mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
938fd562b9
Add support for AD4000 series of low noise, low power, high speed, successive approximation register (SAR) ADCs. Reviewed-by: Nuno Sa <nuno.sa@analog.com> Reviewed-by: David Lechner <dlechner@baylibre.com> Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> Link: https://patch.msgid.link/356109ac61182f16f2379d5d0cadccfe017f505b.1720810545.git.marcelo.schmitt@analog.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
723 lines
21 KiB
C
723 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* AD4000 SPI ADC driver
|
|
*
|
|
* Copyright 2024 Analog Devices Inc.
|
|
*/
|
|
#include <linux/bits.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/byteorder/generic.h>
|
|
#include <linux/cleanup.h>
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/math.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/units.h>
|
|
#include <linux/util_macros.h>
|
|
#include <linux/iio/iio.h>
|
|
|
|
#include <linux/iio/buffer.h>
|
|
#include <linux/iio/triggered_buffer.h>
|
|
#include <linux/iio/trigger_consumer.h>
|
|
|
|
#define AD4000_READ_COMMAND 0x54
|
|
#define AD4000_WRITE_COMMAND 0x14
|
|
|
|
#define AD4000_CONFIG_REG_DEFAULT 0xE1
|
|
|
|
/* AD4000 Configuration Register programmable bits */
|
|
#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */
|
|
#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */
|
|
|
|
#define AD4000_SCALE_OPTIONS 2
|
|
|
|
#define AD4000_TQUIET1_NS 190
|
|
#define AD4000_TQUIET2_NS 60
|
|
#define AD4000_TCONV_NS 320
|
|
|
|
#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \
|
|
{ \
|
|
.type = IIO_VOLTAGE, \
|
|
.indexed = 1, \
|
|
.differential = 1, \
|
|
.channel = 0, \
|
|
.channel2 = 1, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_SCALE), \
|
|
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
|
|
.scan_type = { \
|
|
.sign = _sign, \
|
|
.realbits = _real_bits, \
|
|
.storagebits = _storage_bits, \
|
|
.shift = _storage_bits - _real_bits, \
|
|
.endianness = IIO_BE, \
|
|
}, \
|
|
}
|
|
|
|
#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
|
|
__AD4000_DIFF_CHANNEL((_sign), (_real_bits), \
|
|
((_real_bits) > 16 ? 32 : 16), (_reg_access))
|
|
|
|
#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\
|
|
{ \
|
|
.type = IIO_VOLTAGE, \
|
|
.indexed = 1, \
|
|
.channel = 0, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_SCALE) | \
|
|
BIT(IIO_CHAN_INFO_OFFSET), \
|
|
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
|
|
.scan_type = { \
|
|
.sign = _sign, \
|
|
.realbits = _real_bits, \
|
|
.storagebits = _storage_bits, \
|
|
.shift = _storage_bits - _real_bits, \
|
|
.endianness = IIO_BE, \
|
|
}, \
|
|
}
|
|
|
|
#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
|
|
__AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \
|
|
((_real_bits) > 16 ? 32 : 16), (_reg_access))
|
|
|
|
static const char * const ad4000_power_supplies[] = {
|
|
"vdd", "vio"
|
|
};
|
|
|
|
enum ad4000_sdi {
|
|
AD4000_SDI_MOSI,
|
|
AD4000_SDI_VIO,
|
|
AD4000_SDI_CS,
|
|
AD4000_SDI_GND,
|
|
};
|
|
|
|
/* maps adi,sdi-pin property value to enum */
|
|
static const char * const ad4000_sdi_pin[] = {
|
|
[AD4000_SDI_MOSI] = "sdi",
|
|
[AD4000_SDI_VIO] = "high",
|
|
[AD4000_SDI_CS] = "cs",
|
|
[AD4000_SDI_GND] = "low",
|
|
};
|
|
|
|
/* Gains stored as fractions of 1000 so they can be expressed by integers. */
|
|
static const int ad4000_gains[] = {
|
|
454, 909, 1000, 1900,
|
|
};
|
|
|
|
struct ad4000_chip_info {
