mirror of
https://github.com/torvalds/linux.git
synced 2024-12-15 15:41:58 +00:00
4b6764fa9e
Fix the following htmldocs warning: Warning(fs/fs-writeback.c:255): No description found for parameter 'sb' Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1275 lines
33 KiB
C
1275 lines
33 KiB
C
/*
|
|
* fs/fs-writeback.c
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds.
|
|
*
|
|
* Contains all the functions related to writing back and waiting
|
|
* upon dirty inodes against superblocks, and writing back dirty
|
|
* pages against inodes. ie: data writeback. Writeout of the
|
|
* inode itself is not handled here.
|
|
*
|
|
* 10Apr2002 Andrew Morton
|
|
* Split out of fs/inode.c
|
|
* Additions for address_space-based writeback
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include "internal.h"
|
|
|
|
#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
|
|
|
|
/*
|
|
* We don't actually have pdflush, but this one is exported though /proc...
|
|
*/
|
|
int nr_pdflush_threads;
|
|
|
|
/*
|
|
* Passed into wb_writeback(), essentially a subset of writeback_control
|
|
*/
|
|
struct wb_writeback_args {
|
|
long nr_pages;
|
|
struct super_block *sb;
|
|
enum writeback_sync_modes sync_mode;
|
|
int for_kupdate:1;
|
|
int range_cyclic:1;
|
|
int for_background:1;
|
|
};
|
|
|
|
/*
|
|
* Work items for the bdi_writeback threads
|
|
*/
|
|
struct bdi_work {
|
|
struct list_head list; /* pending work list */
|
|
struct rcu_head rcu_head; /* for RCU free/clear of work */
|
|
|
|
unsigned long seen; /* threads that have seen this work */
|
|
atomic_t pending; /* number of threads still to do work */
|
|
|
|
struct wb_writeback_args args; /* writeback arguments */
|
|
|
|
unsigned long state; /* flag bits, see WS_* */
|
|
};
|
|
|
|
enum {
|
|
WS_USED_B = 0,
|
|
WS_ONSTACK_B,
|
|
};
|
|
|
|
#define WS_USED (1 << WS_USED_B)
|
|
#define WS_ONSTACK (1 << WS_ONSTACK_B)
|
|
|
|
static inline bool bdi_work_on_stack(struct bdi_work *work)
|
|
{
|
|
return test_bit(WS_ONSTACK_B, &work->state);
|
|
}
|
|
|
|
static inline void bdi_work_init(struct bdi_work *work,
|
|
struct wb_writeback_args *args)
|
|
{
|
|
INIT_RCU_HEAD(&work->rcu_head);
|
|
work->args = *args;
|
|
work->state = WS_USED;
|
|
}
|
|
|
|
/**
|
|
* writeback_in_progress - determine whether there is writeback in progress
|
|
* @bdi: the device's backing_dev_info structure.
|
|
*
|
|
* Determine whether there is writeback waiting to be handled against a
|
|
* backing device.
|
|
*/
|
|
int writeback_in_progress(struct backing_dev_info *bdi)
|
|
{
|
|
return !list_empty(&bdi->work_list);
|
|
}
|
|
|
|
static void bdi_work_clear(struct bdi_work *work)
|
|
{
|
|
clear_bit(WS_USED_B, &work->state);
|
|
smp_mb__after_clear_bit();
|
|
/*
|
|
* work can have disappeared at this point. bit waitq functions
|
|
* should be able to tolerate this, provided bdi_sched_wait does
|
|
* not dereference it's pointer argument.
|
|
*/
|
|
wake_up_bit(&work->state, WS_USED_B);
|
|
}
|
|
|
|
static void bdi_work_free(struct rcu_head *head)
|
|
{
|
|
struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
|
|
|
|
if (!bdi_work_on_stack(work))
|
|
kfree(work);
|
|
else
|
|
bdi_work_clear(work);
|
|
}
|
|
|
|
static void wb_work_complete(struct bdi_work *work)
|
|
{
|
|
const enum writeback_sync_modes sync_mode = work->args.sync_mode;
|
|
int onstack = bdi_work_on_stack(work);
|
|
|
|
/*
|
|
* For allocated work, we can clear the done/seen bit right here.
|
|
* For on-stack work, we need to postpone both the clear and free
|
|
* to after the RCU grace period, since the stack could be invalidated
|
|
* as soon as bdi_work_clear() has done the wakeup.
