mirror of
https://github.com/torvalds/linux.git
synced 2024-11-08 21:21:47 +00:00
c37682d907
The lmb_dump_all() output didn't include the RMO size, which is interesting on powerpc. The output was also a bit spacey and not well aligned, and didn't show you the end addresses. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
528 lines
11 KiB
C
528 lines
11 KiB
C
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/lmb.h>
|
|
|
|
#define LMB_ALLOC_ANYWHERE 0
|
|
|
|
struct lmb lmb;
|
|
|
|
static int lmb_debug;
|
|
|
|
static int __init early_lmb(char *p)
|
|
{
|
|
if (p && strstr(p, "debug"))
|
|
lmb_debug = 1;
|
|
return 0;
|
|
}
|
|
early_param("lmb", early_lmb);
|
|
|
|
static void lmb_dump(struct lmb_region *region, char *name)
|
|
{
|
|
unsigned long long base, size;
|
|
int i;
|
|
|
|
pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
|
|
|
|
for (i = 0; i < region->cnt; i++) {
|
|
base = region->region[i].base;
|
|
size = region->region[i].size;
|
|
|
|
pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
|
|
name, i, base, base + size - 1, size);
|
|
}
|
|
}
|
|
|
|
void lmb_dump_all(void)
|
|
{
|
|
if (!lmb_debug)
|
|
return;
|
|
|
|
pr_info("LMB configuration:\n");
|
|
pr_info(" rmo_size = 0x%llx\n", (unsigned long long)lmb.rmo_size);
|
|
pr_info(" memory.size = 0x%llx\n", (unsigned long long)lmb.memory.size);
|
|
|
|
lmb_dump(&lmb.memory, "memory");
|
|
lmb_dump(&lmb.reserved, "reserved");
|
|
}
|
|
|
|
static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
|
|
u64 size2)
|
|
{
|
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
|
}
|
|
|
|
static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
|
|
{
|
|
if (base2 == base1 + size1)
|
|
return 1;
|
|
else if (base1 == base2 + size2)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long lmb_regions_adjacent(struct lmb_region *rgn,
|
|
unsigned long r1, unsigned long r2)
|
|
{
|
|
u64 base1 = rgn->region[r1].base;
|
|
u64 size1 = rgn->region[r1].size;
|
|
u64 base2 = rgn->region[r2].base;
|
|
u64 size2 = rgn->region[r2].size;
|
|
|
|
return lmb_addrs_adjacent(base1, size1, base2, size2);
|
|
}
|
|
|
|
static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = r; i < rgn->cnt - 1; i++) {
|
|
rgn->region[i].base = rgn->region[i + 1].base;
|
|
rgn->region[i].size = rgn->region[i + 1].size;
|
|
}
|
|
rgn->cnt--;
|
|
}
|
|
|
|
/* Assumption: base addr of region 1 < base addr of region 2 */
|
|
static void lmb_coalesce_regions(struct lmb_region *rgn,
|
|
unsigned long r1, unsigned long r2)
|
|
{
|
|
rgn->region[r1].size += rgn->region[r2].size;
|
|
lmb_remove_region(rgn, r2);
|
|
}
|
|
|
|
void __init lmb_init(void)
|
|
{
|
|
/* Create a dummy zero size LMB which will get coalesced away later.
|
|
* This simplifies the lmb_add() code below...