|
|
const char *dev_name;
|
|
struct iio_chan_spec chan_spec;
|
|
struct iio_chan_spec reg_access_chan_spec;
|
|
bool has_hardware_gain;
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4000_chip_info = {
|
|
.dev_name = "ad4000",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4001_chip_info = {
|
|
.dev_name = "ad4001",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4002_chip_info = {
|
|
.dev_name = "ad4002",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4003_chip_info = {
|
|
.dev_name = "ad4003",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4004_chip_info = {
|
|
.dev_name = "ad4004",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4005_chip_info = {
|
|
.dev_name = "ad4005",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4006_chip_info = {
|
|
.dev_name = "ad4006",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4007_chip_info = {
|
|
.dev_name = "ad4007",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4008_chip_info = {
|
|
.dev_name = "ad4008",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4010_chip_info = {
|
|
.dev_name = "ad4010",
|
|
.chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0),
|
|
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4011_chip_info = {
|
|
.dev_name = "ad4011",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4020_chip_info = {
|
|
.dev_name = "ad4020",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4021_chip_info = {
|
|
.dev_name = "ad4021",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info ad4022_chip_info = {
|
|
.dev_name = "ad4022",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1),
|
|
};
|
|
|
|
static const struct ad4000_chip_info adaq4001_chip_info = {
|
|
.dev_name = "adaq4001",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1),
|
|
.has_hardware_gain = true,
|
|
};
|
|
|
|
static const struct ad4000_chip_info adaq4003_chip_info = {
|
|
.dev_name = "adaq4003",
|
|
.chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0),
|
|
.reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1),
|
|
.has_hardware_gain = true,
|
|
};
|
|
|
|
struct ad4000_state {
|
|
struct spi_device *spi;
|
|
struct gpio_desc *cnv_gpio;
|
|
struct spi_transfer xfers[2];
|
|
struct spi_message msg;
|
|
struct mutex lock; /* Protect read modify write cycle */
|
|
int vref_mv;
|
|
enum ad4000_sdi sdi_pin;
|
|
bool span_comp;
|
|
u16 gain_milli;
|
|
int scale_tbl[AD4000_SCALE_OPTIONS][2];
|
|
|
|
/*
|
|
* DMA (thus cache coherency maintenance) requires the transfer buffers
|
|
* to live in their own cache lines.
|
|
*/
|
|
struct {
|
|
union {
|
|
__be16 sample_buf16;
|
|
__be32 sample_buf32;
|
|
} data;
|
|
s64 timestamp __aligned(8);
|
|
} scan __aligned(IIO_DMA_MINALIGN);
|
|
u8 tx_buf[2];
|
|
u8 rx_buf[2];
|
|
};
|
|
|
|
static void ad4000_fill_scale_tbl(struct ad4000_state *st,
|
|
struct iio_chan_spec const *chan)
|
|
{
|
|
int val, tmp0, tmp1;
|
|
int scale_bits;
|
|
u64 tmp2;
|
|
|
|
/*
|
|
* ADCs that output two's complement code have one less bit to express
|
|
* voltage magnitude.
|
|
*/
|
|
if (chan->scan_type.sign == 's')
|
|
scale_bits = chan->scan_type.realbits - 1;
|
|
else
|
|
scale_bits = chan->scan_type.realbits;
|
|
|
|
/*
|
|
* The gain is stored as a fraction of 1000 and, as we need to
|
|
* divide vref_mv by the gain, we invert the gain/1000 fraction.
|
|
* Also multiply by an extra MILLI to preserve precision.
|
|
* Thus, we have MILLI * MILLI equals MICRO as fraction numerator.