|
|
*/
|
|
if (!onstack)
|
|
bdi_work_clear(work);
|
|
if (sync_mode == WB_SYNC_NONE || onstack)
|
|
call_rcu(&work->rcu_head, bdi_work_free);
|
|
}
|
|
|
|
static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
|
|
{
|
|
/*
|
|
* The caller has retrieved the work arguments from this work,
|
|
* drop our reference. If this is the last ref, delete and free it
|
|
*/
|
|
if (atomic_dec_and_test(&work->pending)) {
|
|
struct backing_dev_info *bdi = wb->bdi;
|
|
|
|
spin_lock(&bdi->wb_lock);
|
|
list_del_rcu(&work->list);
|
|
spin_unlock(&bdi->wb_lock);
|
|
|
|
wb_work_complete(work);
|
|
}
|
|
}
|
|
|
|
static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
|
|
{
|
|
work->seen = bdi->wb_mask;
|
|
BUG_ON(!work->seen);
|
|
atomic_set(&work->pending, bdi->wb_cnt);
|
|
BUG_ON(!bdi->wb_cnt);
|
|
|
|
/*
|
|
* list_add_tail_rcu() contains the necessary barriers to
|
|
* make sure the above stores are seen before the item is
|
|
* noticed on the list
|
|
*/
|
|
spin_lock(&bdi->wb_lock);
|
|
list_add_tail_rcu(&work->list, &bdi->work_list);
|
|
spin_unlock(&bdi->wb_lock);
|
|
|
|
/*
|
|
* If the default thread isn't there, make sure we add it. When
|
|
* it gets created and wakes up, we'll run this work.
|
|
*/
|
|
if (unlikely(list_empty_careful(&bdi->wb_list)))
|
|
wake_up_process(default_backing_dev_info.wb.task);
|
|
else {
|
|
struct bdi_writeback *wb = &bdi->wb;
|
|
|
|
if (wb->task)
|
|
wake_up_process(wb->task);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used for on-stack allocated work items. The caller needs to wait until
|
|
* the wb threads have acked the work before it's safe to continue.
|
|
*/
|
|
static void bdi_wait_on_work_clear(struct bdi_work *work)
|
|
{
|
|
wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
}
|
|
|
|
static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
|
|
struct wb_writeback_args *args)
|
|
{
|
|
struct bdi_work *work;
|
|
|
|
/*
|
|
* This is WB_SYNC_NONE writeback, so if allocation fails just
|
|
* wakeup the thread for old dirty data writeback
|
|
*/
|
|
work = kmalloc(sizeof(*work), GFP_ATOMIC);
|
|
if (work) {
|
|
bdi_work_init(work, args);
|
|
bdi_queue_work(bdi, work);
|
|
} else {
|
|
struct bdi_writeback *wb = &bdi->wb;
|
|
|
|
if (wb->task)
|
|
wake_up_process(wb->task);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bdi_sync_writeback - start and wait for writeback
|
|
* @bdi: the backing device to write from
|
|
* @sb: write inodes from this super_block
|
|
*
|
|
* Description:
|
|
* This does WB_SYNC_ALL data integrity writeback and waits for the
|
|
* IO to complete. Callers must hold the sb s_umount semaphore for
|
|
* reading, to avoid having the super disappear before we are done.
|
|
*/
|
|
static void bdi_sync_writeback(struct backing_dev_info *bdi,
|
|
struct super_block *sb)
|
|
{
|
|
struct wb_writeback_args args = {
|
|
.sb = sb,
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_pages = LONG_MAX,
|
|
.range_cyclic = 0,
|
|
};
|
|
struct bdi_work work;
|
|
|
|
bdi_work_init(&work, &args);
|
|
work.state |= WS_ONSTACK;
|
|
|
|
bdi_queue_work(bdi, &work);
|
|
bdi_wait_on_work_clear(&work);
|
|
}
|
|
|
|
/**
|
|
* bdi_start_writeback - start writeback
|
|
* @bdi: the backing device to write from
|
|
* @sb: write inodes from this super_block
|
|
* @nr_pages: the number of pages to write
|
|
*
|
|
* Description:
|
|
* This does WB_SYNC_NONE opportunistic writeback. The IO is only
|
|
* started when this function returns, we make no guarentees on
|
|
* completion. Caller need not hold sb s_umount semaphore.
