linux/arch/s390/kvm/interrupt.c
Linus Torvalds 4e241557fc The bulk of the changes here is for x86. And for once it's not
for silicon that no one owns: these are really new features for
 everyone.
 
 * ARM: several features are in progress but missed the 4.2 deadline.
 So here is just a smattering of bug fixes, plus enabling the VFIO
 integration.
 
 * s390: Some fixes/refactorings/optimizations, plus support for
 2GB pages.
 
 * x86: 1) host and guest support for marking kvmclock as a stable
 scheduler clock. 2) support for write combining. 3) support for
 system management mode, needed for secure boot in guests. 4) a bunch
 of cleanups required for 2+3.  5) support for virtualized performance
 counters on AMD; 6) legacy PCI device assignment is deprecated and
 defaults to "n" in Kconfig; VFIO replaces it.  On top of this there are
 also bug fixes and eager FPU context loading for FPU-heavy guests.
 
 * Common code: Support for multiple address spaces; for now it is
 used only for x86 SMM but the s390 folks also have plans.
 
 There are some x86 conflicts, one with the rc8 pull request and
 the rest with Ingo's FPU rework.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs
 F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf
 sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL
 ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL
 vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s
 SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0=
 =YsAR
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull first batch of KVM updates from Paolo Bonzini:
 "The bulk of the changes here is for x86.  And for once it's not for
  silicon that no one owns: these are really new features for everyone.

  Details:

   - ARM:
        several features are in progress but missed the 4.2 deadline.
        So here is just a smattering of bug fixes, plus enabling the
        VFIO integration.

   - s390:
        Some fixes/refactorings/optimizations, plus support for 2GB
        pages.

   - x86:
        * host and guest support for marking kvmclock as a stable
          scheduler clock.
        * support for write combining.
        * support for system management mode, needed for secure boot in
          guests.
        * a bunch of cleanups required for the above
        * support for virtualized performance counters on AMD
        * legacy PCI device assignment is deprecated and defaults to "n"
          in Kconfig; VFIO replaces it

        On top of this there are also bug fixes and eager FPU context
        loading for FPU-heavy guests.

   - Common code:
        Support for multiple address spaces; for now it is used only for
        x86 SMM but the s390 folks also have plans"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
  KVM: s390: clear floating interrupt bitmap and parameters
  KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs
  KVM: x86/vPMU: Implement AMD vPMU code for KVM
  KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch
  KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc
  KVM: x86/vPMU: reorder PMU functions
  KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code
  KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU
  KVM: x86/vPMU: introduce pmu.h header
  KVM: x86/vPMU: rename a few PMU functions
  KVM: MTRR: do not map huge page for non-consistent range
  KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type
  KVM: MTRR: introduce mtrr_for_each_mem_type
  KVM: MTRR: introduce fixed_mtrr_addr_* functions
  KVM: MTRR: sort variable MTRRs
  KVM: MTRR: introduce var_mtrr_range
  KVM: MTRR: introduce fixed_mtrr_segment table
  KVM: MTRR: improve kvm_mtrr_get_guest_memory_type
  KVM: MTRR: do not split 64 bits MSR content
  KVM: MTRR: clean up mtrr default type
  ...
2015-06-24 09:36:49 -07:00

2284 lines
61 KiB
C

/*
* handling kvm guest interrupts
*
* Copyright IBM Corp. 2008, 2015
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
*/
#include <linux/interrupt.h>
#include <linux/kvm_host.h>
#include <linux/hrtimer.h>
#include <linux/mmu_context.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/vmalloc.h>
#include <asm/asm-offsets.h>
#include <asm/dis.h>
#include <asm/uaccess.h>
#include <asm/sclp.h>
#include <asm/isc.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include "trace-s390.h"
#define IOINT_SCHID_MASK 0x0000ffff
#define IOINT_SSID_MASK 0x00030000
#define IOINT_CSSID_MASK 0x03fc0000
#define IOINT_AI_MASK 0x04000000
#define PFAULT_INIT 0x0600
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
int psw_extint_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) ||
(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) ||
(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT))
return 0;
return 1;
}
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
if (psw_extint_disabled(vcpu) ||
!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
return 0;
if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
/* No timer interrupts when single stepping */
return 0;
return 1;
}
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.sie_block->ckc <
get_tod_clock_fast() + vcpu->arch.sie_block->epoch))
return 0;
return ckc_interrupts_enabled(vcpu);
}
static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
return !psw_extint_disabled(vcpu) &&
(vcpu->arch.sie_block->gcr[0] & 0x400ul);
}
static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
return (vcpu->arch.sie_block->cputm >> 63) &&
cpu_timer_interrupts_enabled(vcpu);
}
static inline int is_ioirq(unsigned long irq_type)
{
return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
(irq_type <= IRQ_PEND_IO_ISC_7));
}
static uint64_t isc_to_isc_bits(int isc)
{
return (0x80 >> isc) << 24;
}
static inline u8 int_word_to_isc(u32 int_word)
{
return (int_word & 0x38000000) >> 27;
}
static inline unsigned long pending_floating_irqs(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.float_int.pending_irqs;
}
static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu)
{
return vcpu->arch.local_int.pending_irqs;
}
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
unsigned long active_mask)
{
int i;
for (i = 0; i <= MAX_ISC; i++)
if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
return active_mask;
}
static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
{
unsigned long active_mask;
active_mask = pending_local_irqs(vcpu);
active_mask |= pending_floating_irqs(vcpu);
if (!active_mask)
return 0;
if (psw_extint_disabled(vcpu))
active_mask &= ~IRQ_PEND_EXT_MASK;
if (psw_ioint_disabled(vcpu))
active_mask &= ~IRQ_PEND_IO_MASK;
else
active_mask = disable_iscs(vcpu, active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
if (psw_mchk_disabled(vcpu))
active_mask &= ~IRQ_PEND_MCHK_MASK;
if (!(vcpu->arch.sie_block->gcr[14] &
vcpu->kvm->arch.float_int.mchk.cr14))
__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
/*
* STOP irqs will never be actively delivered. They are triggered via
* intercept requests and cleared when the stop intercept is performed.