|
|
*/
|
|
lmb.memory.region[0].base = 0;
|
|
lmb.memory.region[0].size = 0;
|
|
lmb.memory.cnt = 1;
|
|
|
|
/* Ditto. */
|
|
lmb.reserved.region[0].base = 0;
|
|
lmb.reserved.region[0].size = 0;
|
|
lmb.reserved.cnt = 1;
|
|
}
|
|
|
|
void __init lmb_analyze(void)
|
|
{
|
|
int i;
|
|
|
|
lmb.memory.size = 0;
|
|
|
|
for (i = 0; i < lmb.memory.cnt; i++)
|
|
lmb.memory.size += lmb.memory.region[i].size;
|
|
}
|
|
|
|
static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
|
|
{
|
|
unsigned long coalesced = 0;
|
|
long adjacent, i;
|
|
|
|
if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
|
|
rgn->region[0].base = base;
|
|
rgn->region[0].size = size;
|
|
return 0;
|
|
}
|
|
|
|
/* First try and coalesce this LMB with another. */
|
|
for (i = 0; i < rgn->cnt; i++) {
|
|
u64 rgnbase = rgn->region[i].base;
|
|
u64 rgnsize = rgn->region[i].size;
|
|
|
|
if ((rgnbase == base) && (rgnsize == size))
|
|
/* Already have this region, so we're done */
|
|
return 0;
|
|
|
|
adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
|
|
if (adjacent > 0) {
|
|
rgn->region[i].base -= size;
|
|
rgn->region[i].size += size;
|
|
coalesced++;
|
|
break;
|
|
} else if (adjacent < 0) {
|
|
rgn->region[i].size += size;
|
|
coalesced++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
|
|
lmb_coalesce_regions(rgn, i, i+1);
|
|
coalesced++;
|
|
}
|
|
|
|
if (coalesced)
|
|
return coalesced;
|
|
if (rgn->cnt >= MAX_LMB_REGIONS)
|
|
return -1;
|
|
|
|
/* Couldn't coalesce the LMB, so add it to the sorted table. */
|
|
for (i = rgn->cnt - 1; i >= 0; i--) {
|
|
if (base < rgn->region[i].base) {
|
|
rgn->region[i+1].base = rgn->region[i].base;
|
|
rgn->region[i+1].size = rgn->region[i].size;
|
|
} else {
|
|
rgn->region[i+1].base = base;
|
|
rgn->region[i+1].size = size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (base < rgn->region[0].base) {
|
|
rgn->region[0].base = base;
|
|
rgn->region[0].size = size;
|
|
}
|
|
rgn->cnt++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
long lmb_add(u64 base, u64 size)
|
|
{
|
|
struct lmb_region *_rgn = &lmb.memory;
|
|
|
|
/* On pSeries LPAR systems, the first LMB is our RMO region. */
|
|
if (base == 0)
|
|
lmb.rmo_size = size;
|
|
|
|
return lmb_add_region(_rgn, base, size);
|
|
|
|
}
|
|
|
|
long lmb_remove(u64 base, u64 size)
|
|
{
|
|
struct lmb_region *rgn = &(lmb.memory);
|
|
u64 rgnbegin, rgnend;
|
|
u64 end = base + size;
|
|
int i;
|
|
|
|
rgnbegin = rgnend = 0; /* supress gcc warnings */
|
|
|
|
/* Find the region where (base, size) belongs to */
|
|
for (i=0; i < rgn->cnt; i++) {
|
|
rgnbegin = rgn->region[i].base;
|
|
rgnend = rgnbegin + rgn->region[i].size;
|
|
|
|
if ((rgnbegin <= base) && (end <= rgnend))
|
|
break;
|
|
}
|
|
|
|
/* Didn't find the region */
|
|
if (i == rgn->cnt)
|
|
return -1;
|
|
|
|
/* Check to see if we are removing entire region */
|
|
if ((rgnbegin == base) && (rgnend == end)) {
|
|
lmb_remove_region(rgn, i);
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if region is matching at the front */
|
|
if (rgnbegin == base) {
|
|
rgn->region[i].base = end;
|
|
rgn->region[i].size -= size;
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if the region is matching at the end */
|
|
if (rgnend == end) {
|
|
rgn->region[i].size -= size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to split the entry - adjust the current one to the
|
|
* beginging of the hole and add the region after hole.