|
|
*
|
|
*/
|
|
void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
|
|
long nr_pages)
|
|
{
|
|
struct wb_writeback_args args = {
|
|
.sb = sb,
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.nr_pages = nr_pages,
|
|
.range_cyclic = 1,
|
|
};
|
|
|
|
/*
|
|
* We treat @nr_pages=0 as the special case to do background writeback,
|
|
* ie. to sync pages until the background dirty threshold is reached.
|
|
*/
|
|
if (!nr_pages) {
|
|
args.nr_pages = LONG_MAX;
|
|
args.for_background = 1;
|
|
}
|
|
|
|
bdi_alloc_queue_work(bdi, &args);
|
|
}
|
|
|
|
/*
|
|
* Redirty an inode: set its when-it-was dirtied timestamp and move it to the
|
|
* furthest end of its superblock's dirty-inode list.
|
|
*
|
|
* Before stamping the inode's ->dirtied_when, we check to see whether it is
|
|
* already the most-recently-dirtied inode on the b_dirty list. If that is
|
|
* the case then the inode must have been redirtied while it was being written
|
|
* out and we don't reset its dirtied_when.
|
|
*/
|
|
static void redirty_tail(struct inode *inode)
|
|
{
|
|
struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
|
|
|
|
if (!list_empty(&wb->b_dirty)) {
|
|
struct inode *tail;
|
|
|
|
tail = list_entry(wb->b_dirty.next, struct inode, i_list);
|
|
if (time_before(inode->dirtied_when, tail->dirtied_when))
|
|
inode->dirtied_when = jiffies;
|
|
}
|
|
list_move(&inode->i_list, &wb->b_dirty);
|
|
}
|
|
|
|
/*
|
|
* requeue inode for re-scanning after bdi->b_io list is exhausted.
|
|
*/
|
|
static void requeue_io(struct inode *inode)
|
|
{
|
|
struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
|
|
|
|
list_move(&inode->i_list, &wb->b_more_io);
|
|
}
|
|
|
|
static void inode_sync_complete(struct inode *inode)
|
|
{
|
|
/*
|
|
* Prevent speculative execution through spin_unlock(&inode_lock);
|
|
*/
|
|
smp_mb();
|
|
wake_up_bit(&inode->i_state, __I_SYNC);
|
|
}
|
|
|
|
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
|
|
{
|
|
bool ret = time_after(inode->dirtied_when, t);
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* For inodes being constantly redirtied, dirtied_when can get stuck.
|
|
* It _appears_ to be in the future, but is actually in distant past.
|
|
* This test is necessary to prevent such wrapped-around relative times
|
|
* from permanently stopping the whole bdi writeback.
|
|
*/
|
|
ret = ret && time_before_eq(inode->dirtied_when, jiffies);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Move expired dirty inodes from @delaying_queue to @dispatch_queue.
|
|
*/
|
|
static void move_expired_inodes(struct list_head *delaying_queue,
|
|
struct list_head *dispatch_queue,
|
|
unsigned long *older_than_this)
|
|
{
|
|
LIST_HEAD(tmp);
|
|
struct list_head *pos, *node;
|
|
struct super_block *sb = NULL;
|
|
struct inode *inode;
|
|
int do_sb_sort = 0;
|
|
|
|
while (!list_empty(delaying_queue)) {
|
|
inode = list_entry(delaying_queue->prev, struct inode, i_list);
|
|
if (older_than_this &&
|
|
inode_dirtied_after(inode, *older_than_this))
|
|
break;
|
|
if (sb && sb != inode->i_sb)
|
|
do_sb_sort = 1;
|
|
sb = inode->i_sb;
|
|
list_move(&inode->i_list, &tmp);
|
|
}
|
|
|
|
/* just one sb in list, splice to dispatch_queue and we're done */
|
|
if (!do_sb_sort) {
|
|
list_splice(&tmp, dispatch_queue);
|
|
return;
|
|
}
|
|
|
|
/* Move inodes from one superblock together */
|
|
while (!list_empty(&tmp)) {
|
|
inode = list_entry(tmp.prev, struct inode, i_list);
|
|
sb = inode->i_sb;
|
|
list_for_each_prev_safe(pos, node, &tmp) {
|
|
inode = list_entry(pos, struct inode, i_list);
|
|
if (inode->i_sb == sb)
|
|
list_move(&inode->i_list, dispatch_queue);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue all expired dirty inodes for io, eldest first.
|
|
*/
|
|
static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
|
|
{
|
|
list_splice_init(&wb->b_more_io, wb->b_io.prev);
|
|
move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
|
|
}
|
|
|
|
static int write_inode(struct inode *inode, int sync)
|
|
{
|
|
if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
|
|
return inode->i_sb->s_op->write_inode(inode, sync);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for writeback on an inode to complete.