|
|
*/
|
|
val = mult_frac(st->vref_mv, MICRO, st->gain_milli);
|
|
|
|
/* Would multiply by NANO here but we multiplied by extra MILLI */
|
|
tmp2 = shift_right((u64)val * MICRO, scale_bits);
|
|
tmp0 = div_s64_rem(tmp2, NANO, &tmp1);
|
|
|
|
/* Store scale for when span compression is disabled */
|
|
st->scale_tbl[0][0] = tmp0; /* Integer part */
|
|
st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */
|
|
|
|
/* Store scale for when span compression is enabled */
|
|
st->scale_tbl[1][0] = tmp0;
|
|
|
|
/* The integer part is always zero so don't bother to divide it. */
|
|
if (chan->differential)
|
|
st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5);
|
|
else
|
|
st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10);
|
|
}
|
|
|
|
static int ad4000_write_reg(struct ad4000_state *st, uint8_t val)
|
|
{
|
|
st->tx_buf[0] = AD4000_WRITE_COMMAND;
|
|
st->tx_buf[1] = val;
|
|
return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf));
|
|
}
|
|
|
|
static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
|
|
{
|
|
struct spi_transfer t = {
|
|
.tx_buf = st->tx_buf,
|
|
.rx_buf = st->rx_buf,
|
|
.len = 2,
|
|
};
|
|
int ret;
|
|
|
|
st->tx_buf[0] = AD4000_READ_COMMAND;
|
|
ret = spi_sync_transfer(st->spi, &t, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*val = st->rx_buf[1];
|
|
return ret;
|
|
}
|
|
|
|
static int ad4000_convert_and_acquire(struct ad4000_state *st)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* In 4-wire mode, the CNV line is held high for the entire conversion
|
|
* and acquisition process. In other modes, the CNV GPIO is optional
|
|
* and, if provided, replaces controller CS. If CNV GPIO is not defined
|
|
* gpiod_set_value_cansleep() has no effect.
|
|
*/
|
|
gpiod_set_value_cansleep(st->cnv_gpio, 1);
|
|
ret = spi_sync(st->spi, &st->msg);
|
|
gpiod_set_value_cansleep(st->cnv_gpio, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ad4000_single_conversion(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan, int *val)
|
|
{
|
|
struct ad4000_state *st = iio_priv(indio_dev);
|
|
u32 sample;
|
|
int ret;
|
|
|
|
ret = ad4000_convert_and_acquire(st);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (chan->scan_type.storagebits > 16)
|
|
sample = be32_to_cpu(st->scan.data.sample_buf32);
|
|
else
|
|
sample = be16_to_cpu(st->scan.data.sample_buf16);
|
|
|
|
sample >>= chan->scan_type.shift;
|
|
|
|
if (chan->scan_type.sign == 's')
|
|
*val = sign_extend32(sample, chan->scan_type.realbits - 1);
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int ad4000_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int *val,
|
|
int *val2, long info)
|
|
{
|
|
struct ad4000_state *st = iio_priv(indio_dev);
|
|
|
|
switch (info) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
iio_device_claim_direct_scoped(return -EBUSY, indio_dev)
|
|
return ad4000_single_conversion(indio_dev, chan, val);
|
|
unreachable();
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*val = st->scale_tbl[st->span_comp][0];
|
|
*val2 = st->scale_tbl[st->span_comp][1];
|
|
return IIO_VAL_INT_PLUS_NANO;
|
|
case IIO_CHAN_INFO_OFFSET:
|
|
*val = 0;
|
|
if (st->span_comp)
|
|
*val = mult_frac(st->vref_mv, 1, 10);
|
|
|
|
return IIO_VAL_INT;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int ad4000_read_avail(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
const int **vals, int *type, int *length,
|
|
long info)
|
|
{
|
|
struct ad4000_state *st = iio_priv(indio_dev);
|
|
|
|
switch (info) {
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*vals = (int *)st->scale_tbl;
|
|
*length = AD4000_SCALE_OPTIONS * 2;
|
|
*type = IIO_VAL_INT_PLUS_NANO;
|
|
return IIO_AVAIL_LIST;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, long mask)
|
|
{
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SCALE:
|
|
return IIO_VAL_INT_PLUS_NANO;
|
|
default:
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
}
|
|
}
|
|
|
|
