mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
c98be0c96d
Fixed multiple spelling errors. Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Carlos E. Garcia <carlos@cgarcia.org> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
103 lines
4.5 KiB
Plaintext
103 lines
4.5 KiB
Plaintext
DMA attributes
|
|
==============
|
|
|
|
This document describes the semantics of the DMA attributes that are
|
|
defined in linux/dma-attrs.h.
|
|
|
|
DMA_ATTR_WRITE_BARRIER
|
|
----------------------
|
|
|
|
DMA_ATTR_WRITE_BARRIER is a (write) barrier attribute for DMA. DMA
|
|
to a memory region with the DMA_ATTR_WRITE_BARRIER attribute forces
|
|
all pending DMA writes to complete, and thus provides a mechanism to
|
|
strictly order DMA from a device across all intervening busses and
|
|
bridges. This barrier is not specific to a particular type of
|
|
interconnect, it applies to the system as a whole, and so its
|
|
implementation must account for the idiosyncrasies of the system all
|
|
the way from the DMA device to memory.
|
|
|
|
As an example of a situation where DMA_ATTR_WRITE_BARRIER would be
|
|
useful, suppose that a device does a DMA write to indicate that data is
|
|
ready and available in memory. The DMA of the "completion indication"
|
|
could race with data DMA. Mapping the memory used for completion
|
|
indications with DMA_ATTR_WRITE_BARRIER would prevent the race.
|
|
|
|
DMA_ATTR_WEAK_ORDERING
|
|
----------------------
|
|
|
|
DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the mapping
|
|
may be weakly ordered, that is that reads and writes may pass each other.
|
|
|
|
Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING,
|
|
those that do not will simply ignore the attribute and exhibit default
|
|
behavior.
|
|
|
|
DMA_ATTR_WRITE_COMBINE
|
|
----------------------
|
|
|
|
DMA_ATTR_WRITE_COMBINE specifies that writes to the mapping may be
|
|
buffered to improve performance.
|
|
|
|
Since it is optional for platforms to implement DMA_ATTR_WRITE_COMBINE,
|
|
those that do not will simply ignore the attribute and exhibit default
|
|
behavior.
|
|
|
|
DMA_ATTR_NON_CONSISTENT
|
|
-----------------------
|
|
|
|
DMA_ATTR_NON_CONSISTENT lets the platform to choose to return either
|
|
consistent or non-consistent memory as it sees fit. By using this API,
|
|
you are guaranteeing to the platform that you have all the correct and
|
|
necessary sync points for this memory in the driver.
|
|
|
|
DMA_ATTR_NO_KERNEL_MAPPING
|
|
--------------------------
|
|
|
|
DMA_ATTR_NO_KERNEL_MAPPING lets the platform to avoid creating a kernel
|
|
virtual mapping for the allocated buffer. On some architectures creating
|
|
such mapping is non-trivial task and consumes very limited resources
|
|
(like kernel virtual address space or dma consistent address space).
|
|
Buffers allocated with this attribute can be only passed to user space
|
|
by calling dma_mmap_attrs(). By using this API, you are guaranteeing
|
|
that you won't dereference the pointer returned by dma_alloc_attr(). You
|
|
can treat it as a cookie that must be passed to dma_mmap_attrs() and
|
|
dma_free_attrs(). Make sure that both of these also get this attribute
|
|
set on each call.
|
|
|
|
Since it is optional for platforms to implement
|
|
DMA_ATTR_NO_KERNEL_MAPPING, those that do not will simply ignore the
|
|
attribute and exhibit default behavior.
|
|
|
|
DMA_ATTR_SKIP_CPU_SYNC
|
|
----------------------
|
|
|
|
By default dma_map_{single,page,sg} functions family transfer a given
|
|
buffer from CPU domain to device domain. Some advanced use cases might
|
|
require sharing a buffer between more than one device. This requires
|
|
having a mapping created separately for each device and is usually
|
|
performed by calling dma_map_{single,page,sg} function more than once
|
|
for the given buffer with device pointer to each device taking part in
|
|
the buffer sharing. The first call transfers a buffer from 'CPU' domain
|
|
to 'device' domain, what synchronizes CPU caches for the given region
|
|
(usually it means that the cache has been flushed or invalidated
|
|
depending on the dma direction). However, next calls to
|
|
dma_map_{single,page,sg}() for other devices will perform exactly the
|
|
same synchronization operation on the CPU cache. CPU cache synchronization
|
|
might be a time consuming operation, especially if the buffers are
|
|
large, so it is highly recommended to avoid it if possible.
|
|
DMA_ATTR_SKIP_CPU_SYNC allows platform code to skip synchronization of
|
|
the CPU cache for the given buffer assuming that it has been already
|
|
transferred to 'device' domain. This attribute can be also used for
|
|
dma_unmap_{single,page,sg} functions family to force buffer to stay in
|
|
device domain after releasing a mapping for it. Use this attribute with
|
|
care!
|
|
|
|
DMA_ATTR_FORCE_CONTIGUOUS
|
|
-------------------------
|
|
|
|
By default DMA-mapping subsystem is allowed to assemble the buffer
|
|
allocated by dma_alloc_attrs() function from individual pages if it can
|
|
be mapped as contiguous chunk into device dma address space. By
|
|
specifying this attribute the allocated buffer is forced to be contiguous
|
|
also in physical memory.
|