|
|
*/
|
|
static void inode_wait_for_writeback(struct inode *inode)
|
|
{
|
|
DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
|
|
wait_queue_head_t *wqh;
|
|
|
|
wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
|
|
do {
|
|
spin_unlock(&inode_lock);
|
|
__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
|
|
spin_lock(&inode_lock);
|
|
} while (inode->i_state & I_SYNC);
|
|
}
|
|
|
|
/*
|
|
* Write out an inode's dirty pages. Called under inode_lock. Either the
|
|
* caller has ref on the inode (either via __iget or via syscall against an fd)
|
|
* or the inode has I_WILL_FREE set (via generic_forget_inode)
|
|
*
|
|
* If `wait' is set, wait on the writeout.
|
|
*
|
|
* The whole writeout design is quite complex and fragile. We want to avoid
|
|
* starvation of particular inodes when others are being redirtied, prevent
|
|
* livelocks, etc.
|
|
*
|
|
* Called under inode_lock.
|
|
*/
|
|
static int
|
|
writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
int wait = wbc->sync_mode == WB_SYNC_ALL;
|
|
unsigned dirty;
|
|
int ret;
|
|
|
|
if (!atomic_read(&inode->i_count))
|
|
WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
|
|
else
|
|
WARN_ON(inode->i_state & I_WILL_FREE);
|
|
|
|
if (inode->i_state & I_SYNC) {
|
|
/*
|
|
* If this inode is locked for writeback and we are not doing
|
|
* writeback-for-data-integrity, move it to b_more_io so that
|
|
* writeback can proceed with the other inodes on s_io.
|
|
*
|
|
* We'll have another go at writing back this inode when we
|
|
* completed a full scan of b_io.
|
|
*/
|
|
if (!wait) {
|
|
requeue_io(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's a data-integrity sync. We must wait.
|
|
*/
|
|
inode_wait_for_writeback(inode);
|
|
}
|
|
|
|
BUG_ON(inode->i_state & I_SYNC);
|
|
|
|
/* Set I_SYNC, reset I_DIRTY */
|
|
dirty = inode->i_state & I_DIRTY;
|
|
inode->i_state |= I_SYNC;
|
|
inode->i_state &= ~I_DIRTY;
|
|
|
|
spin_unlock(&inode_lock);
|
|
|
|
ret = do_writepages(mapping, wbc);
|
|
|
|
/* Don't write the inode if only I_DIRTY_PAGES was set */
|
|
if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
|
int err = write_inode(inode, wait);
|
|
if (ret == 0)
|
|
ret = err;
|
|
}
|
|
|
|
if (wait) {
|
|
int err = filemap_fdatawait(mapping);
|
|
if (ret == 0)
|
|
ret = err;
|
|
}
|
|
|
|
spin_lock(&inode_lock);
|
|
inode->i_state &= ~I_SYNC;
|
|
if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
|
|
if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
|
|
/*
|
|
* More pages get dirtied by a fast dirtier.
|
|
*/
|
|
goto select_queue;
|
|
} else if (inode->i_state & I_DIRTY) {
|
|
/*
|
|
* At least XFS will redirty the inode during the
|
|
* writeback (delalloc) and on io completion (isize).
|
|
*/
|
|
redirty_tail(inode);
|
|
} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
|
/*
|
|
* We didn't write back all the pages. nfs_writepages()
|
|
* sometimes bales out without doing anything. Redirty
|
|
* the inode; Move it from b_io onto b_more_io/b_dirty.
|
|
*/
|
|
/*
|
|
* akpm: if the caller was the kupdate function we put
|
|
* this inode at the head of b_dirty so it gets first
|
|
* consideration. Otherwise, move it to the tail, for
|
|
* the reasons described there. I'm not really sure
|
|
* how much sense this makes. Presumably I had a good
|
|
* reasons for doing it this way, and I'd rather not
|
|
* muck with it at present.
|
|
*/
|
|
if (wbc->for_kupdate) {
|
|
/*
|
|
* For the kupdate function we move the inode
|
|
* to b_more_io so it will get more writeout as
|
|
* soon as the queue becomes uncongested.