*/
__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
return active_mask;
}
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
atomic_set_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}
static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
atomic_clear_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}
static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
atomic_clear_mask(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
&vcpu->arch.sie_block->cpuflags);
vcpu->arch.sie_block->lctl = 0x0000;
vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
if (guestdbg_enabled(vcpu)) {
vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
LCTL_CR10 | LCTL_CR11);
vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
}
}
static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
atomic_set_mask(flag, &vcpu->arch.sie_block->cpuflags);
}
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
if (!(pending_floating_irqs(vcpu) & IRQ_PEND_IO_MASK))
return;
else if (psw_ioint_disabled(vcpu))
__set_cpuflag(vcpu, CPUSTAT_IO_INT);
else
vcpu->arch.sie_block->lctl |= LCTL_CR6;
}
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK))
return;
if (psw_extint_disabled(vcpu))
__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
else
vcpu->arch.sie_block->lctl |= LCTL_CR0;
}
static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
return;
if (psw_mchk_disabled(vcpu))
vcpu->arch.sie_block->ictl |= ICTL_LPSW;
else
vcpu->arch.sie_block->lctl |= LCTL_CR14;
}
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
if (kvm_s390_is_stop_irq_pending(vcpu))
__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
{
set_intercept_indicators_io(vcpu);
set_intercept_indicators_ext(vcpu);
set_intercept_indicators_mchk(vcpu);
set_intercept_indicators_stop(vcpu);
}
static u16 get_ilc(struct kvm_vcpu *vcpu)
{
switch (vcpu->arch.sie_block->icptcode) {
case ICPT_INST:
case ICPT_INSTPROGI:
case ICPT_OPEREXC:
case ICPT_PARTEXEC:
case ICPT_IOINST:
/* last instruction only stored for these icptcodes */
return insn_length(vcpu->arch.sie_block->ipa >> 8);
case ICPT_PROGI:
return vcpu->arch.sie_block->pgmilc;
default:
return 0;
}
}
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
0, 0);
rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
0, 0);
rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
(u16 __user *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_ext_info ext;
int rc;
spin_lock(&li->lock);
ext = li->irq.ext;
clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
li->irq.ext.ext_params2 = 0;
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "interrupt: pfault init parm:%x,parm64:%llx",
0, ext.ext_params2);
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_PFAULT_INIT,
0, ext.ext_params2);
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_mchk_info mchk = {};
unsigned long adtl_status_addr;
int deliver = 0;
int rc = 0;
spin_lock(&fi->lock);
spin_lock(&li->lock);
if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
/*
* If there was an exigent machine check pending, then any
* repressible machine checks that might have been pending
* are indicated along with it, so always clear bits for
* repressible and exigent interrupts
*/
mchk = li->irq.mchk;
clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
memset(&li->irq.mchk, 0, sizeof(mchk));
deliver = 1;
}
/*
* We indicate floating repressible conditions along with
* other pending conditions. Channel Report Pending and Channel
* Subsystem damage are the only two and and are indicated by
* bits in mcic and masked in cr14.
*/
if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
mchk.mcic |= fi->mchk.mcic;
mchk.cr14 |= fi->mchk.cr14;
memset(&fi->mchk, 0, sizeof(mchk));
deliver = 1;
}
spin_unlock(&li->lock);
spin_unlock(&fi->lock);
if (deliver) {
VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx",
mchk.mcic);
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_MCHK,
mchk.cr14, mchk.mcic);
rc = kvm_s390_vcpu_store_status(vcpu,
KVM_S390_STORE_STATUS_PREFIXED);
rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
&adtl_status_addr,
sizeof(unsigned long));
rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
adtl_status_addr);
rc |= put_guest_lc(vcpu, mchk.mcic,
(u64 __user *) __LC_MCCK_CODE);
rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
(u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
&mchk.fixed_logout,
sizeof(mchk.fixed_logout));
rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
}
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart");
vcpu->stat.deliver_restart_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
rc = write_guest_lc(vcpu,
offsetof(struct _lowcore, restart_old_psw),
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw),
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_prefix_info prefix;
spin_lock(&li->lock);
prefix = li->irq.prefix;
li->irq.prefix.address = 0;
clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x", prefix.address);
vcpu->stat.deliver_prefix_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_SIGP_SET_PREFIX,
prefix.address, 0);
kvm_s390_set_prefix(vcpu, prefix.address);
return 0;
}
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
int cpu_addr;
spin_lock(&li->lock);
cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
clear_bit(cpu_addr, li->sigp_emerg_pending);
if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg");
vcpu->stat.deliver_emergency_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
cpu_addr, 0);
rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_extcall_info extcall;
int rc;
spin_lock(&li->lock);
extcall = li->irq.extcall;
li->irq.extcall.code = 0;
clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call");
vcpu->stat.deliver_external_call++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_EXTERNAL_CALL,
extcall.code, 0);
rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_pgm_info pgm_info;
int rc = 0, nullifying = false;
u16 ilc = get_ilc(vcpu);
spin_lock(&li->lock);
pgm_info = li->irq.pgm;
clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
memset(&li->irq.pgm, 0, sizeof(pgm_info));
spin_unlock(&li->lock);
VCPU_EVENT(vcpu, 4, "interrupt: pgm check code:%x, ilc:%x",
pgm_info.code, ilc);
vcpu->stat.deliver_program_int++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
pgm_info.code, 0);
switch (pgm_info.code & ~PGM_PER) {
case PGM_AFX_TRANSLATION:
case PGM_ASX_TRANSLATION:
case PGM_EX_TRANSLATION:
case PGM_LFX_TRANSLATION:
case PGM_LSTE_SEQUENCE:
case PGM_LSX_TRANSLATION:
case PGM_LX_TRANSLATION:
case PGM_PRIMARY_AUTHORITY:
case PGM_SECONDARY_AUTHORITY:
nullifying = true;
/* fall through */
case PGM_SPACE_SWITCH:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
break;
case PGM_ALEN_TRANSLATION:
case PGM_ALE_SEQUENCE:
case PGM_ASTE_INSTANCE:
case PGM_ASTE_SEQUENCE:
case PGM_ASTE_VALIDITY:
case PGM_EXTENDED_AUTHORITY:
rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
nullifying = true;
break;
case PGM_ASCE_TYPE:
case PGM_PAGE_TRANSLATION:
case PGM_REGION_FIRST_TRANS:
case PGM_REGION_SECOND_TRANS:
case PGM_REGION_THIRD_TRANS:
case PGM_SEGMENT_TRANSLATION:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
(u8 *)__LC_OP_ACCESS_ID);
nullifying = true;
break;
