM params
* @hw: pointer to hardware structure
*
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
* ixgbe_hw struct in order to set up EEPROM access.
**/
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
{
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
u32 eec;
u16 eeprom_size;
if (eeprom->type == ixgbe_eeprom_uninitialized) {
eeprom->type = ixgbe_eeprom_none;
/* Set default semaphore delay to 10ms which is a well
* tested value */
eeprom->semaphore_delay = 10;
/*
* Check for EEPROM present first.
* If not present leave as none
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_PRES) {
eeprom->type = ixgbe_eeprom_spi;
/*
* SPI EEPROM is assumed here. This code would need to
* change if a future EEPROM is not SPI.
*/
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
IXGBE_EEC_SIZE_SHIFT);
eeprom->word_size = 1 << (eeprom_size +
IXGBE_EEPROM_WORD_SIZE_SHIFT);
}
if (eec & IXGBE_EEC_ADDR_SIZE)
eeprom->address_bits = 16;
else
eeprom->address_bits = 8;
hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
"%d\n", eeprom->type, eeprom->word_size,
eeprom->address_bits);
}
return 0;
}
/**
* ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @data: read 16 bit value from EEPROM
*
* Reads 16 bit value from EEPROM through bit-bang method
**/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 *data)
{
s32 status;
u16 word_in;
u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
/* Prepare the EEPROM for reading */
status = ixgbe_acquire_eeprom(hw);
if (status == 0) {
if (ixgbe_ready_eeprom(hw) != 0) {
ixgbe_release_eeprom(hw);
status = IXGBE_ERR_EEPROM;
}
}
if (status == 0) {
ixgbe_standby_eeprom(hw);
/*
* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((hw->eeprom.address_bits == 8) && (offset >= 128))
read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
ixgbe_shift_out_eeprom_bits(hw, read_opcode,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
hw->eeprom.address_bits);
/* Read the data. */
word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
*data = (word_in >> 8) | (word_in << 8);
/* End this read operation */
ixgbe_release_eeprom(hw);
}
out:
return status;
}
/**
* ixgbe_read_eeprom_generic - Read EEPROM word using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
u32 eerd;
s32 status;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
IXGBE_EEPROM_READ_REG_START;
IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
status = ixgbe_poll_eeprom_eerd_done(hw);
if (status == 0)
*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
IXGBE_EEPROM_READ_REG_DATA);
else
hw_dbg(hw, "Eeprom read timed out\n");
out:
return status;
}
/**
* ixgbe_poll_eeprom_eerd_done - Poll EERD status
* @hw: pointer to hardware structure
*
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
**/
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
{
u32 i;
u32 reg;
s32 status = IXGBE_ERR_EEPROM;
for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
reg = IXGBE_READ_REG(hw, IXGBE_EERD);
if (reg & IXGBE_EEPROM_READ_REG_DONE) {
status = 0;
break;
}
udelay(5);
}
return status;
}
/**
* ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
* @hw: pointer to hardware structure
*
* Prepares EEPROM for access using bit-bang method. This function should
* be called before issuing a command to the EEPROM.
**/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u32 eec;
u32 i;
if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
status = IXGBE_ERR_SWFW_SYNC;
if (status == 0) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Request EEPROM Access */
eec |= IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_GNT)
break;
udelay(5);
}
/* Release if grant not acquired */
if (!(eec & IXGBE_EEC_GNT)) {
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
hw_dbg(hw, "Could not acquire EEPROM grant\n");
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
status = IXGBE_ERR_EEPROM;
}
}
/* Setup EEPROM for Read/Write */
if (status == 0) {
/* Clear CS and SK */
eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
return status;
}
/**
* ixgbe_get_eeprom_semaphore - Get hardware semaphore
* @hw: pointer to hardware structure
*
* Sets the hardware semaphores so EEPROM access can occur for bit-bang method
**/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_EEPROM;
u32 timeout;
u32 i;
u32 swsm;
/* Set timeout value based on size of EEPROM */
timeout = hw->eeprom.word_size + 1;
/* Get SMBI software semaphore between device drivers first */
for (i = 0; i < timeout; i++) {
/*
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI)) {
status = 0;
break;
}
msleep(1);
}
/* Now get the semaphore between SW/FW through the SWESMBI bit */
if (status == 0) {
for (i = 0; i < timeout; i++) {
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Set the SW EEPROM semaphore bit to request access */
swsm |= IXGBE_SWSM_SWESMBI;
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
/*
* If we set the bit successfully then we got the
* semaphore.