static int ad4000_write_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int val, int val2,
|
|
long mask)
|
|
{
|
|
struct ad4000_state *st = iio_priv(indio_dev);
|
|
unsigned int reg_val;
|
|
bool span_comp_en;
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_SCALE:
|
|
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
|
|
guard(mutex)(&st->lock);
|
|
|
|
ret = ad4000_read_reg(st, ®_val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
span_comp_en = val2 == st->scale_tbl[1][1];
|
|
reg_val &= ~AD4000_CFG_SPAN_COMP;
|
|
reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en);
|
|
|
|
ret = ad4000_write_reg(st, reg_val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
st->span_comp = span_comp_en;
|
|
return 0;
|
|
}
|
|
unreachable();
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t ad4000_trigger_handler(int irq, void *p)
|
|
{
|
|
struct iio_poll_func *pf = p;
|
|
struct iio_dev *indio_dev = pf->indio_dev;
|
|
struct ad4000_state *st = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
ret = ad4000_convert_and_acquire(st);
|
|
if (ret < 0)
|
|
goto err_out;
|
|
|
|
iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp);
|
|
|
|
err_out:
|
|
iio_trigger_notify_done(indio_dev->trig);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct iio_info ad4000_reg_access_info = {
|
|
.read_raw = &ad4000_read_raw,
|
|
.read_avail = &ad4000_read_avail,
|
|
.write_raw = &ad4000_write_raw,
|
|
.write_raw_get_fmt = &ad4000_write_raw_get_fmt,
|
|
};
|
|
|
|
static const struct iio_info ad4000_info = {
|
|
.read_raw = &ad4000_read_raw,
|
|
};
|
|
|
|
/*
|
|
* This executes a data sample transfer for when the device connections are
|
|
* in "3-wire" mode, selected when the adi,sdi-pin device tree property is
|
|
* absent or set to "high". In this connection mode, the ADC SDI pin is
|
|
* connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI
|
|
* controller CS or to a GPIO.
|
|
* AD4000 series of devices initiate conversions on the rising edge of CNV pin.
|
|
*
|
|
* If the CNV pin is connected to an SPI controller CS line (which is by default
|
|
* active low), the ADC readings would have a latency (delay) of one read.
|
|
* Moreover, since we also do ADC sampling for filling the buffer on triggered
|
|
* buffer mode, the timestamps of buffer readings would be disarranged.
|
|
* To prevent the read latency and reduce the time discrepancy between the
|
|
* sample read request and the time of actual sampling by the ADC, do a
|
|
* preparatory transfer to pulse the CS/CNV line.
|
|
*/
|
|
static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st,
|
|
const struct iio_chan_spec *chan)
|
|
{
|
|
unsigned int cnv_pulse_time = AD4000_TCONV_NS;
|
|
struct spi_transfer *xfers = st->xfers;
|
|
|
|
xfers[0].cs_change = 1;
|
|
xfers[0].cs_change_delay.value = cnv_pulse_time;
|
|
xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
|
|
|
|
xfers[1].rx_buf = &st->scan.data;
|
|
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
|
|
xfers[1].delay.value = AD4000_TQUIET2_NS;
|
|
xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
|
|
|
|
spi_message_init_with_transfers(&st->msg, st->xfers, 2);
|
|
|
|
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
|
|
}
|
|
|
|
/*
|
|
* This executes a data sample transfer for when the device connections are
|
|
* in "4-wire" mode, selected when the adi,sdi-pin device tree property is
|
|
* set to "cs". In this connection mode, the controller CS pin is connected to
|
|
* ADC SDI pin and a GPIO is connected to ADC CNV pin.
|
|
* The GPIO connected to ADC CNV pin is set outside of the SPI transfer.
|
|
*/
|
|
static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st,
|
|
const struct iio_chan_spec *chan)
|
|
{
|
|
unsigned int cnv_to_sdi_time = AD4000_TCONV_NS;
|
|
struct spi_transfer *xfers = st->xfers;
|
|
|
|
/*
|
|
* Dummy transfer to cause enough delay between CNV going high and SDI
|
|
* going low.