case PGM_MONITOR:
rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
(u16 *)__LC_MON_CLASS_NR);
rc |= put_guest_lc(vcpu, pgm_info.mon_code,
(u64 *)__LC_MON_CODE);
break;
case PGM_VECTOR_PROCESSING:
case PGM_DATA:
rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
(u32 *)__LC_DATA_EXC_CODE);
break;
case PGM_PROTECTION:
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
(u64 *)__LC_TRANS_EXC_CODE);
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
(u8 *)__LC_EXC_ACCESS_ID);
break;
case PGM_STACK_FULL:
case PGM_STACK_EMPTY:
case PGM_STACK_SPECIFICATION:
case PGM_STACK_TYPE:
case PGM_STACK_OPERATION:
case PGM_TRACE_TABEL:
case PGM_CRYPTO_OPERATION:
nullifying = true;
break;
}
if (pgm_info.code & PGM_PER) {
rc |= put_guest_lc(vcpu, pgm_info.per_code,
(u8 *) __LC_PER_CODE);
rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
(u8 *)__LC_PER_ATMID);
rc |= put_guest_lc(vcpu, pgm_info.per_address,
(u64 *) __LC_PER_ADDRESS);
rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
(u8 *) __LC_PER_ACCESS_ID);
}
if (nullifying && vcpu->arch.sie_block->icptcode == ICPT_INST)
kvm_s390_rewind_psw(vcpu, ilc);
rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC);
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
(u64 *) __LC_LAST_BREAK);
rc |= put_guest_lc(vcpu, pgm_info.code,
(u16 *)__LC_PGM_INT_CODE);
rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_ext_info ext;
int rc = 0;
spin_lock(&fi->lock);
if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
spin_unlock(&fi->lock);
return 0;
}
ext = fi->srv_signal;
memset(&fi->srv_signal, 0, sizeof(ext));
clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x",
ext.ext_params);
vcpu->stat.deliver_service_signal++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
ext.ext_params, 0);
rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
rc |= put_guest_lc(vcpu, ext.ext_params,
(u32 *)__LC_EXT_PARAMS);
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_interrupt_info *inti;
int rc = 0;
spin_lock(&fi->lock);
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
struct kvm_s390_interrupt_info,
list);
if (inti) {
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
KVM_S390_INT_PFAULT_DONE, 0,
inti->ext.ext_params2);
list_del(&inti->list);
fi->counters[FIRQ_CNTR_PFAULT] -= 1;
}
if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, PFAULT_DONE,
(u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
(u64 *)__LC_EXT_PARAMS2);
kfree(inti);
}
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
{
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
struct kvm_s390_interrupt_info *inti;
int rc = 0;
spin_lock(&fi->lock);
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
struct kvm_s390_interrupt_info,
list);
if (inti) {
VCPU_EVENT(vcpu, 4,
"interrupt: virtio parm:%x,parm64:%llx",
inti->ext.ext_params, inti->ext.ext_params2);
vcpu->stat.deliver_virtio_interrupt++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
inti->type,
inti->ext.ext_params,
inti->ext.ext_params2);
list_del(&inti->list);
fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
}
if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
(u16 *)__LC_EXT_INT_CODE);
rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
(u16 *)__LC_EXT_CPU_ADDR);
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= put_guest_lc(vcpu, inti->ext.ext_params,
(u32 *)__LC_EXT_PARAMS);
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
(u64 *)__LC_EXT_PARAMS2);
kfree(inti);
}
return rc ? -EFAULT : 0;
}
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
unsigned long irq_type)
{
struct list_head *isc_list;
struct kvm_s390_float_interrupt *fi;
struct kvm_s390_interrupt_info *inti = NULL;
int rc = 0;
fi = &vcpu->kvm->arch.float_int;
spin_lock(&fi->lock);
isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
inti = list_first_entry_or_null(isc_list,
struct kvm_s390_interrupt_info,
list);
if (inti) {
VCPU_EVENT(vcpu, 4, "interrupt: I/O %llx", inti->type);
vcpu->stat.deliver_io_int++;
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
inti->type,
((__u32)inti->io.subchannel_id << 16) |
inti->io.subchannel_nr,
((__u64)inti->io.io_int_parm << 32) |
inti->io.io_int_word);
list_del(&inti->list);
fi->counters[FIRQ_CNTR_IO] -= 1;
}
if (list_empty(isc_list))
clear_bit(irq_type, &fi->pending_irqs);
spin_unlock(&fi->lock);
if (inti) {
rc = put_guest_lc(vcpu, inti->io.subchannel_id,
(u16 *)__LC_SUBCHANNEL_ID);
rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
(u16 *)__LC_SUBCHANNEL_NR);
rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
(u32 *)__LC_IO_INT_PARM);
rc |= put_guest_lc(vcpu, inti->io.io_int_word,
(u32 *)__LC_IO_INT_WORD);
rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
&vcpu->arch.sie_block->gpsw,
sizeof(psw_t));
kfree(inti);
}
return rc ? -EFAULT : 0;
}
typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
static const deliver_irq_t deliver_irq_funcs[] = {
[IRQ_PEND_MCHK_EX] = __deliver_machine_check,
[IRQ_PEND_MCHK_REP] = __deliver_machine_check,
[IRQ_PEND_PROG] = __deliver_prog,
[IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
[IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
[IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
[IRQ_PEND_RESTART] = __deliver_restart,
[IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
[IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
[IRQ_PEND_EXT_SERVICE] = __deliver_service,
[IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
[IRQ_PEND_VIRTIO] = __deliver_virtio,
};
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
if (!sclp.has_sigpif)
return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
return (sigp_ctrl & SIGP_CTRL_C) &&
(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND);
}
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
{
int rc;
rc = !!deliverable_irqs(vcpu);
if (!rc && kvm_cpu_has_pending_timer(vcpu))
rc = 1;
/* external call pending and deliverable */
if (!rc && kvm_s390_ext_call_pending(vcpu) &&
!psw_extint_disabled(vcpu) &&
(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
rc = 1;
if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
rc = 1;
return rc;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
}
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
u64 now, sltime;
vcpu->stat.exit_wait_state++;
/* fast path */
if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu))
return 0;
if (psw_interrupts_disabled(vcpu)) {
VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
return -EOPNOTSUPP; /* disabled wait */
}
if (!ckc_interrupts_enabled(vcpu)) {
VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
__set_cpu_idle(vcpu);
goto no_timer;
}
now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
/* underflow */
if (vcpu->arch.sie_block->ckc < now)
return 0;
__set_cpu_idle(vcpu);
hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime);
no_timer:
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
kvm_vcpu_block(vcpu);
__unset_cpu_idle(vcpu);
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
hrtimer_cancel(&vcpu->arch.ckc_timer);
return 0;
}
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
if (waitqueue_active(&vcpu->wq)) {
/*
* The vcpu gave up the cpu voluntarily, mark it as a good
* yield-candidate.