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (swsm & IXGBE_SWSM_SWESMBI)
break;
udelay(50);
}
/*
* Release semaphores and return error if SW EEPROM semaphore
* was not granted because we don't have access to the EEPROM
*/
if (i >= timeout) {
hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
"not granted.\n");
ixgbe_release_eeprom_semaphore(hw);
status = IXGBE_ERR_EEPROM;
}
}
return status;
}
/**
* ixgbe_release_eeprom_semaphore - Release hardware semaphore
* @hw: pointer to hardware structure
*
* This function clears hardware semaphore bits.
**/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
u32 swsm;
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ready_eeprom - Polls for EEPROM ready
* @hw: pointer to hardware structure
**/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 i;
u8 spi_stat_reg;
/*
* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
IXGBE_EEPROM_OPCODE_BITS);
spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
ixgbe_standby_eeprom(hw);
};
/*
* On some parts, SPI write time could vary from 0-20mSec on 3.3V
* devices (and only 0-5mSec on 5V devices)
*/
if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
hw_dbg(hw, "SPI EEPROM Status error\n");
status = IXGBE_ERR_EEPROM;
}
return status;
}
/**
* ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
* @hw: pointer to hardware structure
**/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Toggle CS to flush commands */
eec |= IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
eec &= ~IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
* @hw: pointer to hardware structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
**/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count)
{
u32 eec;
u32 mask;
u32 i;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/*
* Mask is used to shift "count" bits of "data" out to the EEPROM
* one bit at a time. Determine the starting bit based on count
*/
mask = 0x01 << (count - 1);
for (i = 0; i < count; i++) {
/*
* A "1" is shifted out to the EEPROM by setting bit "DI" to a
* "1", and then raising and then lowering the clock (the SK
* bit controls the clock input to the EEPROM). A "0" is
* shifted out to the EEPROM by setting "DI" to "0" and then
* raising and then lowering the clock.
*/
if (data & mask)
eec |= IXGBE_EEC_DI;
else
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
ixgbe_raise_eeprom_clk(hw, &eec);
ixgbe_lower_eeprom_clk(hw, &eec);
/*
* Shift mask to signify next bit of data to shift in to the
* EEPROM
*/
mask = mask >> 1;
};
/* We leave the "DI" bit set to "0" when we leave this routine. */
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
* @hw: pointer to hardware structure
**/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
u32 eec;
u32 i;
u16 data = 0;
/*
* In order to read a register from the EEPROM, we need to shift
* 'count' bits in from the EEPROM. Bits are "shifted in" by raising
* the clock input to the EEPROM (setting the SK bit), and then reading
* the value of the "DO" bit. During this "shifting in" process the
* "DI" bit should always be clear.
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
for (i = 0; i < count; i++) {
data = data << 1;
ixgbe_raise_eeprom_clk(hw, &eec);
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DI);
if (eec & IXGBE_EEC_DO)
data |= 1;
ixgbe_lower_eeprom_clk(hw, &eec);
}
return data;
}
/**
* ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eec: EEC register's current value
**/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Raise the clock input to the EEPROM
* (setting the SK bit), then delay
*/
*eec = *eec | IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eecd: EECD's current value
**/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Lower the clock input to the EEPROM (clearing the SK bit), then
* delay
*/
*eec = *eec & ~IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_release_eeprom - Release EEPROM, release semaphores
* @hw: pointer to hardware structure
**/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec |= IXGBE_EEC_CS; /* Pull CS high */
eec &= ~IXGBE_EEC_SK; /* Lower SCK */
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
/* Stop requesting EEPROM access */
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
}
/**
* ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
* @hw: pointer to hardware structure
**/
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
{
u16 i;
u16 j;
u16 checksum = 0;
u16 length = 0;
u16 pointer = 0;
u16 word = 0;
/* Include 0x0-0x3F in the checksum */
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
if (hw->eeprom.ops.read(hw, i, &word) != 0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
checksum += word;
}
/* Include all data from pointers except for the fw pointer */
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
hw->eeprom.ops.read(hw, i, &pointer);
/* Make sure the pointer seems valid */
if (pointer != 0xFFFF && pointer != 0) {
hw->eeprom.ops.read(hw, pointer, &length);
if (length != 0xFFFF && length != 0) {
for (j = pointer+1; j <= pointer+length; j++) {
hw->eeprom.ops.read(hw, j, &word);
checksum += word;
}
}
}
}
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
return checksum;
}
/**
* ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
* @hw: pointer to hardware structure
* @checksum_val: calculated checksum
*
* Performs checksum calculation and validates the EEPROM checksum. If the
* caller does not need checksum_val, the value can be NULL.
