mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
5b4787719f
Commit 8d7718aa08
changed "int"
to "u32" in the prototypes but not the definition.
I missed this when I saw the patch go by on LKML.
We cast "u32 *" to "int *" since we are tying into the underlying
atomics framework, and atomic_t uses int as its value type.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
330 lines
9.5 KiB
C
330 lines
9.5 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/futex.h>
|
|
#include <arch/chip.h>
|
|
|
|
/* See <asm/atomic_32.h> */
|
|
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
|
|
|
|
/*
|
|
* A block of memory containing locks for atomic ops. Each instance of this
|
|
* struct will be homed on a different CPU.
|
|
*/
|
|
struct atomic_locks_on_cpu {
|
|
int lock[ATOMIC_HASH_L2_SIZE];
|
|
} __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4)));
|
|
|
|
static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool);
|
|
|
|
/* The locks we'll use until __init_atomic_per_cpu is called. */
|
|
static struct atomic_locks_on_cpu __initdata initial_atomic_locks;
|
|
|
|
/* Hash into this vector to get a pointer to lock for the given atomic. */
|
|
struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE]
|
|
__write_once = {
|
|
[0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks)
|
|
};
|
|
|
|
#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
|
|
|
|
/* This page is remapped on startup to be hash-for-home. */
|
|
int atomic_locks[PAGE_SIZE / sizeof(int)] __page_aligned_bss;
|
|
|
|
#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
|
|
|
|
static inline int *__atomic_hashed_lock(volatile void *v)
|
|
{
|
|
/* NOTE: this code must match "sys_cmpxchg" in kernel/intvec_32.S */
|
|
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
|
|
unsigned long i =
|
|
(unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long));
|
|
unsigned long n = __insn_crc32_32(0, i);
|
|
|
|
/* Grab high bits for L1 index. */
|
|
unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT);
|
|
/* Grab low bits for L2 index. */
|
|
unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1);
|
|
|
|
return &atomic_lock_ptr[l1_index]->lock[l2_index];
|
|
#else
|
|
/*
|
|
* Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index.
|
|
* Using mm works here because atomic_locks is page aligned.
|
|
*/
|
|
unsigned long ptr = __insn_mm((unsigned long)v >> 1,
|
|
(unsigned long)atomic_locks,
|
|
2, (ATOMIC_HASH_SHIFT + 2) - 1);
|
|
return (int *)ptr;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Return whether the passed pointer is a valid atomic lock pointer. */
|
|
static int is_atomic_lock(int *p)
|
|
{
|
|
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
|
|
int i;
|
|
for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
|
|
|
|
if (p >= &atomic_lock_ptr[i]->lock[0] &&
|
|
p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
#else
|
|
return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE];
|
|
#endif
|
|
}
|
|
|
|
void __atomic_fault_unlock(int *irqlock_word)
|
|
{
|
|
BUG_ON(!is_atomic_lock(irqlock_word));
|
|
BUG_ON(*irqlock_word != 1);
|
|
*irqlock_word = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static inline int *__atomic_setup(volatile void *v)
|
|
{
|
|
/* Issue a load to the target to bring it into cache. */
|
|
*(volatile int *)v;
|
|
return __atomic_hashed_lock(v);
|
|
}
|
|
|
|
int _atomic_xchg(atomic_t *v, int n)
|
|
{
|
|
return __atomic_xchg(&v->counter, __atomic_setup(v), n).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_xchg);
|
|
|
|
int _atomic_xchg_add(atomic_t *v, int i)
|
|
{
|
|
return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_xchg_add);
|
|
|
|
int _atomic_xchg_add_unless(atomic_t *v, int a, int u)
|
|
{
|
|
/*
|
|
* Note: argument order is switched here since it is easier
|
|
* to use the first argument consistently as the "old value"
|
|
* in the assembly, as is done for _atomic_cmpxchg().
|
|
*/
|
|
return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a)
|
|
.val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_xchg_add_unless);
|
|
|
|
int _atomic_cmpxchg(atomic_t *v, int o, int n)
|
|
{
|
|
return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_cmpxchg);
|
|
|
|
unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask)
|
|
{
|
|
return __atomic_or((int *)p, __atomic_setup(p), mask).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_or);
|
|
|
|
unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask)
|
|
{
|
|
return __atomic_andn((int *)p, __atomic_setup(p), mask).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_andn);
|
|
|
|
unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask)
|
|
{
|
|
return __atomic_xor((int *)p, __atomic_setup(p), mask).val;
|
|
}
|
|
EXPORT_SYMBOL(_atomic_xor);
|
|
|
|
|
|
u64 _atomic64_xchg(atomic64_t *v, u64 n)
|
|
{
|
|
return __atomic64_xchg(&v->counter, __atomic_setup(v), n);
|
|
}
|
|
EXPORT_SYMBOL(_atomic64_xchg);
|
|
|
|
u64 _atomic64_xchg_add(atomic64_t *v, u64 i)
|
|
{
|
|
return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i);
|
|
}
|
|
EXPORT_SYMBOL(_atomic64_xchg_add);
|
|
|
|
u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u)
|
|
{
|
|
/*
|
|
* Note: argument order is switched here since it is easier
|
|
* to use the first argument consistently as the "old value"
|
|
* in the assembly, as is done for _atomic_cmpxchg().