*/
vcpu->preempted = true;
wake_up_interruptible(&vcpu->wq);
vcpu->stat.halt_wakeup++;
}
}
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
u64 now, sltime;
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
/*
* If the monotonic clock runs faster than the tod clock we might be
* woken up too early and have to go back to sleep to avoid deadlocks.
*/
if (vcpu->arch.sie_block->ckc > now &&
hrtimer_forward_now(timer, ns_to_ktime(sltime)))
return HRTIMER_RESTART;
kvm_s390_vcpu_wakeup(vcpu);
return HRTIMER_NORESTART;
}
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
spin_lock(&li->lock);
li->pending_irqs = 0;
bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
memset(&li->irq, 0, sizeof(li->irq));
spin_unlock(&li->lock);
/* clear pending external calls set by sigp interpretation facility */
atomic_clear_mask(CPUSTAT_ECALL_PEND, li->cpuflags);
vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0;
}
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
deliver_irq_t func;
int rc = 0;
unsigned long irq_type;
unsigned long irqs;
__reset_intercept_indicators(vcpu);
/* pending ckc conditions might have been invalidated */
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
if (ckc_irq_pending(vcpu))
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
/* pending cpu timer conditions might have been invalidated */
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
if (cpu_timer_irq_pending(vcpu))
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
while ((irqs = deliverable_irqs(vcpu)) && !rc) {
/* bits are in the order of interrupt priority */
irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
if (is_ioirq(irq_type)) {
rc = __deliver_io(vcpu, irq_type);
} else {
func = deliver_irq_funcs[irq_type];
if (!func) {
WARN_ON_ONCE(func == NULL);
clear_bit(irq_type, &li->pending_irqs);
continue;
}
rc = func(vcpu);
}
}
set_intercept_indicators(vcpu);
return rc;
}
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
li->irq.pgm = irq->u.pgm;
set_bit(IRQ_PEND_PROG, &li->pending_irqs);
return 0;
}
int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_irq irq;
VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, code,
0, 1);
spin_lock(&li->lock);
irq.u.pgm.code = code;
__inject_prog(vcpu, &irq);
BUG_ON(waitqueue_active(li->wq));
spin_unlock(&li->lock);
return 0;
}
int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
struct kvm_s390_pgm_info *pgm_info)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_irq irq;
int rc;
VCPU_EVENT(vcpu, 3, "inject: prog irq %d (from kernel)",
pgm_info->code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
pgm_info->code, 0, 1);
spin_lock(&li->lock);
irq.u.pgm = *pgm_info;
rc = __inject_prog(vcpu, &irq);
BUG_ON(waitqueue_active(li->wq));
spin_unlock(&li->lock);
return rc;
}
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
VCPU_EVENT(vcpu, 3, "inject: external irq params:%x, params2:%llx",
irq->u.ext.ext_params, irq->u.ext.ext_params2);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
irq->u.ext.ext_params,
irq->u.ext.ext_params2, 2);
li->irq.ext = irq->u.ext;
set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
return 0;
}
static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id)
{
unsigned char new_val, old_val;
uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK);
old_val = *sigp_ctrl & ~SIGP_CTRL_C;
if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) {
/* another external call is pending */
return -EBUSY;
}
atomic_set_mask(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
return 0;
}
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
uint16_t src_id = irq->u.extcall.code;
VCPU_EVENT(vcpu, 3, "inject: external call source-cpu:%u",
src_id);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
src_id, 0, 2);
/* sending vcpu invalid */
if (src_id >= KVM_MAX_VCPUS ||
kvm_get_vcpu(vcpu->kvm, src_id) == NULL)
return -EINVAL;
if (sclp.has_sigpif)
return __inject_extcall_sigpif(vcpu, src_id);
if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
return -EBUSY;
*extcall = irq->u.extcall;
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
return 0;
}
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
VCPU_EVENT(vcpu, 3, "inject: set prefix to %x (from user)",
irq->u.prefix.address);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
irq->u.prefix.address, 0, 2);
if (!is_vcpu_stopped(vcpu))
return -EBUSY;
*prefix = irq->u.prefix;
set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
return 0;
}
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_stop_info *stop = &li->irq.stop;
int rc = 0;
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0, 2);
if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
return -EINVAL;
if (is_vcpu_stopped(vcpu)) {
if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
rc = kvm_s390_store_status_unloaded(vcpu,
KVM_S390_STORE_STATUS_NOADDR);
return rc;
}
if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
return -EBUSY;
stop->flags = irq->u.stop.flags;
__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
return 0;
}
static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
VCPU_EVENT(vcpu, 3, "inject: restart type %llx", irq->type);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0, 2);
set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
return 0;
}
static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
VCPU_EVENT(vcpu, 3, "inject: emergency %u\n",
irq->u.emerg.code);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
irq->u.emerg.code, 0, 2);
set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
return 0;
}
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
VCPU_EVENT(vcpu, 5, "inject: machine check parm64:%llx",
irq->u.mchk.mcic);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
irq->u.mchk.mcic, 2);
/*
* Because repressible machine checks can be indicated along with
* exigent machine checks (PoP, Chapter 11, Interruption action)
* we need to combine cr14, mcic and external damage code.
