linux/arch/powerpc/kernel/kprobes.c
Abhishek Dubey 19f1bc3fb5 powerpc: Replace kretprobe code with rethook on powerpc
This is an adaptation of commit f3a112c0c4 ("x86,rethook,kprobes:
Replace kretprobe with rethook on x86") to powerpc.

Rethook follows the existing kretprobe implementation, but separates
it from kprobes so that it can be used by fprobe (ftrace-based
function entry/exit probes). As such, this patch also enables fprobe
to work on powerpc. The only other change compared to the existing
kretprobe implementation is doing the return address fixup in
arch_rethook_fixup_return().

Reference to other archs:
commit b57c2f1240 ("riscv: add riscv rethook implementation")
commit 7b0a096436 ("LoongArch: Replace kretprobe with rethook")

Note:
=====

In future, rethook will be only for kretprobe, and kretprobe
will be replaced by fprobe.

https://lore.kernel.org/all/172000134410.63468.13742222887213469474.stgit@devnote2/

We will	adapt the above	implementation for powerpc once its upstream.
Until then, we can have	this implementation of rethook to serve
current	kretprobe usecases.

Reviewed-by: Naveen Rao <naveen@kernel.org>
Signed-off-by: Abhishek Dubey <adubey@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240830113131.7597-1-adubey@linux.ibm.com
2024-09-05 22:25:36 +10:00

