mirror of
https://github.com/torvalds/linux.git
synced 2024-10-31 17:21:49 +00:00
057ace5e79
Enforce access rules where appropriate. If the compiler is smart enough, this may buy us an optimization or two as a side effect.
1593 lines
44 KiB
C
1593 lines
44 KiB
C
/*
|
|
* sata_mv.c - Marvell SATA support
|
|
*
|
|
* Copyright 2005: EMC Corporation, all rights reserved.
|
|
*
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include "scsi.h"
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/libata.h>
|
|
#include <asm/io.h>
|
|
|
|
#define DRV_NAME "sata_mv"
|
|
#define DRV_VERSION "0.25"
|
|
|
|
enum {
|
|
/* BAR's are enumerated in terms of pci_resource_start() terms */
|
|
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
|
|
MV_IO_BAR = 2, /* offset 0x18: IO space */
|
|
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
|
|
|
|
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
|
|
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
|
|
|
|
MV_PCI_REG_BASE = 0,
|
|
MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
|
|
MV_SATAHC0_REG_BASE = 0x20000,
|
|
|
|
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
|
|
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
|
|
|
|
MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
|
|
|
|
MV_MAX_Q_DEPTH = 32,
|
|
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
|
|
|
|
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
|
|
* CRPB needs alignment on a 256B boundary. Size == 256B
|
|
* SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
|
|
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
|
|
*/
|
|
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
|
|
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
|
|
MV_MAX_SG_CT = 176,
|
|
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
|
|
MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
|
|
|
|
/* Our DMA boundary is determined by an ePRD being unable to handle
|
|
* anything larger than 64KB
|
|
*/
|
|
MV_DMA_BOUNDARY = 0xffffU,
|
|
|
|
MV_PORTS_PER_HC = 4,
|
|
/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
|
|
MV_PORT_HC_SHIFT = 2,
|
|
/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
|
|
MV_PORT_MASK = 3,
|
|
|
|
/* Host Flags */
|
|
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
|
|
MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
|
|
MV_FLAG_GLBL_SFT_RST = (1 << 28), /* Global Soft Reset support */
|
|
MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
|
|
ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
|
|
MV_6XXX_FLAGS = (MV_FLAG_IRQ_COALESCE |
|
|
MV_FLAG_GLBL_SFT_RST),
|
|
|
|
chip_504x = 0,
|
|
chip_508x = 1,
|
|
chip_604x = 2,
|
|
chip_608x = 3,
|
|
|
|
CRQB_FLAG_READ = (1 << 0),
|
|
CRQB_TAG_SHIFT = 1,
|
|
CRQB_CMD_ADDR_SHIFT = 8,
|
|
CRQB_CMD_CS = (0x2 << 11),
|
|
CRQB_CMD_LAST = (1 << 15),
|
|
|
|
CRPB_FLAG_STATUS_SHIFT = 8,
|
|
|
|
EPRD_FLAG_END_OF_TBL = (1 << 31),
|
|
|
|
/* PCI interface registers */
|
|
|
|
PCI_COMMAND_OFS = 0xc00,
|
|
|
|
PCI_MAIN_CMD_STS_OFS = 0xd30,
|
|
STOP_PCI_MASTER = (1 << 2),
|
|
PCI_MASTER_EMPTY = (1 << 3),
|
|
GLOB_SFT_RST = (1 << 4),
|
|
|
|
PCI_IRQ_CAUSE_OFS = 0x1d58,
|
|
PCI_IRQ_MASK_OFS = 0x1d5c,
|
|
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
|
|
|
|
HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
|
|
HC_MAIN_IRQ_MASK_OFS = 0x1d64,
|
|
PORT0_ERR = (1 << 0), /* shift by port # */
|
|
PORT0_DONE = (1 << 1), /* shift by port # */
|
|
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
|
|
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
|
|
PCI_ERR = (1 << 18),
|
|
TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
|
|
TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
|
|
PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
|
|
GPIO_INT = (1 << 22),
|
|
SELF_INT = (1 << 23),
|
|
TWSI_INT = (1 << 24),
|
|
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
|
|
HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
|
|
PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
|
|
HC_MAIN_RSVD),
|
|
|
|
/* SATAHC registers */
|
|
HC_CFG_OFS = 0,
|
|
|
|
HC_IRQ_CAUSE_OFS = 0x14,
|
|
CRPB_DMA_DONE = (1 << 0), /* shift by port # */
|
|
HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
|
|
DEV_IRQ = (1 << 8), /* shift by port # */
|
|
|
|
/* Shadow block registers */
|
|
SHD_BLK_OFS = 0x100,
|
|
SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
|
|
|
|
/* SATA registers */
|
|
SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
|
|
SATA_ACTIVE_OFS = 0x350,
|
|
|
|
/* Port registers */
|
|
EDMA_CFG_OFS = 0,
|
|
EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
|
|
EDMA_CFG_NCQ = (1 << 5),
|
|
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
|
|
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
|
|
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
|
|
|
|
EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
|
|
EDMA_ERR_IRQ_MASK_OFS = 0xc,
|
|
EDMA_ERR_D_PAR = (1 << 0),
|
|
EDMA_ERR_PRD_PAR = (1 << 1),
|
|
EDMA_ERR_DEV = (1 << 2),
|
|
EDMA_ERR_DEV_DCON = (1 << 3),
|
|
EDMA_ERR_DEV_CON = (1 << 4),
|
|
EDMA_ERR_SERR = (1 << 5),
|
|
EDMA_ERR_SELF_DIS = (1 << 7),
|
|
EDMA_ERR_BIST_ASYNC = (1 << 8),
|
|
EDMA_ERR_CRBQ_PAR = (1 << 9),
|
|
EDMA_ERR_CRPB_PAR = (1 << 10),
|
|
EDMA_ERR_INTRL_PAR = (1 << 11),
|
|
EDMA_ERR_IORDY = (1 << 12),
|
|
EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
|
|