* Failing storage address and the logout area should not be or'ed
* together, we just indicate the last occurrence of the corresponding
* machine check
*/
mchk->cr14 |= irq->u.mchk.cr14;
mchk->mcic |= irq->u.mchk.mcic;
mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
sizeof(mchk->fixed_logout));
if (mchk->mcic & MCHK_EX_MASK)
set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
else if (mchk->mcic & MCHK_REP_MASK)
set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
return 0;
}
static int __inject_ckc(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CLOCK_COMP);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
0, 0, 2);
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
return 0;
}
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CPU_TIMER);
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
0, 0, 2);
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
return 0;
}
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
int isc, u32 schid)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
struct kvm_s390_interrupt_info *iter;
u16 id = (schid & 0xffff0000U) >> 16;
u16 nr = schid & 0x0000ffffU;
spin_lock(&fi->lock);
list_for_each_entry(iter, isc_list, list) {
if (schid && (id != iter->io.subchannel_id ||
nr != iter->io.subchannel_nr))
continue;
/* found an appropriate entry */
list_del_init(&iter->list);
fi->counters[FIRQ_CNTR_IO] -= 1;
if (list_empty(isc_list))
clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
spin_unlock(&fi->lock);
return iter;
}
spin_unlock(&fi->lock);
return NULL;
}
/*
* Dequeue and return an I/O interrupt matching any of the interruption
* subclasses as designated by the isc mask in cr6 and the schid (if != 0).
*/
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
u64 isc_mask, u32 schid)
{
struct kvm_s390_interrupt_info *inti = NULL;
int isc;
for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
if (isc_mask & isc_to_isc_bits(isc))
inti = get_io_int(kvm, isc, schid);
}
return inti;
}
#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3
static int __inject_service(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
/*
* Early versions of the QEMU s390 bios will inject several
* service interrupts after another without handling a
* condition code indicating busy.
* We will silently ignore those superfluous sccb values.
* A future version of QEMU will take care of serialization
* of servc requests
*/
if (fi->srv_signal.ext_params & SCCB_MASK)
goto out;
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
spin_unlock(&fi->lock);
kfree(inti);
return 0;
}
static int __inject_virtio(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_VIRTIO] += 1;
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
static int __inject_pfault_done(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_PFAULT] >=
(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_PFAULT] += 1;
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
fi->mchk.mcic |= inti->mchk.mcic;
set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
spin_unlock(&fi->lock);
kfree(inti);
return 0;
}
static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi;
struct list_head *list;
int isc;
fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
spin_unlock(&fi->lock);
return -EBUSY;
}
fi->counters[FIRQ_CNTR_IO] += 1;
isc = int_word_to_isc(inti->io.io_int_word);
list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
list_add_tail(&inti->list, list);
set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
spin_unlock(&fi->lock);
return 0;
}
/*
* Find a destination VCPU for a floating irq and kick it.
*/
static void __floating_irq_kick(struct kvm *kvm, u64 type)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
struct kvm_s390_local_interrupt *li;
struct kvm_vcpu *dst_vcpu;
int sigcpu, online_vcpus, nr_tries = 0;
online_vcpus = atomic_read(&kvm->online_vcpus);
if (!online_vcpus)
return;
/* find idle VCPUs first, then round robin */
sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
if (sigcpu == online_vcpus) {
do {
sigcpu = fi->next_rr_cpu;
fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
/* avoid endless loops if all vcpus are stopped */
if (nr_tries++ >= online_vcpus)
return;
} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
}
dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
/* make the VCPU drop out of the SIE, or wake it up if sleeping */
li = &dst_vcpu->arch.local_int;
spin_lock(&li->lock);
switch (type) {
case KVM_S390_MCHK:
atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
atomic_set_mask(CPUSTAT_IO_INT, li->cpuflags);
break;
default:
atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
break;
}
spin_unlock(&li->lock);
kvm_s390_vcpu_wakeup(dst_vcpu);
}
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
struct kvm_s390_float_interrupt *fi;
u64 type = READ_ONCE(inti->type);
int rc;
fi = &kvm->arch.float_int;
switch (type) {
case KVM_S390_MCHK:
rc = __inject_float_mchk(kvm, inti);
break;
case KVM_S390_INT_VIRTIO:
rc = __inject_virtio(kvm, inti);
break;
case KVM_S390_INT_SERVICE:
rc = __inject_service(kvm, inti);
break;
case KVM_S390_INT_PFAULT_DONE:
rc = __inject_pfault_done(kvm, inti);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
rc = __inject_io(kvm, inti);
break;
default:
rc = -EINVAL;
}
if (rc)
return rc;
__floating_irq_kick(kvm, type);
return 0;
}
int kvm_s390_inject_vm(struct kvm *kvm,
struct kvm_s390_interrupt *s390int)
{
struct kvm_s390_interrupt_info *inti;
int rc;
inti = kzalloc(sizeof(*inti), GFP_KERNEL);
if (!inti)
return -ENOMEM;
inti->type = s390int->type;
switch (inti->type) {