|
|
*/
|
|
inode->i_state |= I_DIRTY_PAGES;
|
|
select_queue:
|
|
if (wbc->nr_to_write <= 0) {
|
|
/*
|
|
* slice used up: queue for next turn
|
|
*/
|
|
requeue_io(inode);
|
|
} else {
|
|
/*
|
|
* somehow blocked: retry later
|
|
*/
|
|
redirty_tail(inode);
|
|
}
|
|
} else {
|
|
/*
|
|
* Otherwise fully redirty the inode so that
|
|
* other inodes on this superblock will get some
|
|
* writeout. Otherwise heavy writing to one
|
|
* file would indefinitely suspend writeout of
|
|
* all the other files.
|
|
*/
|
|
inode->i_state |= I_DIRTY_PAGES;
|
|
redirty_tail(inode);
|
|
}
|
|
} else if (atomic_read(&inode->i_count)) {
|
|
/*
|
|
* The inode is clean, inuse
|
|
*/
|
|
list_move(&inode->i_list, &inode_in_use);
|
|
} else {
|
|
/*
|
|
* The inode is clean, unused
|
|
*/
|
|
list_move(&inode->i_list, &inode_unused);
|
|
}
|
|
}
|
|
inode_sync_complete(inode);
|
|
return ret;
|
|
}
|
|
|
|
static void unpin_sb_for_writeback(struct super_block **psb)
|
|
{
|
|
struct super_block *sb = *psb;
|
|
|
|
if (sb) {
|
|
up_read(&sb->s_umount);
|
|
put_super(sb);
|
|
*psb = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For WB_SYNC_NONE writeback, the caller does not have the sb pinned
|
|
* before calling writeback. So make sure that we do pin it, so it doesn't
|
|
* go away while we are writing inodes from it.
|
|
*
|
|
* Returns 0 if the super was successfully pinned (or pinning wasn't needed),
|
|
* 1 if we failed.
|
|
*/
|
|
static int pin_sb_for_writeback(struct writeback_control *wbc,
|
|
struct inode *inode, struct super_block **psb)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
/*
|
|
* If this sb is already pinned, nothing more to do. If not and
|
|
* *psb is non-NULL, unpin the old one first
|
|
*/
|
|
if (sb == *psb)
|
|
return 0;
|
|
else if (*psb)
|
|
unpin_sb_for_writeback(psb);
|
|
|
|
/*
|
|
* Caller must already hold the ref for this
|
|
*/
|
|
if (wbc->sync_mode == WB_SYNC_ALL) {
|
|
WARN_ON(!rwsem_is_locked(&sb->s_umount));
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&sb_lock);
|
|
sb->s_count++;
|
|
if (down_read_trylock(&sb->s_umount)) {
|
|
if (sb->s_root) {
|
|
spin_unlock(&sb_lock);
|
|
goto pinned;
|
|
}
|
|
/*
|
|
* umounted, drop rwsem again and fall through to failure
|
|
*/
|
|
up_read(&sb->s_umount);
|
|
}
|
|
|
|
sb->s_count--;
|
|
spin_unlock(&sb_lock);
|
|
return 1;
|
|
pinned:
|
|
*psb = sb;
|
|
return 0;
|
|
}
|
|
|
|
static void writeback_inodes_wb(struct bdi_writeback *wb,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct super_block *sb = wbc->sb, *pin_sb = NULL;
|
|
const unsigned long start = jiffies; /* livelock avoidance */
|
|
|
|
spin_lock(&inode_lock);
|
|
|
|
if (!wbc->for_kupdate || list_empty(&wb->b_io))
|
|
queue_io(wb, wbc->older_than_this);
|
|
|
|
while (!list_empty(&wb->b_io)) {
|
|
struct inode *inode = list_entry(wb->b_io.prev,
|
|
struct inode, i_list);
|
|
long pages_skipped;
|
|
|
|
/*
|
|
* super block given and doesn't match, skip this inode
|
|
*/
|
|
if (sb && sb != inode->i_sb) {
|
|
redirty_tail(inode);
|
|
continue;
|
|
}
|
|
|
|
if (inode->i_state & (I_NEW | I_WILL_FREE)) {
|
|
requeue_io(inode);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Was this inode dirtied after sync_sb_inodes was called?
|
|
* This keeps sync from extra jobs and livelock.
|
|
*/
|
|
if (inode_dirtied_after(inode, start))
|
|
break;
|
|
|
|
if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
|
|
requeue_io(inode);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
|
|
__iget(inode);
|
|
pages_skipped = wbc->pages_skipped;
|
|
writeback_single_inode(inode, wbc);
|
|
if (wbc->pages_skipped != pages_skipped) {
|
|
/*
|
|
* writeback is not making progress due to locked
|
|
* buffers. Skip this inode for now.
