linux/arch/arm64/kernel/topology.c
Ingo Molnar 105ab3d8ce sched/headers: Prepare for new header dependencies before moving code to <linux/sched/topology.h>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:26 +01:00

532 lines
12 KiB
C

/*
* arch/arm64/kernel/topology.c
*
* Copyright (C) 2011,2013,2014 Linaro Limited.
*
* Based on the arm32 version written by Vincent Guittot in turn based on
* arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/cpufreq.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
static DEFINE_MUTEX(cpu_scale_mutex);
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
return per_cpu(cpu_scale, cpu);
}
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
return sprintf(buf, "%lu\n",
arch_scale_cpu_capacity(NULL, cpu->dev.id));
}
static ssize_t cpu_capacity_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
int this_cpu = cpu->dev.id, i;
unsigned long new_capacity;
ssize_t ret;
if (count) {
ret = kstrtoul(buf, 0, &new_capacity);
if (ret)
return ret;
if (new_capacity > SCHED_CAPACITY_SCALE)
return -EINVAL;
mutex_lock(&cpu_scale_mutex);
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
set_capacity_scale(i, new_capacity);
mutex_unlock(&cpu_scale_mutex);
}
return count;
}
static DEVICE_ATTR_RW(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
static u32 capacity_scale;
static u32 *raw_capacity;
static bool cap_parsing_failed;
static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
int ret;
u32 cpu_capacity;
if (cap_parsing_failed)
return;
ret = of_property_read_u32(cpu_node,
"capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
cap_parsing_failed = true;
return;
}
}
capacity_scale = max(cpu_capacity, capacity_scale);
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
cpu_node->full_name, raw_capacity[cpu]);
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %s raw capacity\n",
cpu_node->full_name);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
kfree(raw_capacity);
}
}
static void normalize_cpu_capacity(void)
{
u64 capacity;
int cpu;
if (!raw_capacity || cap_parsing_failed)
return;
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
mutex_lock(&cpu_scale_mutex);
for_each_possible_cpu(cpu) {
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
cpu, raw_capacity[cpu]);
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
/ capacity_scale;
set_capacity_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, arch_scale_cpu_capacity(NULL, cpu));
}
mutex_unlock(&cpu_scale_mutex);
}
#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static bool cap_parsing_done;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (cap_parsing_failed || cap_parsing_done)
return 0;
switch (val) {
case CPUFREQ_NOTIFY:
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit,
cpus_to_visit,
policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus) {
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
policy->cpuinfo.max_freq / 1000UL;
capacity_scale = max(raw_capacity[cpu], capacity_scale);
}
if (cpumask_empty(cpus_to_visit)) {
normalize_cpu_capacity();
kfree(raw_capacity);
pr_debug("cpu_capacity: parsing done\n");
cap_parsing_done = true;
schedule_work(&parsing_done_work);
}
}
return 0;
}
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
/*
* on ACPI-based systems we need to use the default cpu capacity
* until we have the necessary code to parse the cpu capacity, so
* skip registering cpufreq notifier.
*/
if (!acpi_disabled || cap_parsing_failed)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
return -ENOMEM;
}
cpumask_copy(cpus_to_visit, cpu_possible_mask);
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(register_cpufreq_notifier);
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
#else
static int __init free_raw_capacity(void)
{
kfree(raw_capacity);
return 0;
}
core_initcall(free_raw_capacity);
#endif
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
parse_cpu_capacity(cpu_node, cpu);
of_node_put(cpu_node);
return cpu;
}
}
pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
of_node_put(cpu_node);
return -1;
}
static int __init parse_core(struct device_node *core, int cluster_id,
int core_id)
{
char name[10];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%s: Can't get CPU for thread\n",
t->full_name);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%s: Core has both threads and CPU\n",
core->full_name);
return -EINVAL;
}
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[10];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int cluster_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%s: cpu-map children should be clusters\n",
c->full_name);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, cluster_id, core_id++);
} else {
pr_err("%s: Non-leaf cluster with core %s\n",
cluster->full_name, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%s: empty cluster\n", cluster->full_name);
if (leaf)
cluster_id++;
return 0;
}
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map) {
cap_parsing_failed = true;
goto out;
}
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
normalize_cpu_capacity();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].cluster_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
void store_cpu_topology(unsigned int cpuid)
{
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
u64 mpidr;
if (cpuid_topo->cluster_id != -1)
goto topology_populated;
mpidr = read_cpuid_mpidr();
/* Uniprocessor systems can rely on default topology values */
if (mpidr & MPIDR_UP_BITMASK)
return;
/* Create cpu topology mapping based on MPIDR. */
if (mpidr & MPIDR_MT_BITMASK) {
/* Multiprocessor system : Multi-threads per core */
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
} else {
/* Multiprocessor system : Single-thread per core */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
}
pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
cpuid_topo->thread_id, mpidr);
topology_populated:
update_siblings_masks(cpuid);
}
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = 0;
cpu_topo->cluster_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}
}
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}