case KVM_S390_INT_VIRTIO:
VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
s390int->parm, s390int->parm64);
inti->ext.ext_params = s390int->parm;
inti->ext.ext_params2 = s390int->parm64;
break;
case KVM_S390_INT_SERVICE:
VM_EVENT(kvm, 5, "inject: sclp parm:%x", s390int->parm);
inti->ext.ext_params = s390int->parm;
break;
case KVM_S390_INT_PFAULT_DONE:
inti->ext.ext_params2 = s390int->parm64;
break;
case KVM_S390_MCHK:
VM_EVENT(kvm, 5, "inject: machine check parm64:%llx",
s390int->parm64);
inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
inti->mchk.mcic = s390int->parm64;
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
if (inti->type & IOINT_AI_MASK)
VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
else
VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
s390int->type & IOINT_CSSID_MASK,
s390int->type & IOINT_SSID_MASK,
s390int->type & IOINT_SCHID_MASK);
inti->io.subchannel_id = s390int->parm >> 16;
inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
inti->io.io_int_parm = s390int->parm64 >> 32;
inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
break;
default:
kfree(inti);
return -EINVAL;
}
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2);
rc = __inject_vm(kvm, inti);
if (rc)
kfree(inti);
return rc;
}
int kvm_s390_reinject_io_int(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti)
{
return __inject_vm(kvm, inti);
}
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
struct kvm_s390_irq *irq)
{
irq->type = s390int->type;
switch (irq->type) {
case KVM_S390_PROGRAM_INT:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.pgm.code = s390int->parm;
break;
case KVM_S390_SIGP_SET_PREFIX:
irq->u.prefix.address = s390int->parm;
break;
case KVM_S390_SIGP_STOP:
irq->u.stop.flags = s390int->parm;
break;
case KVM_S390_INT_EXTERNAL_CALL:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.extcall.code = s390int->parm;
break;
case KVM_S390_INT_EMERGENCY:
if (s390int->parm & 0xffff0000)
return -EINVAL;
irq->u.emerg.code = s390int->parm;
break;
case KVM_S390_MCHK:
irq->u.mchk.mcic = s390int->parm64;
break;
}
return 0;
}
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
spin_lock(&li->lock);
li->irq.stop.flags = 0;
clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
spin_unlock(&li->lock);
}
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
int rc;
switch (irq->type) {
case KVM_S390_PROGRAM_INT:
VCPU_EVENT(vcpu, 3, "inject: program check %d (from user)",
irq->u.pgm.code);
rc = __inject_prog(vcpu, irq);
break;
case KVM_S390_SIGP_SET_PREFIX:
rc = __inject_set_prefix(vcpu, irq);
break;
case KVM_S390_SIGP_STOP:
rc = __inject_sigp_stop(vcpu, irq);
break;
case KVM_S390_RESTART:
rc = __inject_sigp_restart(vcpu, irq);
break;
case KVM_S390_INT_CLOCK_COMP:
rc = __inject_ckc(vcpu);
break;
case KVM_S390_INT_CPU_TIMER:
rc = __inject_cpu_timer(vcpu);
break;
case KVM_S390_INT_EXTERNAL_CALL:
rc = __inject_extcall(vcpu, irq);
break;
case KVM_S390_INT_EMERGENCY:
rc = __inject_sigp_emergency(vcpu, irq);
break;
case KVM_S390_MCHK:
rc = __inject_mchk(vcpu, irq);
break;
case KVM_S390_INT_PFAULT_INIT:
rc = __inject_pfault_init(vcpu, irq);
break;
case KVM_S390_INT_VIRTIO:
case KVM_S390_INT_SERVICE:
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
default:
rc = -EINVAL;
}
return rc;
}
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc;
spin_lock(&li->lock);
rc = do_inject_vcpu(vcpu, irq);
spin_unlock(&li->lock);
if (!rc)
kvm_s390_vcpu_wakeup(vcpu);
return rc;
}
static inline void clear_irq_list(struct list_head *_list)
{
struct kvm_s390_interrupt_info *inti, *n;
list_for_each_entry_safe(inti, n, _list, list) {
list_del(&inti->list);
kfree(inti);
}
}
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
struct kvm_s390_irq *irq)
{
irq->type = inti->type;
switch (inti->type) {
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
case KVM_S390_INT_VIRTIO:
irq->u.ext = inti->ext;
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
irq->u.io = inti->io;
break;
}
}
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
int i;
spin_lock(&fi->lock);
fi->pending_irqs = 0;
memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
memset(&fi->mchk, 0, sizeof(fi->mchk));
for (i = 0; i < FIRQ_LIST_COUNT; i++)
clear_irq_list(&fi->lists[i]);
for (i = 0; i < FIRQ_MAX_COUNT; i++)
fi->counters[i] = 0;
spin_unlock(&fi->lock);
};
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
{
struct kvm_s390_interrupt_info *inti;
struct kvm_s390_float_interrupt *fi;
struct kvm_s390_irq *buf;
struct kvm_s390_irq *irq;
int max_irqs;
int ret = 0;
int n = 0;
int i;
if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
return -EINVAL;
/*
* We are already using -ENOMEM to signal
* userspace it may retry with a bigger buffer,
* so we need to use something else for this case
*/
buf = vzalloc(len);
if (!buf)
return -ENOBUFS;
max_irqs = len / sizeof(struct kvm_s390_irq);
fi = &kvm->arch.float_int;
spin_lock(&fi->lock);
for (i = 0; i < FIRQ_LIST_COUNT; i++) {
list_for_each_entry(inti, &fi->lists[i], list) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
inti_to_irq(inti, &buf[n]);
n++;
}
}
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
irq = (struct kvm_s390_irq *) &buf[n];
irq->type = KVM_S390_INT_SERVICE;
irq->u.ext = fi->srv_signal;
n++;
}
if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
if (n == max_irqs) {
/* signal userspace to try again */
ret = -ENOMEM;
goto out;
}
irq = (struct kvm_s390_irq *) &buf[n];
irq->type = KVM_S390_MCHK;
irq->u.mchk = fi->mchk;
n++;
}
out:
spin_unlock(&fi->lock);
if (!ret && n > 0) {