|
|
*/
|
|
xfers[0].cs_off = 1;
|
|
xfers[0].delay.value = cnv_to_sdi_time;
|
|
xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
|
|
|
|
xfers[1].rx_buf = &st->scan.data;
|
|
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
|
|
|
|
spi_message_init_with_transfers(&st->msg, st->xfers, 2);
|
|
|
|
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
|
|
}
|
|
|
|
static int ad4000_config(struct ad4000_state *st)
|
|
{
|
|
unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT;
|
|
|
|
if (device_property_present(&st->spi->dev, "adi,high-z-input"))
|
|
reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1);
|
|
|
|
return ad4000_write_reg(st, reg_val);
|
|
}
|
|
|
|
static int ad4000_probe(struct spi_device *spi)
|
|
{
|
|
const struct ad4000_chip_info *chip;
|
|
struct device *dev = &spi->dev;
|
|
struct iio_dev *indio_dev;
|
|
struct ad4000_state *st;
|
|
int gain_idx, ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
chip = spi_get_device_match_data(spi);
|
|
if (!chip)
|
|
return -EINVAL;
|
|
|
|
st = iio_priv(indio_dev);
|
|
st->spi = spi;
|
|
|
|
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies),
|
|
ad4000_power_supplies);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "Failed to enable power supplies\n");
|
|
|
|
ret = devm_regulator_get_enable_read_voltage(dev, "ref");
|
|
if (ret < 0)
|
|
return dev_err_probe(dev, ret,
|
|
"Failed to get ref regulator reference\n");
|
|
st->vref_mv = ret / 1000;
|
|
|
|
st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH);
|
|
if (IS_ERR(st->cnv_gpio))
|
|
return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
|
|
"Failed to get CNV GPIO");
|
|
|
|
ret = device_property_match_property_string(dev, "adi,sdi-pin",
|
|
ad4000_sdi_pin,
|
|
ARRAY_SIZE(ad4000_sdi_pin));
|
|
if (ret < 0 && ret != -EINVAL)
|
|
return dev_err_probe(dev, ret,
|
|
"getting adi,sdi-pin property failed\n");
|
|
|
|
/* Default to usual SPI connections if pin properties are not present */
|
|
st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret;
|
|
switch (st->sdi_pin) {
|
|
case AD4000_SDI_MOSI:
|
|
indio_dev->info = &ad4000_reg_access_info;
|
|
indio_dev->channels = &chip->reg_access_chan_spec;
|
|
|
|
/*
|
|
* In "3-wire mode", the ADC SDI line must be kept high when
|
|
* data is not being clocked out of the controller.
|
|
* Request the SPI controller to make MOSI idle high.
|
|
*/
|
|
spi->mode |= SPI_MOSI_IDLE_HIGH;
|
|
ret = spi_setup(spi);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ad4000_config(st);
|
|
if (ret < 0)
|
|
return dev_err_probe(dev, ret, "Failed to config device\n");
|
|
|
|
break;
|
|
case AD4000_SDI_VIO:
|
|
indio_dev->info = &ad4000_info;
|
|
indio_dev->channels = &chip->chan_spec;
|
|
ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels);
|
|
if (ret)
|
|
return ret;
|
|
|
|
break;
|
|
case AD4000_SDI_CS:
|
|
indio_dev->info = &ad4000_info;
|
|
indio_dev->channels = &chip->chan_spec;
|
|
ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels);
|
|
if (ret)
|
|
return ret;
|
|
|
|
break;
|
|
case AD4000_SDI_GND:
|
|
return dev_err_probe(dev, -EPROTONOSUPPORT,
|
|
"Unsupported connection mode\n");
|
|
|
|
default:
|
|
return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n");
|
|
}
|
|
|
|
indio_dev->name = chip->dev_name;
|
|
indio_dev->num_channels = 1;