|
|
*/
|
|
redirty_tail(inode);
|
|
}
|
|
spin_unlock(&inode_lock);
|
|
iput(inode);
|
|
cond_resched();
|
|
spin_lock(&inode_lock);
|
|
if (wbc->nr_to_write <= 0) {
|
|
wbc->more_io = 1;
|
|
break;
|
|
}
|
|
if (!list_empty(&wb->b_more_io))
|
|
wbc->more_io = 1;
|
|
}
|
|
|
|
unpin_sb_for_writeback(&pin_sb);
|
|
|
|
spin_unlock(&inode_lock);
|
|
/* Leave any unwritten inodes on b_io */
|
|
}
|
|
|
|
void writeback_inodes_wbc(struct writeback_control *wbc)
|
|
{
|
|
struct backing_dev_info *bdi = wbc->bdi;
|
|
|
|
writeback_inodes_wb(&bdi->wb, wbc);
|
|
}
|
|
|
|
/*
|
|
* The maximum number of pages to writeout in a single bdi flush/kupdate
|
|
* operation. We do this so we don't hold I_SYNC against an inode for
|
|
* enormous amounts of time, which would block a userspace task which has
|
|
* been forced to throttle against that inode. Also, the code reevaluates
|
|
* the dirty each time it has written this many pages.
|
|
*/
|
|
#define MAX_WRITEBACK_PAGES 1024
|
|
|
|
static inline bool over_bground_thresh(void)
|
|
{
|
|
unsigned long background_thresh, dirty_thresh;
|
|
|
|
get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
|
|
|
|
return (global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
|
|
}
|
|
|
|
/*
|
|
* Explicit flushing or periodic writeback of "old" data.
|
|
*
|
|
* Define "old": the first time one of an inode's pages is dirtied, we mark the
|
|
* dirtying-time in the inode's address_space. So this periodic writeback code
|
|
* just walks the superblock inode list, writing back any inodes which are
|
|
* older than a specific point in time.
|
|
*
|
|
* Try to run once per dirty_writeback_interval. But if a writeback event
|
|
* takes longer than a dirty_writeback_interval interval, then leave a
|
|
* one-second gap.
|
|
*
|
|
* older_than_this takes precedence over nr_to_write. So we'll only write back
|
|
* all dirty pages if they are all attached to "old" mappings.
|
|
*/
|
|
static long wb_writeback(struct bdi_writeback *wb,
|
|
struct wb_writeback_args *args)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.bdi = wb->bdi,
|
|
.sb = args->sb,
|
|
.sync_mode = args->sync_mode,
|
|
.older_than_this = NULL,
|
|
.for_kupdate = args->for_kupdate,
|
|
.for_background = args->for_background,
|
|
.range_cyclic = args->range_cyclic,
|
|
};
|
|
unsigned long oldest_jif;
|
|
long wrote = 0;
|
|
struct inode *inode;
|
|
|
|
if (wbc.for_kupdate) {
|
|
wbc.older_than_this = &oldest_jif;
|
|
oldest_jif = jiffies -
|
|
msecs_to_jiffies(dirty_expire_interval * 10);
|
|
}
|
|
if (!wbc.range_cyclic) {
|
|
wbc.range_start = 0;
|
|
wbc.range_end = LLONG_MAX;
|
|
}
|
|
|
|
for (;;) {
|
|
/*
|
|
* Stop writeback when nr_pages has been consumed
|
|
*/
|
|
if (args->nr_pages <= 0)
|
|
break;
|
|
|
|
/*
|
|
* For background writeout, stop when we are below the
|
|
* background dirty threshold
|
|
*/
|
|
if (args->for_background && !over_bground_thresh())
|
|
break;
|
|
|
|
wbc.more_io = 0;
|
|
wbc.nr_to_write = MAX_WRITEBACK_PAGES;
|
|
wbc.pages_skipped = 0;
|
|
writeback_inodes_wb(wb, &wbc);
|
|
args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
|
|
wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
|
|
|
|
/*
|
|
* If we consumed everything, see if we have more
|
|
*/
|
|
if (wbc.nr_to_write <= 0)
|
|
continue;
|
|
/*
|
|
* Didn't write everything and we don't have more IO, bail
|
|
*/
|
|
if (!wbc.more_io)
|
|
break;
|
|
/*
|
|
* Did we write something? Try for more
|
|
*/
|
|
if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
|
|
continue;
|
|
/*
|
|
* Nothing written. Wait for some inode to
|
|
* become available for writeback. Otherwise
|
|
* we'll just busyloop.