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
|
|
EDMA_ERR_LNK_DATA_RX = (0xf << 17),
|
|
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
|
|
EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
|
|
EDMA_ERR_TRANS_PROTO = (1 << 31),
|
|
EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
|
|
EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
|
|
EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
|
|
EDMA_ERR_LNK_DATA_RX |
|
|
EDMA_ERR_LNK_DATA_TX |
|
|
EDMA_ERR_TRANS_PROTO),
|
|
|
|
EDMA_REQ_Q_BASE_HI_OFS = 0x10,
|
|
EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
|
|
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
|
|
|
|
EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
|
|
EDMA_REQ_Q_PTR_SHIFT = 5,
|
|
|
|
EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
|
|
EDMA_RSP_Q_IN_PTR_OFS = 0x20,
|
|
EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
|
|
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
|
|
EDMA_RSP_Q_PTR_SHIFT = 3,
|
|
|
|
EDMA_CMD_OFS = 0x28,
|
|
EDMA_EN = (1 << 0),
|
|
EDMA_DS = (1 << 1),
|
|
ATA_RST = (1 << 2),
|
|
|
|
/* Host private flags (hp_flags) */
|
|
MV_HP_FLAG_MSI = (1 << 0),
|
|
|
|
/* Port private flags (pp_flags) */
|
|
MV_PP_FLAG_EDMA_EN = (1 << 0),
|
|
MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
|
|
};
|
|
|
|
/* Command ReQuest Block: 32B */
|
|
struct mv_crqb {
|
|
u32 sg_addr;
|
|
u32 sg_addr_hi;
|
|
u16 ctrl_flags;
|
|
u16 ata_cmd[11];
|
|
};
|
|
|
|
/* Command ResPonse Block: 8B */
|
|
struct mv_crpb {
|
|
u16 id;
|
|
u16 flags;
|
|
u32 tmstmp;
|
|
};
|
|
|
|
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
|
|
struct mv_sg {
|
|
u32 addr;
|
|
u32 flags_size;
|
|
u32 addr_hi;
|
|
u32 reserved;
|
|
};
|
|
|
|
struct mv_port_priv {
|
|
struct mv_crqb *crqb;
|
|
dma_addr_t crqb_dma;
|
|
struct mv_crpb *crpb;
|
|
dma_addr_t crpb_dma;
|
|
struct mv_sg *sg_tbl;
|
|
dma_addr_t sg_tbl_dma;
|
|
|
|
unsigned req_producer; /* cp of req_in_ptr */
|
|
unsigned rsp_consumer; /* cp of rsp_out_ptr */
|
|
u32 pp_flags;
|
|
};
|
|
|
|
struct mv_host_priv {
|
|
u32 hp_flags;
|
|
};
|
|
|
|
static void mv_irq_clear(struct ata_port *ap);
|
|
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
|
|
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
|
|
static u8 mv_check_err(struct ata_port *ap);
|
|
static void mv_phy_reset(struct ata_port *ap);
|
|
static void mv_host_stop(struct ata_host_set *host_set);
|
|
static int mv_port_start(struct ata_port *ap);
|
|
static void mv_port_stop(struct ata_port *ap);
|
|
static void mv_qc_prep(struct ata_queued_cmd *qc);
|
|
static int mv_qc_issue(struct ata_queued_cmd *qc);
|
|
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
|
|
struct pt_regs *regs);
|
|
static void mv_eng_timeout(struct ata_port *ap);
|
|
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
|
|
|
|
static Scsi_Host_Template mv_sht = {
|
|
.module = THIS_MODULE,
|
|
.name = DRV_NAME,
|
|
.ioctl = ata_scsi_ioctl,
|
|
.queuecommand = ata_scsi_queuecmd,
|
|
.eh_strategy_handler = ata_scsi_error,
|
|
.can_queue = MV_USE_Q_DEPTH,
|
|
.this_id = ATA_SHT_THIS_ID,
|
|
.sg_tablesize = MV_MAX_SG_CT,
|
|
.max_sectors = ATA_MAX_SECTORS,
|
|
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
|
|
.emulated = ATA_SHT_EMULATED,
|
|
.use_clustering = ATA_SHT_USE_CLUSTERING,
|
|
.proc_name = DRV_NAME,
|
|
.dma_boundary = MV_DMA_BOUNDARY,
|
|
.slave_configure = ata_scsi_slave_config,
|
|
.bios_param = ata_std_bios_param,
|
|
.ordered_flush = 1,
|
|
};
|
|
|
|
static const struct ata_port_operations mv_ops = {
|
|
.port_disable = ata_port_disable,
|
|
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.check_err = mv_check_err,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.phy_reset = mv_phy_reset,
|
|
|
|
.qc_prep = mv_qc_prep,
|
|
.qc_issue = mv_qc_issue,
|
|
|
|
.eng_timeout = mv_eng_timeout,
|
|
|
|
.irq_handler = mv_interrupt,
|
|
.irq_clear = mv_irq_clear,
|
|
|
|
.scr_read = mv_scr_read,
|
|
.scr_write = mv_scr_write,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
.host_stop = mv_host_stop,
|
|
};
|
|
|
|
static struct ata_port_info mv_port_info[] = {
|
|
{ /* chip_504x */
|
|
.sht = &mv_sht,
|
|
.host_flags = MV_COMMON_FLAGS,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
|
|
.port_ops = &mv_ops,
|
|
},
|
|
{ /* chip_508x */
|
|
.sht = &mv_sht,
|
|
.host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
|
|
.port_ops = &mv_ops,
|
|
},
|
|
{ /* chip_604x */
|
|
.sht = &mv_sht,
|
|
.host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = 0x7f, /* udma0-6 */
|
|
.port_ops = &mv_ops,
|
|
},
|
|
{ /* chip_608x */
|
|
.sht = &mv_sht,
|
|
.host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
|
|
MV_FLAG_DUAL_HC),
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = 0x7f, /* udma0-6 */
|
|
.port_ops = &mv_ops,
|
|
},
|
|
};
|
|
|
|
static struct pci_device_id mv_pci_tbl[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_508x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
|
|
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
|
|
{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
|
|
{} /* terminate list */
|
|
};
|
|
|
|
static struct pci_driver mv_pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = mv_pci_tbl,
|
|
.probe = mv_init_one,
|
|
.remove = ata_pci_remove_one,
|
|
};
|
|
|
|
/*
|
|
* Functions
|
|
*/
|
|
|
|
static inline void writelfl(unsigned long data, void __iomem *addr)