|
|
|
|
devm_mutex_init(dev, &st->lock);
|
|
|
|
st->gain_milli = 1000;
|
|
if (chip->has_hardware_gain) {
|
|
ret = device_property_read_u16(dev, "adi,gain-milli",
|
|
&st->gain_milli);
|
|
if (!ret) {
|
|
/* Match gain value from dt to one of supported gains */
|
|
gain_idx = find_closest(st->gain_milli, ad4000_gains,
|
|
ARRAY_SIZE(ad4000_gains));
|
|
st->gain_milli = ad4000_gains[gain_idx];
|
|
} else {
|
|
return dev_err_probe(dev, ret,
|
|
"Failed to read gain property\n");
|
|
}
|
|
}
|
|
|
|
ad4000_fill_scale_tbl(st, indio_dev->channels);
|
|
|
|
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
|
|
&iio_pollfunc_store_time,
|
|
&ad4000_trigger_handler, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return devm_iio_device_register(dev, indio_dev);
|
|
}
|
|
|
|
static const struct spi_device_id ad4000_id[] = {
|
|
{ "ad4000", (kernel_ulong_t)&ad4000_chip_info },
|
|
{ "ad4001", (kernel_ulong_t)&ad4001_chip_info },
|
|
{ "ad4002", (kernel_ulong_t)&ad4002_chip_info },
|
|
{ "ad4003", (kernel_ulong_t)&ad4003_chip_info },
|
|
{ "ad4004", (kernel_ulong_t)&ad4004_chip_info },
|
|
{ "ad4005", (kernel_ulong_t)&ad4005_chip_info },
|
|
{ "ad4006", (kernel_ulong_t)&ad4006_chip_info },
|
|
{ "ad4007", (kernel_ulong_t)&ad4007_chip_info },
|
|
{ "ad4008", (kernel_ulong_t)&ad4008_chip_info },
|
|
{ "ad4010", (kernel_ulong_t)&ad4010_chip_info },
|
|
{ "ad4011", (kernel_ulong_t)&ad4011_chip_info },
|
|
{ "ad4020", (kernel_ulong_t)&ad4020_chip_info },
|
|
{ "ad4021", (kernel_ulong_t)&ad4021_chip_info },
|
|
{ "ad4022", (kernel_ulong_t)&ad4022_chip_info },
|
|
{ "adaq4001", (kernel_ulong_t)&adaq4001_chip_info },
|
|
{ "adaq4003", (kernel_ulong_t)&adaq4003_chip_info },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, ad4000_id);
|
|
|
|
static const struct of_device_id ad4000_of_match[] = {
|
|
{ .compatible = "adi,ad4000", .data = &ad4000_chip_info },
|
|
{ .compatible = "adi,ad4001", .data = &ad4001_chip_info },
|
|
{ .compatible = "adi,ad4002", .data = &ad4002_chip_info },
|
|
{ .compatible = "adi,ad4003", .data = &ad4003_chip_info },
|
|
{ .compatible = "adi,ad4004", .data = &ad4004_chip_info },
|
|
{ .compatible = "adi,ad4005", .data = &ad4005_chip_info },
|
|
{ .compatible = "adi,ad4006", .data = &ad4006_chip_info },
|
|
{ .compatible = "adi,ad4007", .data = &ad4007_chip_info },
|
|
{ .compatible = "adi,ad4008", .data = &ad4008_chip_info },
|
|
{ .compatible = "adi,ad4010", .data = &ad4010_chip_info },
|
|
{ .compatible = "adi,ad4011", .data = &ad4011_chip_info },
|
|
{ .compatible = "adi,ad4020", .data = &ad4020_chip_info },
|
|
{ .compatible = "adi,ad4021", .data = &ad4021_chip_info },
|
|
{ .compatible = "adi,ad4022", .data = &ad4022_chip_info },
|
|
{ .compatible = "adi,adaq4001", .data = &adaq4001_chip_info },
|
|
{ .compatible = "adi,adaq4003", .data = &adaq4003_chip_info },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ad4000_of_match);
|
|
|
|
static struct spi_driver ad4000_driver = {
|
|
.driver = {
|
|
.name = "ad4000",
|
|
.of_match_table = ad4000_of_match,
|
|
},
|
|
.probe = ad4000_probe,
|
|
.id_table = ad4000_id,
|
|
};
|
|
module_spi_driver(ad4000_driver);
|
|
|
|
MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>");
|
|
MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver");
|
|
MODULE_LICENSE("GPL");
|