497 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Kernel Probes (KProbes)
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
* for PPC64
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/extable.h>
#include <linux/kdebug.h>
#include <linux/slab.h>
#include <linux/set_memory.h>
#include <linux/execmem.h>
#include <asm/code-patching.h>
#include <asm/cacheflush.h>
#include <asm/sstep.h>
#include <asm/sections.h>
#include <asm/inst.h>
#include <linux/uaccess.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
bool arch_within_kprobe_blacklist(unsigned long addr)
{
return (addr >= (unsigned long)__kprobes_text_start &&
addr < (unsigned long)__kprobes_text_end) ||
(addr >= (unsigned long)_stext &&
addr < (unsigned long)__head_end);
}
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
{
kprobe_opcode_t *addr = NULL;
#ifdef CONFIG_PPC64_ELF_ABI_V2
/* PPC64 ABIv2 needs local entry point */
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
if (addr && !offset) {
#ifdef CONFIG_KPROBES_ON_FTRACE
unsigned long faddr;
/*
* Per livepatch.h, ftrace location is always within the first
* 16 bytes of a function on powerpc with -mprofile-kernel.
*/
faddr = ftrace_location_range((unsigned long)addr,
(unsigned long)addr + 16);
if (faddr)
addr = (kprobe_opcode_t *)faddr;
else
#endif
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
}
#elif defined(CONFIG_PPC64_ELF_ABI_V1)
/*
* 64bit powerpc ABIv1 uses function descriptors:
* - Check for the dot variant of the symbol first.
* - If that fails, try looking up the symbol provided.
*
* This ensures we always get to the actual symbol and not
* the descriptor.
*
* Also handle <module:symbol> format.
*/
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
bool dot_appended = false;
const char *c;
ssize_t ret = 0;
int len = 0;
if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
c++;
len = c - name;
memcpy(dot_name, name, len);
} else
c = name;
if (*c != '\0' && *c != '.') {
dot_name[len++] = '.';
dot_appended = true;
}
ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
if (ret > 0)
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
/* Fallback to the original non-dot symbol lookup */
if (!addr && dot_appended)
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
#else
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
#endif
return addr;
}
static bool arch_kprobe_on_func_entry(unsigned long offset)
{
#ifdef CONFIG_PPC64_ELF_ABI_V2
#ifdef CONFIG_KPROBES_ON_FTRACE
return offset <= 16;
#else
return offset <= 8;
#endif
#else
return !offset;
#endif
}
/* XXX try and fold the magic of kprobe_lookup_name() in this */
kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
bool *on_func_entry)
{
*on_func_entry = arch_kprobe_on_func_entry(offset);
return (kprobe_opcode_t *)(addr + offset);
}
int arch_prepare_kprobe(struct kprobe *p)
{
int ret = 0;
struct kprobe *prev;
ppc_inst_t insn = ppc_inst_read(p->addr);
if ((unsigned long)p->addr & 0x03) {
printk("Attempt to register kprobe at an unaligned address\n");
ret = -EINVAL;
} else if (!can_single_step(ppc_inst_val(insn))) {
printk("Cannot register a kprobe on instructions that can't be single stepped\n");
ret = -EINVAL;
} else if ((unsigned long)p->addr & ~PAGE_MASK &&
ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
ret = -EINVAL;
}
prev = get_kprobe(p->addr - 1);
/*
* When prev is a ftrace-based kprobe, we don't have an insn, and it
* doesn't probe for prefixed instruction.
*/
if (prev && !kprobe_ftrace(prev) &&
ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
ret = -EINVAL;
}
/* insn must be on a special executable page on ppc64. This is
* not explicitly required on ppc32 (right now), but it doesn't hurt */
if (!ret) {
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
ret = -ENOMEM;
}
if (!ret) {
patch_instruction(p->ainsn.insn, insn);
p->opcode = ppc_inst_val(insn);
}
p->ainsn.boostable = 0;
return ret;
}
NOKPROBE_SYMBOL(arch_prepare_kprobe);
void arch_arm_kprobe(struct kprobe *p)
{
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
}
NOKPROBE_SYMBOL(arch_arm_kprobe);
void arch_disarm_kprobe(struct kprobe *p)
{
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
}
NOKPROBE_SYMBOL(arch_disarm_kprobe);
void arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
NOKPROBE_SYMBOL(arch_remove_kprobe);
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
enable_single_step(regs);
/*
* On powerpc we should single step on the original
* instruction even if the probed insn is a trap
* variant as values in regs could play a part in
* if the trap is taken or not
*/
regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
}
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
}
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
}
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_msr = regs->msr;
}
static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
{
int ret;
ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
/* regs->nip is also adjusted if emulate_step returns 1 */
ret = emulate_step(regs, insn);
if (ret > 0) {
/*
* Once this instruction has been boosted
* successfully, set the boostable flag
*/
if (unlikely(p->ainsn.boostable == 0))
p->ainsn.boostable = 1;
} else if (ret < 0) {
/*
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
* So, we should never get here... but, its still
* good to catch them, just in case...
*/
printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
BUG();
} else {
/*
* If we haven't previously emulated this instruction, then it
* can't be boosted. Note it down so we don't try to do so again.
*
* If, however, we had emulated this instruction in the past,
* then this is just an error with the current run (for
* instance, exceptions due to a load/store). We return 0 so
* that this is now single-stepped, but continue to try
* emulating it in subsequent probe hits.
*/
if (unlikely(p->ainsn.boostable != 1))
p->ainsn.boostable = -1;
}
return ret;
}
NOKPROBE_SYMBOL(try_to_emulate);
int kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
unsigned int *addr = (unsigned int *)regs->nip;
struct kprobe_ctlblk *kcb;
if (user_mode(regs))
return 0;
if (!IS_ENABLED(CONFIG_BOOKE) &&
(!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
return 0;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
p = get_kprobe(addr);
if (!p) {
unsigned int instr;
if (get_kernel_nofault(instr, addr))
goto no_kprobe;
if (instr != BREAKPOINT_INSTRUCTION) {
/*
* PowerPC has multiple variants of the "trap"
* instruction. If the current instruction is a
* trap variant, it could belong to someone else
*/
if (is_trap(instr))
goto no_kprobe;
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
/* Check we're not actually recursing */
if (kprobe_running()) {
kprobe_opcode_t insn = *p->ainsn.insn;
if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
/* Turn off 'trace' bits */
regs_set_return_msr(regs,
(regs->msr & ~MSR_SINGLESTEP) |
kcb->kprobe_saved_msr);
goto no_kprobe;
}
/*
* We have reentered the kprobe_handler(), since another probe
* was hit while within the handler. We here save the original
* kprobes variables and just single step on the instruction of
* the new probe without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
kcb->kprobe_status = KPROBE_REENTER;
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
restore_previous_kprobe(kcb);
preempt_enable();
return 1;
}
}
prepare_singlestep(p, regs);
return 1;
}
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
set_current_kprobe(p, regs, kcb);
if (p->pre_handler && p->pre_handler(p, regs)) {
/* handler changed execution path, so skip ss setup */
reset_current_kprobe();
preempt_enable();
return 1;
}
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
if (p->post_handler)
p->post_handler(p, regs, 0);
kcb->kprobe_status = KPROBE_HIT_SSDONE;
reset_current_kprobe();
preempt_enable();
return 1;
}
}
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable();
return ret;
}
NOKPROBE_SYMBOL(kprobe_handler);
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "breakpoint"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
int kprobe_post_handler(struct pt_regs *regs)
{
int len;
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur || user_mode(regs))
return 0;
len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
/* make sure we got here for instruction we have a kprobe on */
if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
/* Adjust nip to after the single-stepped instruction */
regs_set_return_ip(regs, (unsigned long)cur->addr + len);
regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable();
/*
* if somebody else is singlestepping across a probe point, msr
* will have DE/SE set, in which case, continue the remaining processing
* of do_debug, as if this is not a probe hit.
*/
if (regs->msr & MSR_SINGLESTEP)
return 0;
return 1;
}
NOKPROBE_SYMBOL(kprobe_post_handler);
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the nip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs_set_return_ip(regs, (unsigned long)cur->addr);
/* Turn off 'trace' bits */
regs_set_return_msr(regs,
(regs->msr & ~MSR_SINGLESTEP) |
kcb->kprobe_saved_msr);
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs_set_return_ip(regs, extable_fixup(entry));
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
NOKPROBE_SYMBOL(kprobe_fault_handler);
int arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *)&arch_rethook_trampoline)
return 1;
return 0;
}
NOKPROBE_SYMBOL(arch_trampoline_kprobe);