|
|
{
|
|
writel(data, addr);
|
|
(void) readl(addr); /* flush to avoid PCI posted write */
|
|
}
|
|
|
|
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
|
|
{
|
|
return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
|
|
}
|
|
|
|
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
|
|
{
|
|
return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) +
|
|
MV_SATAHC_ARBTR_REG_SZ +
|
|
((port & MV_PORT_MASK) * MV_PORT_REG_SZ));
|
|
}
|
|
|
|
static inline void __iomem *mv_ap_base(struct ata_port *ap)
|
|
{
|
|
return mv_port_base(ap->host_set->mmio_base, ap->port_no);
|
|
}
|
|
|
|
static inline int mv_get_hc_count(unsigned long hp_flags)
|
|
{
|
|
return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
|
|
}
|
|
|
|
static void mv_irq_clear(struct ata_port *ap)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* mv_start_dma - Enable eDMA engine
|
|
* @base: port base address
|
|
* @pp: port private data
|
|
*
|
|
* Verify the local cache of the eDMA state is accurate with an
|
|
* assert.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
|
|
{
|
|
if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
|
|
writelfl(EDMA_EN, base + EDMA_CMD_OFS);
|
|
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
|
|
}
|
|
assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
|
|
}
|
|
|
|
/**
|
|
* mv_stop_dma - Disable eDMA engine
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Verify the local cache of the eDMA state is accurate with an
|
|
* assert.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_stop_dma(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 reg;
|
|
int i;
|
|
|
|
if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
|
|
/* Disable EDMA if active. The disable bit auto clears.
|
|
*/
|
|
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
} else {
|
|
assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
|
|
}
|
|
|
|
/* now properly wait for the eDMA to stop */
|
|
for (i = 1000; i > 0; i--) {
|
|
reg = readl(port_mmio + EDMA_CMD_OFS);
|
|
if (!(EDMA_EN & reg)) {
|
|
break;
|
|
}
|
|
udelay(100);
|
|
}
|
|
|
|
if (EDMA_EN & reg) {
|
|
printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
|
|
/* FIXME: Consider doing a reset here to recover */
|
|
}
|
|
}
|
|
|
|
#ifdef ATA_DEBUG
|
|
static void mv_dump_mem(void __iomem *start, unsigned bytes)
|
|
{
|
|
int b, w;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%p: ", start + b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
printk("%08x ",readl(start + b));
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
int b, w;
|
|
u32 dw;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%02x: ", b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
(void) pci_read_config_dword(pdev,b,&dw);
|
|
printk("%08x ",dw);
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
}
|
|
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
|
|
struct pci_dev *pdev)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
void __iomem *hc_base = mv_hc_base(mmio_base,
|
|
port >> MV_PORT_HC_SHIFT);
|
|
void __iomem *port_base;
|
|
int start_port, num_ports, p, start_hc, num_hcs, hc;
|
|
|
|
if (0 > port) {
|
|
start_hc = start_port = 0;
|
|
num_ports = 8; /* shld be benign for 4 port devs */
|
|
num_hcs = 2;
|
|
} else {
|
|
start_hc = port >> MV_PORT_HC_SHIFT;
|
|
start_port = port;
|
|
num_ports = num_hcs = 1;
|
|
}
|
|
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
|
|
num_ports > 1 ? num_ports - 1 : start_port);
|
|
|
|
if (NULL != pdev) {
|
|
DPRINTK("PCI config space regs:\n");
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
}
|
|
DPRINTK("PCI regs:\n");
|
|
mv_dump_mem(mmio_base+0xc00, 0x3c);
|
|
mv_dump_mem(mmio_base+0xd00, 0x34);
|
|
mv_dump_mem(mmio_base+0xf00, 0x4);
|
|
mv_dump_mem(mmio_base+0x1d00, 0x6c);
|
|
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
|
|
hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
|
|
DPRINTK("HC regs (HC %i):\n", hc);
|
|
mv_dump_mem(hc_base, 0x1c);
|
|
}
|
|
for (p = start_port; p < start_port + num_ports; p++) {
|
|
port_base = mv_port_base(mmio_base, p);
|
|
DPRINTK("EDMA regs (port %i):\n",p);
|
|
mv_dump_mem(port_base, 0x54);
|
|
DPRINTK("SATA regs (port %i):\n",p);
|
|
mv_dump_mem(port_base+0x300, 0x60);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs;
|
|
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
case SCR_CONTROL:
|
|
case SCR_ERROR:
|
|
ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
|
|
break;
|
|
case SCR_ACTIVE:
|
|
ofs = SATA_ACTIVE_OFS; /* active is not with the others */
|
|
break;
|
|
default:
|
|
ofs = 0xffffffffU;
|
|
break;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (0xffffffffU != ofs) {
|
|
return readl(mv_ap_base(ap) + ofs);
|
|
} else {
|
|
return (u32) ofs;
|
|
}
|
|
}
|
|
|
|
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (0xffffffffU != ofs) {
|
|
writelfl(val, mv_ap_base(ap) + ofs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_global_soft_reset - Perform the 6xxx global soft reset
|
|
* @mmio_base: base address of the HBA
|
|
*
|
|
* This routine only applies to 6xxx parts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_global_soft_reset(void __iomem *mmio_base)
|
|
{
|
|
void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
|
|
int i, rc = 0;
|
|
u32 t;
|
|
|
|
/* Following procedure defined in PCI "main command and status
|
|
* register" table.