**/
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
u16 *checksum_val)
{
s32 status;
u16 checksum;
u16 read_checksum = 0;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = ixgbe_calc_eeprom_checksum(hw);
hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
/*
* Verify read checksum from EEPROM is the same as
* calculated checksum
*/
if (read_checksum != checksum)
status = IXGBE_ERR_EEPROM_CHECKSUM;
/* If the user cares, return the calculated checksum */
if (checksum_val)
*checksum_val = checksum;
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
* @hw: pointer to hardware structure
**/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
s32 status;
u16 checksum;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = ixgbe_calc_eeprom_checksum(hw);
status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
checksum);
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_validate_mac_addr - Validate MAC address
* @mac_addr: pointer to MAC address.
*
* Tests a MAC address to ensure it is a valid Individual Address
**/
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
{
s32 status = 0;
/* Make sure it is not a multicast address */
if (IXGBE_IS_MULTICAST(mac_addr))
status = IXGBE_ERR_INVALID_MAC_ADDR;
/* Not a broadcast address */
else if (IXGBE_IS_BROADCAST(mac_addr))
status = IXGBE_ERR_INVALID_MAC_ADDR;
/* Reject the zero address */
else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
status = IXGBE_ERR_INVALID_MAC_ADDR;
return status;
}
/**
* ixgbe_set_rar_generic - Set Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
* @addr: Address to put into receive address register
* @vmdq: VMDq "set" or "pool" index
* @enable_addr: set flag that address is active
*
* Puts an ethernet address into a receive address register.
**/
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
u32 enable_addr)
{
u32 rar_low, rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* setup VMDq pool selection before this RAR gets enabled */
hw->mac.ops.set_vmdq(hw, index, vmdq);
/* Make sure we are using a valid rar index range */
if (index < rar_entries) {
/*
* HW expects these in little endian so we reverse the byte
* order from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) |
((u32)addr[3] << 24));
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
if (enable_addr != 0)
rar_high |= IXGBE_RAH_AV;
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
} else {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
}
return 0;
}
/**
* ixgbe_clear_rar_generic - Remove Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
*
* Clears an ethernet address from a receive address register.
**/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
u32 rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index < rar_entries) {
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
} else {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
}
/* clear VMDq pool/queue selection for this RAR */
hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
return 0;
}
/**
* ixgbe_enable_rar - Enable Rx address register
* @hw: pointer to hardware structure
* @index: index into the RAR table
*
* Enables the select receive address register.
**/
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
{
u32 rar_high;
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high |= IXGBE_RAH_AV;
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
}
/**
* ixgbe_disable_rar - Disable Rx address register
* @hw: pointer to hardware structure
* @index: index into the RAR table
*
* Disables the select receive address register.
**/
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
{
u32 rar_high;
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= (~IXGBE_RAH_AV);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
}
/**
* ixgbe_init_rx_addrs_generic - Initializes receive address filters.
* @hw: pointer to hardware structure
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
**/
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (ixgbe_validate_mac_addr(hw->mac.addr) ==
IXGBE_ERR_INVALID_MAC_ADDR) {
/* Get the MAC address from the RAR0 for later reference */
hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
} else {
/* Setup the receive address. */
hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
hw->mac.addr[0], hw->mac.addr[1],
hw->mac.addr[2]);
hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
hw->mac.addr[4], hw->mac.addr[5]);
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
}
hw->addr_ctrl.overflow_promisc = 0;
hw->addr_ctrl.rar_used_count = 1;
/* Zero out the other receive addresses. */
hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
for (i = 1; i < rar_entries; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
}
/* Clear the MTA */
hw->addr_ctrl.mc_addr_in_rar_count = 0;
hw->addr_ctrl.mta_in_use = 0;
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
hw_dbg(hw, " Clearing MTA\n");
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
if (hw->mac.ops.init_uta_tables)
hw->mac.ops.init_uta_tables(hw);
return 0;
}
/**
* ixgbe_add_uc_addr - Adds a secondary unicast address.