|
|
*/
|
|
return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v),
|
|
u, a);
|
|
}
|
|
EXPORT_SYMBOL(_atomic64_xchg_add_unless);
|
|
|
|
u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n)
|
|
{
|
|
return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n);
|
|
}
|
|
EXPORT_SYMBOL(_atomic64_cmpxchg);
|
|
|
|
|
|
static inline int *__futex_setup(int __user *v)
|
|
{
|
|
/*
|
|
* Issue a prefetch to the counter to bring it into cache.
|
|
* As for __atomic_setup, but we can't do a read into the L1
|
|
* since it might fault; instead we do a prefetch into the L2.
|
|
*/
|
|
__insn_prefetch(v);
|
|
return __atomic_hashed_lock((int __force *)v);
|
|
}
|
|
|
|
struct __get_user futex_set(u32 __user *v, int i)
|
|
{
|
|
return __atomic_xchg((int __force *)v, __futex_setup(v), i);
|
|
}
|
|
|
|
struct __get_user futex_add(u32 __user *v, int n)
|
|
{
|
|
return __atomic_xchg_add((int __force *)v, __futex_setup(v), n);
|
|
}
|
|
|
|
struct __get_user futex_or(u32 __user *v, int n)
|
|
{
|
|
return __atomic_or((int __force *)v, __futex_setup(v), n);
|
|
}
|
|
|
|
struct __get_user futex_andn(u32 __user *v, int n)
|
|
{
|
|
return __atomic_andn((int __force *)v, __futex_setup(v), n);
|
|
}
|
|
|
|
struct __get_user futex_xor(u32 __user *v, int n)
|
|
{
|
|
return __atomic_xor((int __force *)v, __futex_setup(v), n);
|
|
}
|
|
|
|
struct __get_user futex_cmpxchg(u32 __user *v, int o, int n)
|
|
{
|
|
return __atomic_cmpxchg((int __force *)v, __futex_setup(v), o, n);
|
|
}
|
|
|
|
/*
|
|
* If any of the atomic or futex routines hit a bad address (not in
|
|
* the page tables at kernel PL) this routine is called. The futex
|
|
* routines are never used on kernel space, and the normal atomics and
|
|
* bitops are never used on user space. So a fault on kernel space
|
|
* must be fatal, but a fault on userspace is a futex fault and we
|
|
* need to return -EFAULT. Note that the context this routine is
|
|
* invoked in is the context of the "_atomic_xxx()" routines called
|
|
* by the functions in this file.
|
|
*/
|
|
struct __get_user __atomic_bad_address(int __user *addr)
|
|
{
|
|
if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int))))
|
|
panic("Bad address used for kernel atomic op: %p\n", addr);
|
|
return (struct __get_user) { .err = -EFAULT };
|
|
}
|
|
|
|
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
static int __init noatomichash(char *str)
|
|
{
|
|
pr_warning("noatomichash is deprecated.\n");
|
|
return 1;
|
|
}
|
|
__setup("noatomichash", noatomichash);
|
|
#endif
|
|
|
|
void __init __init_atomic_per_cpu(void)
|
|
{
|
|
#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
|
|
|
|
unsigned int i;
|
|
int actual_cpu;
|
|
|
|
/*
|
|
* Before this is called from setup, we just have one lock for
|
|
* all atomic objects/operations. Here we replace the
|
|
* elements of atomic_lock_ptr so that they point at per_cpu
|
|
* integers. This seemingly over-complex approach stems from
|
|
* the fact that DEFINE_PER_CPU defines an entry for each cpu
|
|
* in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But
|
|
* for efficient hashing of atomics to their locks we want a
|
|
* compile time constant power of 2 for the size of this
|
|
* table, so we use ATOMIC_HASH_SIZE.
|
|
*
|
|
* Here we populate atomic_lock_ptr from the per cpu
|
|
* atomic_lock_pool, interspersing by actual cpu so that
|
|
* subsequent elements are homed on consecutive cpus.
|
|
*/
|
|
|
|
actual_cpu = cpumask_first(cpu_possible_mask);
|
|
|
|
for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
|
|
/*
|
|
* Preincrement to slightly bias against using cpu 0,
|
|
* which has plenty of stuff homed on it already.
|
|
*/
|
|
actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask);
|
|
if (actual_cpu >= nr_cpu_ids)
|
|
actual_cpu = cpumask_first(cpu_possible_mask);
|
|
|
|
atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu);
|
|
}
|
|
|
|
#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
|
|
|
|
/* Validate power-of-two and "bigger than cpus" assumption */
|
|
BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1));
|
|
BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids);
|
|
|
|
/*
|
|
* On TILEPro we prefer to use a single hash-for-home
|
|
* page, since this means atomic operations are less
|
|
* likely to encounter a TLB fault and thus should
|
|
* in general perform faster. You may wish to disable
|
|
* this in situations where few hash-for-home tiles
|
|
* are configured.
|
|
*/
|
|
BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0);
|
|
|
|
/* The locks must all fit on one page. */
|
|
BUILD_BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE);
|
|
|
|
/*
|
|
* We use the page offset of the atomic value's address as
|
|
* an index into atomic_locks, excluding the low 3 bits.
|
|
* That should not produce more indices than ATOMIC_HASH_SIZE.
|
|
*/
|
|
BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE);
|
|
|
|
#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
|
|
|
|
/* The futex code makes this assumption, so we validate it here. */
|
|
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(int));
|
|
}
|