|
|
*/
|
|
t = readl(reg);
|
|
writel(t | STOP_PCI_MASTER, reg);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
udelay(1);
|
|
t = readl(reg);
|
|
if (PCI_MASTER_EMPTY & t) {
|
|
break;
|
|
}
|
|
}
|
|
if (!(PCI_MASTER_EMPTY & t)) {
|
|
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* set reset */
|
|
i = 5;
|
|
do {
|
|
writel(t | GLOB_SFT_RST, reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (!(GLOB_SFT_RST & t)) {
|
|
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
|
|
i = 5;
|
|
do {
|
|
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while ((GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (GLOB_SFT_RST & t) {
|
|
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
|
|
rc = 1;
|
|
}
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* mv_host_stop - Host specific cleanup/stop routine.
|
|
* @host_set: host data structure
|
|
*
|
|
* Disable ints, cleanup host memory, call general purpose
|
|
* host_stop.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_host_stop(struct ata_host_set *host_set)
|
|
{
|
|
struct mv_host_priv *hpriv = host_set->private_data;
|
|
struct pci_dev *pdev = to_pci_dev(host_set->dev);
|
|
|
|
if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
|
|
pci_disable_msi(pdev);
|
|
} else {
|
|
pci_intx(pdev, 0);
|
|
}
|
|
kfree(hpriv);
|
|
ata_host_stop(host_set);
|
|
}
|
|
|
|
/**
|
|
* mv_port_start - Port specific init/start routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Allocate and point to DMA memory, init port private memory,
|
|
* zero indices.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_port_start(struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host_set->dev;
|
|
struct mv_port_priv *pp;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
void *mem;
|
|
dma_addr_t mem_dma;
|
|
|
|
pp = kmalloc(sizeof(*pp), GFP_KERNEL);
|
|
if (!pp) {
|
|
return -ENOMEM;
|
|
}
|
|
memset(pp, 0, sizeof(*pp));
|
|
|
|
mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
|
|
GFP_KERNEL);
|
|
if (!mem) {
|
|
kfree(pp);
|
|
return -ENOMEM;
|
|
}
|
|
memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
|
|
|
|
/* First item in chunk of DMA memory:
|
|
* 32-slot command request table (CRQB), 32 bytes each in size
|
|
*/
|
|
pp->crqb = mem;
|
|
pp->crqb_dma = mem_dma;
|
|
mem += MV_CRQB_Q_SZ;
|
|
mem_dma += MV_CRQB_Q_SZ;
|
|
|
|
/* Second item:
|
|
* 32-slot command response table (CRPB), 8 bytes each in size
|
|
*/
|
|
pp->crpb = mem;
|
|
pp->crpb_dma = mem_dma;
|
|
mem += MV_CRPB_Q_SZ;
|
|
mem_dma += MV_CRPB_Q_SZ;
|
|
|
|
/* Third item:
|
|
* Table of scatter-gather descriptors (ePRD), 16 bytes each
|
|
*/
|
|
pp->sg_tbl = mem;
|
|
pp->sg_tbl_dma = mem_dma;
|
|
|
|
writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
|
|
EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
|
|
|
|
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
|
|
writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
|
|
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
|
|
|
|
writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
|
|
writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
|
|
|
|
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
|
|
writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
|
|
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
|
|
|
|
pp->req_producer = pp->rsp_consumer = 0;
|
|
|
|
/* Don't turn on EDMA here...do it before DMA commands only. Else
|
|
* we'll be unable to send non-data, PIO, etc due to restricted access
|
|
* to shadow regs.
|
|
*/
|
|
ap->private_data = pp;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_port_stop - Port specific cleanup/stop routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Stop DMA, cleanup port memory.
|
|
*
|
|
* LOCKING:
|
|
* This routine uses the host_set lock to protect the DMA stop.
|
|
*/
|
|
static void mv_port_stop(struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host_set->dev;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
mv_stop_dma(ap);
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
|
|
ap->private_data = NULL;
|
|
dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
|
|
kfree(pp);
|
|
}
|
|
|
|
/**
|
|
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
|
|
* @qc: queued command whose SG list to source from
|
|
*
|
|
* Populate the SG list and mark the last entry.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct mv_port_priv *pp = qc->ap->private_data;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < qc->n_elem; i++) {
|
|
u32 sg_len;
|
|
dma_addr_t addr;
|
|
|
|
addr = sg_dma_address(&qc->sg[i]);
|
|
sg_len = sg_dma_len(&qc->sg[i]);
|
|
|
|
pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
|
|
pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
|
|
assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
|
|
pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
|
|
}
|
|
if (0 < qc->n_elem) {
|
|
pp->sg_tbl[qc->n_elem - 1].flags_size |=
|
|
cpu_to_le32(EPRD_FLAG_END_OF_TBL);
|
|
}
|
|
}
|
|
|
|
static inline unsigned mv_inc_q_index(unsigned *index)
|
|
{
|
|
*index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
|
|
return *index;
|
|
}
|
|
|
|
static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
|
|
{
|
|
*cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
|
|
(last ? CRQB_CMD_LAST : 0);
|
|
}
|
|
|
|
/**
|
|
* mv_qc_prep - Host specific command preparation.