* @hw: pointer to hardware structure
* @addr: new address
*
* Adds it to unused receive address register or goes into promiscuous mode.
**/
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
{
u32 rar_entries = hw->mac.num_rar_entries;
u32 rar;
hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
/*
* Place this address in the RAR if there is room,
* else put the controller into promiscuous mode
*/
if (hw->addr_ctrl.rar_used_count < rar_entries) {
rar = hw->addr_ctrl.rar_used_count -
hw->addr_ctrl.mc_addr_in_rar_count;
hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
hw->addr_ctrl.rar_used_count++;
} else {
hw->addr_ctrl.overflow_promisc++;
}
hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
}
/**
* ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
* @hw: pointer to hardware structure
* @addr_list: the list of new addresses
* @addr_count: number of addresses
* @next: iterator function to walk the address list
*
* The given list replaces any existing list. Clears the secondary addrs from
* receive address registers. Uses unused receive address registers for the
* first secondary addresses, and falls back to promiscuous mode as needed.
*
* Drivers using secondary unicast addresses must set user_set_promisc when
* manually putting the device into promiscuous mode.
**/
s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
u32 addr_count, ixgbe_mc_addr_itr next)
{
u8 *addr;
u32 i;
u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
u32 uc_addr_in_use;
u32 fctrl;
u32 vmdq;
/*
* Clear accounting of old secondary address list,
* don't count RAR[0]
*/
uc_addr_in_use = hw->addr_ctrl.rar_used_count -
hw->addr_ctrl.mc_addr_in_rar_count - 1;
hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
hw->addr_ctrl.overflow_promisc = 0;
/* Zero out the other receive addresses */
hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
for (i = 1; i <= uc_addr_in_use; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
}
/* Add the new addresses */
for (i = 0; i < addr_count; i++) {
hw_dbg(hw, " Adding the secondary addresses:\n");
addr = next(hw, &addr_list, &vmdq);
ixgbe_add_uc_addr(hw, addr, vmdq);
}
if (hw->addr_ctrl.overflow_promisc) {
/* enable promisc if not already in overflow or set by user */
if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
hw_dbg(hw, " Entering address overflow promisc mode\n");
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl |= IXGBE_FCTRL_UPE;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
}
} else {
/* only disable if set by overflow, not by user */
if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
hw_dbg(hw, " Leaving address overflow promisc mode\n");
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl &= ~IXGBE_FCTRL_UPE;
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
}
}
hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
return 0;
}
/**
* ixgbe_mta_vector - Determines bit-vector in multicast table to set
* @hw: pointer to hardware structure
* @mc_addr: the multicast address
*
* Extracts the 12 bits, from a multicast address, to determine which
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
* incoming rx multicast addresses, to determine the bit-vector to check in
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
* by the MO field of the MCSTCTRL. The MO field is set during initialization
* to mc_filter_type.
**/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector = 0;
switch (hw->mac.mc_filter_type) {
case 0: /* use bits [47:36] of the address */
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1: /* use bits [46:35] of the address */
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2: /* use bits [45:34] of the address */
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3: /* use bits [43:32] of the address */
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
default: /* Invalid mc_filter_type */
hw_dbg(hw, "MC filter type param set incorrectly\n");
break;
}
/* vector can only be 12-bits or boundary will be exceeded */
vector &= 0xFFF;
return vector;
}
/**
* ixgbe_set_mta - Set bit-vector in multicast table
* @hw: pointer to hardware structure
* @hash_value: Multicast address hash value
*
* Sets the bit-vector in the multicast table.
**/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector;
u32 vector_bit;
u32 vector_reg;
u32 mta_reg;
hw->addr_ctrl.mta_in_use++;
vector = ixgbe_mta_vector(hw, mc_addr);
hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
/*
* The MTA is a register array of 128 32-bit registers. It is treated
* like an array of 4096 bits. We want to set bit
* BitArray[vector_value]. So we figure out what register the bit is
* in, read it, OR in the new bit, then write back the new value. The
* register is determined by the upper 7 bits of the vector value and
* the bit within that register are determined by the lower 5 bits of
* the value.
*/
vector_reg = (vector >> 5) & 0x7F;
vector_bit = vector & 0x1F;
mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
mta_reg |= (1 << vector_bit);
IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
}
/**
* ixgbe_add_mc_addr - Adds a multicast address.