|
|
*/
|
|
spin_lock(&inode_lock);
|
|
if (!list_empty(&wb->b_more_io)) {
|
|
inode = list_entry(wb->b_more_io.prev,
|
|
struct inode, i_list);
|
|
inode_wait_for_writeback(inode);
|
|
}
|
|
spin_unlock(&inode_lock);
|
|
}
|
|
|
|
return wrote;
|
|
}
|
|
|
|
/*
|
|
* Return the next bdi_work struct that hasn't been processed by this
|
|
* wb thread yet. ->seen is initially set for each thread that exists
|
|
* for this device, when a thread first notices a piece of work it
|
|
* clears its bit. Depending on writeback type, the thread will notify
|
|
* completion on either receiving the work (WB_SYNC_NONE) or after
|
|
* it is done (WB_SYNC_ALL).
|
|
*/
|
|
static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
|
|
struct bdi_writeback *wb)
|
|
{
|
|
struct bdi_work *work, *ret = NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(work, &bdi->work_list, list) {
|
|
if (!test_bit(wb->nr, &work->seen))
|
|
continue;
|
|
clear_bit(wb->nr, &work->seen);
|
|
|
|
ret = work;
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static long wb_check_old_data_flush(struct bdi_writeback *wb)
|
|
{
|
|
unsigned long expired;
|
|
long nr_pages;
|
|
|
|
expired = wb->last_old_flush +
|
|
msecs_to_jiffies(dirty_writeback_interval * 10);
|
|
if (time_before(jiffies, expired))
|
|
return 0;
|
|
|
|
wb->last_old_flush = jiffies;
|
|
nr_pages = global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS) +
|
|
(inodes_stat.nr_inodes - inodes_stat.nr_unused);
|
|
|
|
if (nr_pages) {
|
|
struct wb_writeback_args args = {
|
|
.nr_pages = nr_pages,
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.for_kupdate = 1,
|
|
.range_cyclic = 1,
|
|
};
|
|
|
|
return wb_writeback(wb, &args);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Retrieve work items and do the writeback they describe
|
|
*/
|
|
long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
|
|
{
|
|
struct backing_dev_info *bdi = wb->bdi;
|
|
struct bdi_work *work;
|
|
long wrote = 0;
|
|
|
|
while ((work = get_next_work_item(bdi, wb)) != NULL) {
|
|
struct wb_writeback_args args = work->args;
|
|
|
|
/*
|
|
* Override sync mode, in case we must wait for completion
|
|
*/
|
|
if (force_wait)
|
|
work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
|
|
|
|
/*
|
|
* If this isn't a data integrity operation, just notify
|
|
* that we have seen this work and we are now starting it.
|
|
*/
|
|
if (args.sync_mode == WB_SYNC_NONE)
|
|
wb_clear_pending(wb, work);
|
|
|
|
wrote += wb_writeback(wb, &args);
|
|
|
|
/*
|
|
* This is a data integrity writeback, so only do the
|
|
* notification when we have completed the work.
|
|
*/
|
|
if (args.sync_mode == WB_SYNC_ALL)
|
|
wb_clear_pending(wb, work);
|
|
}
|
|
|
|
/*
|
|
* Check for periodic writeback, kupdated() style
|
|
*/
|
|
wrote += wb_check_old_data_flush(wb);
|
|
|
|
return wrote;
|
|
}
|
|
|
|
/*
|
|
* Handle writeback of dirty data for the device backed by this bdi. Also
|
|
* wakes up periodically and does kupdated style flushing.
|
|
*/
|
|
int bdi_writeback_task(struct bdi_writeback *wb)
|
|
{
|
|
unsigned long last_active = jiffies;
|
|
unsigned long wait_jiffies = -1UL;
|
|
long pages_written;
|
|
|
|
while (!kthread_should_stop()) {
|
|
pages_written = wb_do_writeback(wb, 0);
|
|
|
|
if (pages_written)
|
|
last_active = jiffies;
|
|
else if (wait_jiffies != -1UL) {
|
|
unsigned long max_idle;
|
|
|
|
/*
|
|
* Longest period of inactivity that we tolerate. If we
|
|
* see dirty data again later, the task will get
|
|
* recreated automatically.