|
|
* @qc: queued command to prepare
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it handles prep of the CRQB
|
|
* (command request block), does some sanity checking, and calls
|
|
* the SG load routine.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u16 *cw;
|
|
struct ata_taskfile *tf;
|
|
u16 flags = 0;
|
|
|
|
if (ATA_PROT_DMA != qc->tf.protocol) {
|
|
return;
|
|
}
|
|
|
|
/* the req producer index should be the same as we remember it */
|
|
assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
|
|
EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
|
|
pp->req_producer);
|
|
|
|
/* Fill in command request block
|
|
*/
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
|
|
flags |= CRQB_FLAG_READ;
|
|
}
|
|
assert(MV_MAX_Q_DEPTH > qc->tag);
|
|
flags |= qc->tag << CRQB_TAG_SHIFT;
|
|
|
|
pp->crqb[pp->req_producer].sg_addr =
|
|
cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
|
|
pp->crqb[pp->req_producer].sg_addr_hi =
|
|
cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
|
|
pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
|
|
|
|
cw = &pp->crqb[pp->req_producer].ata_cmd[0];
|
|
tf = &qc->tf;
|
|
|
|
/* Sadly, the CRQB cannot accomodate all registers--there are
|
|
* only 11 bytes...so we must pick and choose required
|
|
* registers based on the command. So, we drop feature and
|
|
* hob_feature for [RW] DMA commands, but they are needed for
|
|
* NCQ. NCQ will drop hob_nsect.
|
|
*/
|
|
switch (tf->command) {
|
|
case ATA_CMD_READ:
|
|
case ATA_CMD_READ_EXT:
|
|
case ATA_CMD_WRITE:
|
|
case ATA_CMD_WRITE_EXT:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
|
|
break;
|
|
#ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
|
|
case ATA_CMD_FPDMA_READ:
|
|
case ATA_CMD_FPDMA_WRITE:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
|
|
break;
|
|
#endif /* FIXME: remove this line when NCQ added */
|
|
default:
|
|
/* The only other commands EDMA supports in non-queued and
|
|
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
|
|
* of which are defined/used by Linux. If we get here, this
|
|
* driver needs work.
|
|
*
|
|
* FIXME: modify libata to give qc_prep a return value and
|
|
* return error here.
|
|
*/
|
|
BUG_ON(tf->command);
|
|
break;
|
|
}
|
|
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
|
|
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
|
|
return;
|
|
}
|
|
mv_fill_sg(qc);
|
|
}
|
|
|
|
/**
|
|
* mv_qc_issue - Initiate a command to the host
|
|
* @qc: queued command to start
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it sanity checks our local
|
|
* caches of the request producer/consumer indices then enables
|
|
* DMA and bumps the request producer index.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(qc->ap);
|
|
struct mv_port_priv *pp = qc->ap->private_data;
|
|
u32 in_ptr;
|
|
|
|
if (ATA_PROT_DMA != qc->tf.protocol) {
|
|
/* We're about to send a non-EDMA capable command to the
|
|
* port. Turn off EDMA so there won't be problems accessing
|
|
* shadow block, etc registers.
|
|
*/
|
|
mv_stop_dma(qc->ap);
|
|
return ata_qc_issue_prot(qc);
|
|
}
|
|
|
|
in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
|
|
|
|
/* the req producer index should be the same as we remember it */
|
|
assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
|
|
pp->req_producer);
|
|
/* until we do queuing, the queue should be empty at this point */
|
|
assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
|
|
((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
|
|
EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
|
|
|
|
mv_inc_q_index(&pp->req_producer); /* now incr producer index */
|
|
|
|
mv_start_dma(port_mmio, pp);
|
|
|
|
/* and write the request in pointer to kick the EDMA to life */
|
|
in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
|
|
in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
|
|
writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_get_crpb_status - get status from most recently completed cmd
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* This routine is for use when the port is in DMA mode, when it
|
|
* will be using the CRPB (command response block) method of
|
|
* returning command completion information. We assert indices
|
|
* are good, grab status, and bump the response consumer index to
|
|
* prove that we're up to date.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 mv_get_crpb_status(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 out_ptr;
|
|
|
|
out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
|
|
|
|
/* the response consumer index should be the same as we remember it */
|
|
assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
|
|
pp->rsp_consumer);
|
|
|
|
/* increment our consumer index... */
|
|
pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
|
|
|
|
/* and, until we do NCQ, there should only be 1 CRPB waiting */
|
|
assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
|
|
EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
|
|
pp->rsp_consumer);
|
|
|
|
/* write out our inc'd consumer index so EDMA knows we're caught up */
|
|
out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
|
|
out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
|
|
writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
|
|
|
|
/* Return ATA status register for completed CRPB */
|
|
return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* mv_err_intr - Handle error interrupts on the port
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* In most cases, just clear the interrupt and move on. However,
|
|