if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
ret = -EFAULT;
}
vfree(buf);
return ret < 0 ? ret : n;
}
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r;
switch (attr->group) {
case KVM_DEV_FLIC_GET_ALL_IRQS:
r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
attr->attr);
break;
default:
r = -EINVAL;
}
return r;
}
static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
u64 addr)
{
struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
void *target = NULL;
void __user *source;
u64 size;
if (get_user(inti->type, (u64 __user *)addr))
return -EFAULT;
switch (inti->type) {
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
case KVM_S390_INT_VIRTIO:
case KVM_S390_INT_SERVICE:
target = (void *) &inti->ext;
source = &uptr->u.ext;
size = sizeof(inti->ext);
break;
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
target = (void *) &inti->io;
source = &uptr->u.io;
size = sizeof(inti->io);
break;
case KVM_S390_MCHK:
target = (void *) &inti->mchk;
source = &uptr->u.mchk;
size = sizeof(inti->mchk);
break;
default:
return -EINVAL;
}
if (copy_from_user(target, source, size))
return -EFAULT;
return 0;
}
static int enqueue_floating_irq(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct kvm_s390_interrupt_info *inti = NULL;
int r = 0;
int len = attr->attr;
if (len % sizeof(struct kvm_s390_irq) != 0)
return -EINVAL;
else if (len > KVM_S390_FLIC_MAX_BUFFER)
return -EINVAL;
while (len >= sizeof(struct kvm_s390_irq)) {
inti = kzalloc(sizeof(*inti), GFP_KERNEL);
if (!inti)
return -ENOMEM;
r = copy_irq_from_user(inti, attr->addr);
if (r) {
kfree(inti);
return r;
}
r = __inject_vm(dev->kvm, inti);
if (r) {
kfree(inti);
return r;
}
len -= sizeof(struct kvm_s390_irq);
attr->addr += sizeof(struct kvm_s390_irq);
}
return r;
}
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
if (id >= MAX_S390_IO_ADAPTERS)
return NULL;
return kvm->arch.adapters[id];
}
static int register_io_adapter(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct s390_io_adapter *adapter;
struct kvm_s390_io_adapter adapter_info;
if (copy_from_user(&adapter_info,
(void __user *)attr->addr, sizeof(adapter_info)))
return -EFAULT;
if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
(dev->kvm->arch.adapters[adapter_info.id] != NULL))
return -EINVAL;
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
if (!adapter)
return -ENOMEM;
INIT_LIST_HEAD(&adapter->maps);
init_rwsem(&adapter->maps_lock);
atomic_set(&adapter->nr_maps, 0);
adapter->id = adapter_info.id;
adapter->isc = adapter_info.isc;
adapter->maskable = adapter_info.maskable;
adapter->masked = false;
adapter->swap = adapter_info.swap;
dev->kvm->arch.adapters[adapter->id] = adapter;
return 0;
}
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
int ret;
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
if (!adapter || !adapter->maskable)
return -EINVAL;
ret = adapter->masked;
adapter->masked = masked;
return ret;
}
static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
struct s390_map_info *map;
int ret;
if (!adapter || !addr)
return -EINVAL;
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (!map) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&map->list);
map->guest_addr = addr;
map->addr = gmap_translate(kvm->arch.gmap, addr);
if (map->addr == -EFAULT) {
ret = -EFAULT;
goto out;
}
ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
if (ret < 0)
goto out;
BUG_ON(ret != 1);
down_write(&adapter->maps_lock);
if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
list_add_tail(&map->list, &adapter->maps);
ret = 0;
} else {
put_page(map->page);
ret = -EINVAL;
}
up_write(&adapter->maps_lock);
out:
if (ret)
kfree(map);
return ret;
}
static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
struct s390_map_info *map, *tmp;
int found = 0;
if (!adapter || !addr)
return -EINVAL;
down_write(&adapter->maps_lock);
list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
if (map->guest_addr == addr) {
found = 1;
atomic_dec(&adapter->nr_maps);
list_del(&map->list);
put_page(map->page);
kfree(map);
break;
}
}
up_write(&adapter->maps_lock);
return found ? 0 : -EINVAL;
}
void kvm_s390_destroy_adapters(struct kvm *kvm)
{
int i;
struct s390_map_info *map, *tmp;
for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
if (!kvm->arch.adapters[i])
continue;
list_for_each_entry_safe(map, tmp,
&kvm->arch.adapters[i]->maps, list) {
list_del(&map->list);
put_page(map->page);
kfree(map);
}
kfree(kvm->arch.adapters[i]);
}
}
static int modify_io_adapter(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct kvm_s390_io_adapter_req req;
struct s390_io_adapter *adapter;
int ret;
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
return -EFAULT;
adapter = get_io_adapter(dev->kvm, req.id);
if (!adapter)
return -EINVAL;
switch (req.type) {
case KVM_S390_IO_ADAPTER_MASK:
ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
if (ret > 0)
ret = 0;
break;
case KVM_S390_IO_ADAPTER_MAP:
ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
break;
case KVM_S390_IO_ADAPTER_UNMAP:
ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r = 0;
unsigned int i;
struct kvm_vcpu *vcpu;
switch (attr->group) {
case KVM_DEV_FLIC_ENQUEUE:
r = enqueue_floating_irq(dev, attr);
break;
case KVM_DEV_FLIC_CLEAR_IRQS:
kvm_s390_clear_float_irqs(dev->kvm);
break;
case KVM_DEV_FLIC_APF_ENABLE:
dev->kvm->arch.gmap->pfault_enabled = 1;
break;
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
dev->kvm->arch.gmap->pfault_enabled = 0;
/*
* Make sure no async faults are in transition when
* clearing the queues. So we don't need to worry
* about late coming workers.