* @hw: pointer to hardware structure
* @mc_addr: new multicast address
*
* Adds it to unused receive address register or to the multicast table.
**/
static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 rar_entries = hw->mac.num_rar_entries;
u32 rar;
hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
mc_addr[0], mc_addr[1], mc_addr[2],
mc_addr[3], mc_addr[4], mc_addr[5]);
/*
* Place this multicast address in the RAR if there is room,
* else put it in the MTA
*/
if (hw->addr_ctrl.rar_used_count < rar_entries) {
/* use RAR from the end up for multicast */
rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1;
hw->mac.ops.set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV);
hw_dbg(hw, "Added a multicast address to RAR[%d]\n", rar);
hw->addr_ctrl.rar_used_count++;
hw->addr_ctrl.mc_addr_in_rar_count++;
} else {
ixgbe_set_mta(hw, mc_addr);
}
hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
}
/**
* ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
* @hw: pointer to hardware structure
* @mc_addr_list: the list of new multicast addresses
* @mc_addr_count: number of addresses
* @next: iterator function to walk the multicast address list
*
* The given list replaces any existing list. Clears the MC addrs from receive
* address registers and the multicast table. Uses unused receive address
* registers for the first multicast addresses, and hashes the rest into the
* multicast table.
**/
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, ixgbe_mc_addr_itr next)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
u32 vmdq;
/*
* Set the new number of MC addresses that we are being requested to
* use.
*/
hw->addr_ctrl.num_mc_addrs = mc_addr_count;
hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
hw->addr_ctrl.mc_addr_in_rar_count = 0;
hw->addr_ctrl.mta_in_use = 0;
/* Zero out the other receive addresses. */
hw_dbg(hw, "Clearing RAR[%d-%d]\n", hw->addr_ctrl.rar_used_count,
rar_entries - 1);
for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
}
/* Clear the MTA */
hw_dbg(hw, " Clearing MTA\n");
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
/* Add the new addresses */
for (i = 0; i < mc_addr_count; i++) {
hw_dbg(hw, " Adding the multicast addresses:\n");
ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
}
/* Enable mta */
if (hw->addr_ctrl.mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
return 0;
}
/**
* ixgbe_enable_mc_generic - Enable multicast address in RAR
* @hw: pointer to hardware structure
*
* Enables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mc_addr_in_rar_count > 0)
for (i = (rar_entries - a->mc_addr_in_rar_count);
i < rar_entries; i++)
ixgbe_enable_rar(hw, i);
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_disable_mc_generic - Disable multicast address in RAR
* @hw: pointer to hardware structure
*
* Disables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mc_addr_in_rar_count > 0)
for (i = (rar_entries - a->mc_addr_in_rar_count);
i < rar_entries; i++)
ixgbe_disable_rar(hw, i);
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_disable_pcie_master - Disable PCI-express master access
* @hw: pointer to hardware structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
* bit hasn't caused the master requests to be disabled, else 0
* is returned signifying master requests disabled.
**/
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
{
u32 i;
u32 reg_val;
u32 number_of_queues;
s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
/* Disable the receive unit by stopping each queue */
number_of_queues = hw->mac.max_rx_queues;
for (i = 0; i < number_of_queues; i++) {
reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
if (reg_val & IXGBE_RXDCTL_ENABLE) {
reg_val &= ~IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
}
}
reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
reg_val |= IXGBE_CTRL_GIO_DIS;
IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
status = 0;
break;
}
udelay(100);
}
return status;
}
/**
* ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore thought the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
u32 fwmask = mask << 5;
s32 timeout = 200;
while (timeout) {
if (ixgbe_get_eeprom_semaphore(hw))
return -IXGBE_ERR_SWFW_SYNC;
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
if (!(gssr & (fwmask | swmask)))
break;
/*
* Firmware currently using resource (fwmask) or other software
* thread currently using resource (swmask)
*/
ixgbe_release_eeprom_semaphore(hw);
msleep(5);
timeout--;
}
if (!timeout) {
hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
return -IXGBE_ERR_SWFW_SYNC;
}
gssr |= swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
return 0;
}
/**
* ixgbe_release_swfw_sync - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore thought the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
ixgbe_get_eeprom_semaphore(hw);
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
gssr &= ~swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
}