* some cases require an eDMA reset, which is done right before
|
|
* the COMRESET in mv_phy_reset(). The SERR case requires a
|
|
* clear of pending errors in the SATA SERROR register. Finally,
|
|
* if the port disabled DMA, update our cached copy to match.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_err_intr(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 edma_err_cause, serr = 0;
|
|
|
|
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
if (EDMA_ERR_SERR & edma_err_cause) {
|
|
serr = scr_read(ap, SCR_ERROR);
|
|
scr_write_flush(ap, SCR_ERROR, serr);
|
|
}
|
|
if (EDMA_ERR_SELF_DIS & edma_err_cause) {
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
}
|
|
DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
|
|
"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
|
|
|
|
/* Clear EDMA now that SERR cleanup done */
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
/* check for fatal here and recover if needed */
|
|
if (EDMA_ERR_FATAL & edma_err_cause) {
|
|
mv_phy_reset(ap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_host_intr - Handle all interrupts on the given host controller
|
|
* @host_set: host specific structure
|
|
* @relevant: port error bits relevant to this host controller
|
|
* @hc: which host controller we're to look at
|
|
*
|
|
* Read then write clear the HC interrupt status then walk each
|
|
* port connected to the HC and see if it needs servicing. Port
|
|
* success ints are reported in the HC interrupt status reg, the
|
|
* port error ints are reported in the higher level main
|
|
* interrupt status register and thus are passed in via the
|
|
* 'relevant' argument.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
|
|
unsigned int hc)
|
|
{
|
|
void __iomem *mmio = host_set->mmio_base;
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
struct ata_port *ap;
|
|
struct ata_queued_cmd *qc;
|
|
u32 hc_irq_cause;
|
|
int shift, port, port0, hard_port, handled;
|
|
u8 ata_status = 0;
|
|
|
|
if (hc == 0) {
|
|
port0 = 0;
|
|
} else {
|
|
port0 = MV_PORTS_PER_HC;
|
|
}
|
|
|
|
/* we'll need the HC success int register in most cases */
|
|
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
if (hc_irq_cause) {
|
|
writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
}
|
|
|
|
VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
|
|
hc,relevant,hc_irq_cause);
|
|
|
|
for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
|
|
ap = host_set->ports[port];
|
|
hard_port = port & MV_PORT_MASK; /* range 0-3 */
|
|
handled = 0; /* ensure ata_status is set if handled++ */
|
|
|
|
if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
|
|
/* new CRPB on the queue; just one at a time until NCQ
|
|
*/
|
|
ata_status = mv_get_crpb_status(ap);
|
|
handled++;
|
|
} else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
|
|
/* received ATA IRQ; read the status reg to clear INTRQ
|
|
*/
|
|
ata_status = readb((void __iomem *)
|
|
ap->ioaddr.status_addr);
|
|
handled++;
|
|
}
|
|
|
|
shift = port << 1; /* (port * 2) */
|
|
if (port >= MV_PORTS_PER_HC) {
|
|
shift++; /* skip bit 8 in the HC Main IRQ reg */
|
|
}
|
|
if ((PORT0_ERR << shift) & relevant) {
|
|
mv_err_intr(ap);
|
|
/* OR in ATA_ERR to ensure libata knows we took one */
|
|
ata_status = readb((void __iomem *)
|
|
ap->ioaddr.status_addr) | ATA_ERR;
|
|
handled++;
|
|
}
|
|
|
|
if (handled && ap) {
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
if (NULL != qc) {
|
|
VPRINTK("port %u IRQ found for qc, "
|
|
"ata_status 0x%x\n", port,ata_status);
|
|
/* mark qc status appropriately */
|
|
ata_qc_complete(qc, ata_status);
|
|
}
|
|
}
|
|
}
|
|
VPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* mv_interrupt -
|
|
* @irq: unused
|
|
* @dev_instance: private data; in this case the host structure
|
|
* @regs: unused
|
|
*
|
|
* Read the read only register to determine if any host
|
|
* controllers have pending interrupts. If so, call lower level
|
|
* routine to handle. Also check for PCI errors which are only
|
|
* reported here.
|
|
*
|
|
* LOCKING:
|
|
* This routine holds the host_set lock while processing pending
|
|
* interrupts.
|
|
*/
|
|
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct ata_host_set *host_set = dev_instance;
|
|
unsigned int hc, handled = 0, n_hcs;
|
|
void __iomem *mmio = host_set->mmio_base;
|
|
u32 irq_stat;
|
|
|
|
irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
|
|
|
|
/* check the cases where we either have nothing pending or have read
|
|
* a bogus register value which can indicate HW removal or PCI fault
|
|
*/
|
|
if (!irq_stat || (0xffffffffU == irq_stat)) {
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
|
|
spin_lock(&host_set->lock);
|
|
|
|
for (hc = 0; hc < n_hcs; hc++) {
|
|
u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
|
|
if (relevant) {
|
|
mv_host_intr(host_set, relevant, hc);
|
|
handled++;
|
|
}
|
|
}
|
|
if (PCI_ERR & irq_stat) {
|
|
printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
|
|
readl(mmio + PCI_IRQ_CAUSE_OFS));
|
|
|
|
DPRINTK("All regs @ PCI error\n");
|
|
mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
|
|
|
|
writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
|
|
handled++;
|
|
}
|
|
spin_unlock(&host_set->lock);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/**
|
|
* mv_check_err - Return the error shadow register to caller.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Marvell requires DMA to be stopped before accessing shadow
|
|
* registers. So we do that, then return the needed register.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller. FIXME: protect mv_stop_dma with lock?