|
|
*/
|
|
rgn->region[i].size = base - rgn->region[i].base;
|
|
return lmb_add_region(rgn, end, rgnend - end);
|
|
}
|
|
|
|
long __init lmb_reserve(u64 base, u64 size)
|
|
{
|
|
struct lmb_region *_rgn = &lmb.reserved;
|
|
|
|
BUG_ON(0 == size);
|
|
|
|
return lmb_add_region(_rgn, base, size);
|
|
}
|
|
|
|
long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < rgn->cnt; i++) {
|
|
u64 rgnbase = rgn->region[i].base;
|
|
u64 rgnsize = rgn->region[i].size;
|
|
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
|
|
break;
|
|
}
|
|
|
|
return (i < rgn->cnt) ? i : -1;
|
|
}
|
|
|
|
static u64 lmb_align_down(u64 addr, u64 size)
|
|
{
|
|
return addr & ~(size - 1);
|
|
}
|
|
|
|
static u64 lmb_align_up(u64 addr, u64 size)
|
|
{
|
|
return (addr + (size - 1)) & ~(size - 1);
|
|
}
|
|
|
|
static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
|
|
u64 size, u64 align)
|
|
{
|
|
u64 base, res_base;
|
|
long j;
|
|
|
|
base = lmb_align_down((end - size), align);
|
|
while (start <= base) {
|
|
j = lmb_overlaps_region(&lmb.reserved, base, size);
|
|
if (j < 0) {
|
|
/* this area isn't reserved, take it */
|
|
if (lmb_add_region(&lmb.reserved, base, size) < 0)
|
|
base = ~(u64)0;
|
|
return base;
|
|
}
|
|
res_base = lmb.reserved.region[j].base;
|
|
if (res_base < size)
|
|
break;
|
|
base = lmb_align_down(res_base - size, align);
|
|
}
|
|
|
|
return ~(u64)0;
|
|
}
|
|
|
|
static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
|
|
u64 (*nid_range)(u64, u64, int *),
|
|
u64 size, u64 align, int nid)
|
|
{
|
|
u64 start, end;
|
|
|
|
start = mp->base;
|
|
end = start + mp->size;
|
|
|
|
start = lmb_align_up(start, align);
|
|
while (start < end) {
|
|
u64 this_end;
|
|
int this_nid;
|
|
|
|
this_end = nid_range(start, end, &this_nid);
|
|
if (this_nid == nid) {
|
|
u64 ret = lmb_alloc_nid_unreserved(start, this_end,
|
|
size, align);
|
|
if (ret != ~(u64)0)
|
|
return ret;
|
|
}
|
|
start = this_end;
|
|
}
|
|
|
|
return ~(u64)0;
|
|
}
|
|
|
|
u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
|
|
u64 (*nid_range)(u64 start, u64 end, int *nid))
|
|
{
|
|
struct lmb_region *mem = &lmb.memory;
|
|
int i;
|
|
|
|
BUG_ON(0 == size);
|
|
|
|
size = lmb_align_up(size, align);
|
|
|
|
for (i = 0; i < mem->cnt; i++) {
|
|
u64 ret = lmb_alloc_nid_region(&mem->region[i],
|
|
nid_range,
|
|
size, align, nid);
|
|
if (ret != ~(u64)0)
|
|
return ret;
|
|
}
|
|
|
|
return lmb_alloc(size, align);
|
|
}
|
|
|
|
u64 __init lmb_alloc(u64 size, u64 align)
|
|
{
|
|
return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
|
|
}
|
|
|
|
u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
|
|
{
|
|
u64 alloc;
|
|
|
|
alloc = __lmb_alloc_base(size, align, max_addr);
|
|
|
|
if (alloc == 0)
|
|
panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
|
|
(unsigned long long) size, (unsigned long long) max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
|
|
{
|
|
long i, j;
|
|
u64 base = 0;
|
|
u64 res_base;
|
|
|
|
BUG_ON(0 == size);
|
|
|
|
size = lmb_align_up(size, align);
|
|
|
|
/* On some platforms, make sure we allocate lowmem */
|
|
/* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
|
|
if (max_addr == LMB_ALLOC_ANYWHERE)
|
|
max_addr = LMB_REAL_LIMIT;