*/
synchronize_srcu(&dev->kvm->srcu);
kvm_for_each_vcpu(i, vcpu, dev->kvm)
kvm_clear_async_pf_completion_queue(vcpu);
break;
case KVM_DEV_FLIC_ADAPTER_REGISTER:
r = register_io_adapter(dev, attr);
break;
case KVM_DEV_FLIC_ADAPTER_MODIFY:
r = modify_io_adapter(dev, attr);
break;
default:
r = -EINVAL;
}
return r;
}
static int flic_create(struct kvm_device *dev, u32 type)
{
if (!dev)
return -EINVAL;
if (dev->kvm->arch.flic)
return -EINVAL;
dev->kvm->arch.flic = dev;
return 0;
}
static void flic_destroy(struct kvm_device *dev)
{
dev->kvm->arch.flic = NULL;
kfree(dev);
}
/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
.name = "kvm-flic",
.get_attr = flic_get_attr,
.set_attr = flic_set_attr,
.create = flic_create,
.destroy = flic_destroy,
};
static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
unsigned long bit;
bit = bit_nr + (addr % PAGE_SIZE) * 8;
return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}
static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
u64 addr)
{
struct s390_map_info *map;
if (!adapter)
return NULL;
list_for_each_entry(map, &adapter->maps, list) {
if (map->guest_addr == addr)
return map;
}
return NULL;
}
static int adapter_indicators_set(struct kvm *kvm,
struct s390_io_adapter *adapter,
struct kvm_s390_adapter_int *adapter_int)
{
unsigned long bit;
int summary_set, idx;
struct s390_map_info *info;
void *map;
info = get_map_info(adapter, adapter_int->ind_addr);
if (!info)
return -1;
map = page_address(info->page);
bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
set_bit(bit, map);
idx = srcu_read_lock(&kvm->srcu);
mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
set_page_dirty_lock(info->page);
info = get_map_info(adapter, adapter_int->summary_addr);
if (!info) {
srcu_read_unlock(&kvm->srcu, idx);
return -1;
}
map = page_address(info->page);
bit = get_ind_bit(info->addr, adapter_int->summary_offset,
adapter->swap);
summary_set = test_and_set_bit(bit, map);
mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
set_page_dirty_lock(info->page);
srcu_read_unlock(&kvm->srcu, idx);
return summary_set ? 0 : 1;
}
/*
* < 0 - not injected due to error
* = 0 - coalesced, summary indicator already active
* > 0 - injected interrupt
*/
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
int ret;
struct s390_io_adapter *adapter;
/* We're only interested in the 0->1 transition. */
if (!level)
return 0;
adapter = get_io_adapter(kvm, e->adapter.adapter_id);
if (!adapter)
return -1;
down_read(&adapter->maps_lock);
ret = adapter_indicators_set(kvm, adapter, &e->adapter);
up_read(&adapter->maps_lock);
if ((ret > 0) && !adapter->masked) {
struct kvm_s390_interrupt s390int = {
.type = KVM_S390_INT_IO(1, 0, 0, 0),
.parm = 0,
.parm64 = (adapter->isc << 27) | 0x80000000,
};
ret = kvm_s390_inject_vm(kvm, &s390int);
if (ret == 0)
ret = 1;
}
return ret;
}
int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue)
{
int ret;
switch (ue->type) {
case KVM_IRQ_ROUTING_S390_ADAPTER:
e->set = set_adapter_int;
e->adapter.summary_addr = ue->u.adapter.summary_addr;
e->adapter.ind_addr = ue->u.adapter.ind_addr;
e->adapter.summary_offset = ue->u.adapter.summary_offset;
e->adapter.ind_offset = ue->u.adapter.ind_offset;
e->adapter.adapter_id = ue->u.adapter.adapter_id;
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
int irq_source_id, int level, bool line_status)
{
return -EINVAL;
}
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
struct kvm_s390_irq *buf;
int r = 0;
int n;
buf = vmalloc(len);
if (!buf)
return -ENOMEM;
if (copy_from_user((void *) buf, irqstate, len)) {
r = -EFAULT;
goto out_free;
}
/*
* Don't allow setting the interrupt state
* when there are already interrupts pending
*/
spin_lock(&li->lock);
if (li->pending_irqs) {
r = -EBUSY;
goto out_unlock;
}
for (n = 0; n < len / sizeof(*buf); n++) {
r = do_inject_vcpu(vcpu, &buf[n]);
if (r)
break;
}
out_unlock:
spin_unlock(&li->lock);
out_free:
vfree(buf);
return r;
}
static void store_local_irq(struct kvm_s390_local_interrupt *li,
struct kvm_s390_irq *irq,
unsigned long irq_type)
{
switch (irq_type) {
case IRQ_PEND_MCHK_EX:
case IRQ_PEND_MCHK_REP:
irq->type = KVM_S390_MCHK;
irq->u.mchk = li->irq.mchk;
break;
case IRQ_PEND_PROG:
irq->type = KVM_S390_PROGRAM_INT;
irq->u.pgm = li->irq.pgm;
break;
case IRQ_PEND_PFAULT_INIT:
irq->type = KVM_S390_INT_PFAULT_INIT;
irq->u.ext = li->irq.ext;
break;
case IRQ_PEND_EXT_EXTERNAL:
irq->type = KVM_S390_INT_EXTERNAL_CALL;
irq->u.extcall = li->irq.extcall;
break;
case IRQ_PEND_EXT_CLOCK_COMP:
irq->type = KVM_S390_INT_CLOCK_COMP;
break;
case IRQ_PEND_EXT_CPU_TIMER:
irq->type = KVM_S390_INT_CPU_TIMER;
break;
case IRQ_PEND_SIGP_STOP:
irq->type = KVM_S390_SIGP_STOP;
irq->u.stop = li->irq.stop;
break;
case IRQ_PEND_RESTART:
irq->type = KVM_S390_RESTART;
break;
case IRQ_PEND_SET_PREFIX:
irq->type = KVM_S390_SIGP_SET_PREFIX;
irq->u.prefix = li->irq.prefix;
break;
}
}
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
unsigned long pending_irqs;
struct kvm_s390_irq irq;
unsigned long irq_type;
int cpuaddr;
int n = 0;
spin_lock(&li->lock);
pending_irqs = li->pending_irqs;
memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
sizeof(sigp_emerg_pending));
spin_unlock(&li->lock);
for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
memset(&irq, 0, sizeof(irq));
if (irq_type == IRQ_PEND_EXT_EMERGENCY)
continue;
if (n + sizeof(irq) > len)
return -ENOBUFS;
store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
memset(&irq, 0, sizeof(irq));
if (n + sizeof(irq) > len)
return -ENOBUFS;
irq.type = KVM_S390_INT_EMERGENCY;
irq.u.emerg.code = cpuaddr;
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
}
if ((sigp_ctrl & SIGP_CTRL_C) &&
(atomic_read(&vcpu->arch.sie_block->cpuflags) &
CPUSTAT_ECALL_PEND)) {
if (n + sizeof(irq) > len)
return -ENOBUFS;
memset(&irq, 0, sizeof(irq));
irq.type = KVM_S390_INT_EXTERNAL_CALL;
irq.u.extcall.code = sigp_ctrl & SIGP_CTRL_SCN_MASK;
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
return -EFAULT;
n += sizeof(irq);
}
return n;
}