|
|
*/
|
|
static u8 mv_check_err(struct ata_port *ap)
|
|
{
|
|
mv_stop_dma(ap); /* can't read shadow regs if DMA on */
|
|
return readb((void __iomem *) ap->ioaddr.error_addr);
|
|
}
|
|
|
|
/**
|
|
* mv_phy_reset - Perform eDMA reset followed by COMRESET
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Part of this is taken from __sata_phy_reset and modified to
|
|
* not sleep since this routine gets called from interrupt level.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller. This is coded to safe to call at
|
|
* interrupt level, i.e. it does not sleep.
|
|
*/
|
|
static void mv_phy_reset(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct ata_taskfile tf;
|
|
struct ata_device *dev = &ap->device[0];
|
|
unsigned long timeout;
|
|
|
|
VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
|
|
|
|
mv_stop_dma(ap);
|
|
|
|
writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
|
|
udelay(25); /* allow reset propagation */
|
|
|
|
/* Spec never mentions clearing the bit. Marvell's driver does
|
|
* clear the bit, however.
|
|
*/
|
|
writelfl(0, port_mmio + EDMA_CMD_OFS);
|
|
|
|
VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
|
|
"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
|
|
mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
|
|
|
|
/* proceed to init communications via the scr_control reg */
|
|
scr_write_flush(ap, SCR_CONTROL, 0x301);
|
|
mdelay(1);
|
|
scr_write_flush(ap, SCR_CONTROL, 0x300);
|
|
timeout = jiffies + (HZ * 1);
|
|
do {
|
|
mdelay(10);
|
|
if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
|
|
break;
|
|
} while (time_before(jiffies, timeout));
|
|
|
|
VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
|
|
"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
|
|
mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
|
|
|
|
if (sata_dev_present(ap)) {
|
|
ata_port_probe(ap);
|
|
} else {
|
|
printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
|
|
ap->id, scr_read(ap, SCR_STATUS));
|
|
ata_port_disable(ap);
|
|
return;
|
|
}
|
|
ap->cbl = ATA_CBL_SATA;
|
|
|
|
tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
|
|
tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
|
|
tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
|
|
tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
|
|
|
|
dev->class = ata_dev_classify(&tf);
|
|
if (!ata_dev_present(dev)) {
|
|
VPRINTK("Port disabled post-sig: No device present.\n");
|
|
ata_port_disable(ap);
|
|
}
|
|
VPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* mv_eng_timeout - Routine called by libata when SCSI times out I/O
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Intent is to clear all pending error conditions, reset the
|
|
* chip/bus, fail the command, and move on.
|
|
*
|
|
* LOCKING:
|
|
* This routine holds the host_set lock while failing the command.
|
|
*/
|
|
static void mv_eng_timeout(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
|
|
printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
|
|
DPRINTK("All regs @ start of eng_timeout\n");
|
|
mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
|
|
to_pci_dev(ap->host_set->dev));
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
|
|
ap->host_set->mmio_base, ap, qc, qc->scsicmd,
|
|
&qc->scsicmd->cmnd);
|
|
|
|
mv_err_intr(ap);
|
|
mv_phy_reset(ap);
|
|
|
|
if (!qc) {
|
|
printk(KERN_ERR "ata%u: BUG: timeout without command\n",
|
|
ap->id);
|
|
} else {
|
|
/* hack alert! We cannot use the supplied completion
|
|
* function from inside the ->eh_strategy_handler() thread.
|
|
* libata is the only user of ->eh_strategy_handler() in
|
|
* any kernel, so the default scsi_done() assumes it is
|
|
* not being called from the SCSI EH.
|
|
*/
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
qc->scsidone = scsi_finish_command;
|
|
ata_qc_complete(qc, ATA_ERR);
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_port_init - Perform some early initialization on a single port.
|
|
* @port: libata data structure storing shadow register addresses
|
|
* @port_mmio: base address of the port
|
|
*
|
|
* Initialize shadow register mmio addresses, clear outstanding
|
|
* interrupts on the port, and unmask interrupts for the future
|
|
* start of the port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
|
|
{
|
|
unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
|
|
unsigned serr_ofs;
|
|
|
|
/* PIO related setup
|
|
*/
|
|
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
|
|
port->error_addr =
|
|
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
|
|
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
|
|
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
|
|
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
|
|
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
|
|
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
|
|
port->status_addr =
|
|
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
|
|
/* special case: control/altstatus doesn't have ATA_REG_ address */
|
|
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
|
|
|
|
/* unused: */
|
|
port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
|
|
|
|
/* Clear any currently outstanding port interrupt conditions */
|
|
serr_ofs = mv_scr_offset(SCR_ERROR);
|
|
writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
/* unmask all EDMA error interrupts */
|
|
writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
|
|
|
|
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
|
|
readl(port_mmio + EDMA_CFG_OFS),
|
|
readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
|
|
readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
|
|
}
|
|
|
|
/**
|
|
* mv_host_init - Perform some early initialization of the host.