|
|
|
|
for (i = lmb.memory.cnt - 1; i >= 0; i--) {
|
|
u64 lmbbase = lmb.memory.region[i].base;
|
|
u64 lmbsize = lmb.memory.region[i].size;
|
|
|
|
if (lmbsize < size)
|
|
continue;
|
|
if (max_addr == LMB_ALLOC_ANYWHERE)
|
|
base = lmb_align_down(lmbbase + lmbsize - size, align);
|
|
else if (lmbbase < max_addr) {
|
|
base = min(lmbbase + lmbsize, max_addr);
|
|
base = lmb_align_down(base - size, align);
|
|
} else
|
|
continue;
|
|
|
|
while (base && lmbbase <= base) {
|
|
j = lmb_overlaps_region(&lmb.reserved, base, size);
|
|
if (j < 0) {
|
|
/* this area isn't reserved, take it */
|
|
if (lmb_add_region(&lmb.reserved, base, size) < 0)
|
|
return 0;
|
|
return base;
|
|
}
|
|
res_base = lmb.reserved.region[j].base;
|
|
if (res_base < size)
|
|
break;
|
|
base = lmb_align_down(res_base - size, align);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* You must call lmb_analyze() before this. */
|
|
u64 __init lmb_phys_mem_size(void)
|
|
{
|
|
return lmb.memory.size;
|
|
}
|
|
|
|
u64 __init lmb_end_of_DRAM(void)
|
|
{
|
|
int idx = lmb.memory.cnt - 1;
|
|
|
|
return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
|
|
}
|
|
|
|
/* You must call lmb_analyze() after this. */
|
|
void __init lmb_enforce_memory_limit(u64 memory_limit)
|
|
{
|
|
unsigned long i;
|
|
u64 limit;
|
|
struct lmb_property *p;
|
|
|
|
if (!memory_limit)
|
|
return;
|
|
|
|
/* Truncate the lmb regions to satisfy the memory limit. */
|
|
limit = memory_limit;
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
if (limit > lmb.memory.region[i].size) {
|
|
limit -= lmb.memory.region[i].size;
|
|
continue;
|
|
}
|
|
|
|
lmb.memory.region[i].size = limit;
|
|
lmb.memory.cnt = i + 1;
|
|
break;
|
|
}
|
|
|
|
if (lmb.memory.region[0].size < lmb.rmo_size)
|
|
lmb.rmo_size = lmb.memory.region[0].size;
|
|
|
|
memory_limit = lmb_end_of_DRAM();
|
|
|
|
/* And truncate any reserves above the limit also. */
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
p = &lmb.reserved.region[i];
|
|
|
|
if (p->base > memory_limit)
|
|
p->size = 0;
|
|
else if ((p->base + p->size) > memory_limit)
|
|
p->size = memory_limit - p->base;
|
|
|
|
if (p->size == 0) {
|
|
lmb_remove_region(&lmb.reserved, i);
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
|
|
int __init lmb_is_reserved(u64 addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
u64 upper = lmb.reserved.region[i].base +
|
|
lmb.reserved.region[i].size - 1;
|
|
if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a <base, len>, find which memory regions belong to this range.
|
|
* Adjust the request and return a contiguous chunk.
|
|
*/
|
|
int lmb_find(struct lmb_property *res)
|
|
{
|
|
int i;
|
|
u64 rstart, rend;
|
|
|
|
rstart = res->base;
|
|
rend = rstart + res->size - 1;
|
|
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
u64 start = lmb.memory.region[i].base;
|
|
u64 end = start + lmb.memory.region[i].size - 1;
|
|
|
|
if (start > rend)
|
|
return -1;
|
|
|
|
if ((end >= rstart) && (start < rend)) {
|
|
/* adjust the request */
|
|
if (rstart < start)
|
|
rstart = start;
|
|
if (rend > end)
|
|
rend = end;
|
|
res->base = rstart;
|
|
res->size = rend - rstart + 1;
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|