|
|
* @probe_ent: early data struct representing the host
|
|
*
|
|
* If possible, do an early global reset of the host. Then do
|
|
* our port init and clear/unmask all/relevant host interrupts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_host_init(struct ata_probe_ent *probe_ent)
|
|
{
|
|
int rc = 0, n_hc, port, hc;
|
|
void __iomem *mmio = probe_ent->mmio_base;
|
|
void __iomem *port_mmio;
|
|
|
|
if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) &&
|
|
mv_global_soft_reset(probe_ent->mmio_base)) {
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
n_hc = mv_get_hc_count(probe_ent->host_flags);
|
|
probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
|
|
|
|
for (port = 0; port < probe_ent->n_ports; port++) {
|
|
port_mmio = mv_port_base(mmio, port);
|
|
mv_port_init(&probe_ent->port[port], port_mmio);
|
|
}
|
|
|
|
for (hc = 0; hc < n_hc; hc++) {
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
|
|
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
|
|
"(before clear)=0x%08x\n", hc,
|
|
readl(hc_mmio + HC_CFG_OFS),
|
|
readl(hc_mmio + HC_IRQ_CAUSE_OFS));
|
|
|
|
/* Clear any currently outstanding hc interrupt conditions */
|
|
writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
}
|
|
|
|
/* Clear any currently outstanding host interrupt conditions */
|
|
writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
|
|
|
|
/* and unmask interrupt generation for host regs */
|
|
writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
|
|
writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
|
|
|
|
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
|
|
"PCI int cause/mask=0x%08x/0x%08x\n",
|
|
readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
|
|
readl(mmio + HC_MAIN_IRQ_MASK_OFS),
|
|
readl(mmio + PCI_IRQ_CAUSE_OFS),
|
|
readl(mmio + PCI_IRQ_MASK_OFS));
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* mv_print_info - Dump key info to kernel log for perusal.
|
|
* @probe_ent: early data struct representing the host
|
|
*
|
|
* FIXME: complete this.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_print_info(struct ata_probe_ent *probe_ent)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
|
|
struct mv_host_priv *hpriv = probe_ent->private_data;
|
|
u8 rev_id, scc;
|
|
const char *scc_s;
|
|
|
|
/* Use this to determine the HW stepping of the chip so we know
|
|
* what errata to workaround
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
|
|
|
|
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
|
|
if (scc == 0)
|
|
scc_s = "SCSI";
|
|
else if (scc == 0x01)
|
|
scc_s = "RAID";
|
|
else
|
|
scc_s = "unknown";
|
|
|
|
printk(KERN_INFO DRV_NAME
|
|
"(%s) %u slots %u ports %s mode IRQ via %s\n",
|
|
pci_name(pdev), (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
|
|
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
|
|
}
|
|
|
|
/**
|
|
* mv_init_one - handle a positive probe of a Marvell host
|
|
* @pdev: PCI device found
|
|
* @ent: PCI device ID entry for the matched host
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int printed_version = 0;
|
|
struct ata_probe_ent *probe_ent = NULL;
|
|
struct mv_host_priv *hpriv;
|
|
unsigned int board_idx = (unsigned int)ent->driver_data;
|
|
void __iomem *mmio_base;
|
|
int pci_dev_busy = 0, rc;
|
|
|
|
if (!printed_version++) {
|
|
printk(KERN_INFO DRV_NAME " version " DRV_VERSION "\n");
|
|
}
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
rc = pci_request_regions(pdev, DRV_NAME);
|
|
if (rc) {
|
|
pci_dev_busy = 1;
|
|
goto err_out;
|
|
}
|
|
|
|
probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
|
|
if (probe_ent == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out_regions;
|
|
}
|
|
|
|
memset(probe_ent, 0, sizeof(*probe_ent));
|
|
probe_ent->dev = pci_dev_to_dev(pdev);
|
|
INIT_LIST_HEAD(&probe_ent->node);
|
|
|
|
mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
|
|
if (mmio_base == NULL) {
|
|
rc = -ENOMEM;
|
|
goto err_out_free_ent;
|
|
}
|
|
|
|
hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
|
|
if (!hpriv) {
|
|
rc = -ENOMEM;
|
|
goto err_out_iounmap;
|
|
}
|
|
memset(hpriv, 0, sizeof(*hpriv));
|
|
|
|
probe_ent->sht = mv_port_info[board_idx].sht;
|
|
probe_ent->host_flags = mv_port_info[board_idx].host_flags;
|
|
probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
|
|
probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
|
|
probe_ent->port_ops = mv_port_info[board_idx].port_ops;
|
|
|
|
probe_ent->irq = pdev->irq;
|
|
probe_ent->irq_flags = SA_SHIRQ;
|
|
probe_ent->mmio_base = mmio_base;
|
|
probe_ent->private_data = hpriv;
|
|
|
|
/* initialize adapter */
|
|
rc = mv_host_init(probe_ent);
|
|
if (rc) {
|
|
goto err_out_hpriv;
|
|
}
|
|
|
|
/* Enable interrupts */
|
|
if (pci_enable_msi(pdev) == 0) {
|
|
hpriv->hp_flags |= MV_HP_FLAG_MSI;
|
|
} else {
|
|
pci_intx(pdev, 1);
|
|
}
|
|
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
mv_print_info(probe_ent);
|
|
|
|
if (ata_device_add(probe_ent) == 0) {
|
|
rc = -ENODEV; /* No devices discovered */
|
|
goto err_out_dev_add;
|
|
}
|
|
|
|
kfree(probe_ent);
|
|
return 0;
|
|
|
|
err_out_dev_add:
|
|
if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
|
|
pci_disable_msi(pdev);
|
|
} else {
|
|
pci_intx(pdev, 0);
|
|
}
|
|
err_out_hpriv:
|
|
kfree(hpriv);
|
|
err_out_iounmap:
|
|
pci_iounmap(pdev, mmio_base);
|
|
err_out_free_ent:
|
|
kfree(probe_ent);
|
|
err_out_regions:
|
|
pci_release_regions(pdev);
|
|
err_out:
|
|
if (!pci_dev_busy) {
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __init mv_init(void)
|
|
{
|
|
return pci_module_init(&mv_pci_driver);
|
|
}
|
|
|
|
static void __exit mv_exit(void)
|
|
{
|
|
pci_unregister_driver(&mv_pci_driver);
|
|
}
|
|
|
|
MODULE_AUTHOR("Brett Russ");
|
|
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
module_init(mv_init);
|
|
module_exit(mv_exit);
|