|
|
*/
|
|
max_idle = max(5UL * 60 * HZ, wait_jiffies);
|
|
if (time_after(jiffies, max_idle + last_active))
|
|
break;
|
|
}
|
|
|
|
wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
|
|
schedule_timeout_interruptible(wait_jiffies);
|
|
try_to_freeze();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Schedule writeback for all backing devices. This does WB_SYNC_NONE
|
|
* writeback, for integrity writeback see bdi_sync_writeback().
|
|
*/
|
|
static void bdi_writeback_all(struct super_block *sb, long nr_pages)
|
|
{
|
|
struct wb_writeback_args args = {
|
|
.sb = sb,
|
|
.nr_pages = nr_pages,
|
|
.sync_mode = WB_SYNC_NONE,
|
|
};
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
|
|
if (!bdi_has_dirty_io(bdi))
|
|
continue;
|
|
|
|
bdi_alloc_queue_work(bdi, &args);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
|
|
* the whole world.
|
|
*/
|
|
void wakeup_flusher_threads(long nr_pages)
|
|
{
|
|
if (nr_pages == 0)
|
|
nr_pages = global_page_state(NR_FILE_DIRTY) +
|
|
global_page_state(NR_UNSTABLE_NFS);
|
|
bdi_writeback_all(NULL, nr_pages);
|
|
}
|
|
|
|
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
|
|
{
|
|
if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
|
|
struct dentry *dentry;
|
|
const char *name = "?";
|
|
|
|
dentry = d_find_alias(inode);
|
|
if (dentry) {
|
|
spin_lock(&dentry->d_lock);
|
|
name = (const char *) dentry->d_name.name;
|
|
}
|
|
printk(KERN_DEBUG
|
|
"%s(%d): dirtied inode %lu (%s) on %s\n",
|
|
current->comm, task_pid_nr(current), inode->i_ino,
|
|
name, inode->i_sb->s_id);
|
|
if (dentry) {
|
|
spin_unlock(&dentry->d_lock);
|
|
dput(dentry);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __mark_inode_dirty - internal function
|
|
* @inode: inode to mark
|
|
* @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
|
|
* Mark an inode as dirty. Callers should use mark_inode_dirty or
|
|
* mark_inode_dirty_sync.
|
|
*
|
|
* Put the inode on the super block's dirty list.
|
|
*
|
|
* CAREFUL! We mark it dirty unconditionally, but move it onto the
|
|
* dirty list only if it is hashed or if it refers to a blockdev.
|
|
* If it was not hashed, it will never be added to the dirty list
|
|
* even if it is later hashed, as it will have been marked dirty already.
|
|
*
|
|
* In short, make sure you hash any inodes _before_ you start marking
|
|
* them dirty.
|
|
*
|
|
* This function *must* be atomic for the I_DIRTY_PAGES case -
|
|
* set_page_dirty() is called under spinlock in several places.
|
|
*
|
|
* Note that for blockdevs, inode->dirtied_when represents the dirtying time of
|
|
* the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
|
|
* the kernel-internal blockdev inode represents the dirtying time of the
|
|
* blockdev's pages. This is why for I_DIRTY_PAGES we always use
|
|
* page->mapping->host, so the page-dirtying time is recorded in the internal
|
|
* blockdev inode.
|
|
*/
|
|
void __mark_inode_dirty(struct inode *inode, int flags)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
/*
|
|
* Don't do this for I_DIRTY_PAGES - that doesn't actually
|
|
* dirty the inode itself
|
|
*/
|
|
if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
|
if (sb->s_op->dirty_inode)
|
|
sb->s_op->dirty_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* make sure that changes are seen by all cpus before we test i_state
|
|
* -- mikulas
|
|
*/
|
|
smp_mb();
|
|
|
|
/* avoid the locking if we can */
|
|
if ((inode->i_state & flags) == flags)
|
|
return;
|
|
|
|
if (unlikely(block_dump))
|
|
block_dump___mark_inode_dirty(inode);
|
|
|
|
spin_lock(&inode_lock);
|
|
if ((inode->i_state & flags) != flags) {
|
|
const int was_dirty = inode->i_state & I_DIRTY;
|
|
|
|
inode->i_state |= flags;
|
|
|
|
/*
|
|
* If the inode is being synced, just update its dirty state.
|
|
* The unlocker will place the inode on the appropriate
|
|
* superblock list, based upon its state.
|
|
*/
|
|
if (inode->i_state & I_SYNC)
|
|
goto out;
|
|
|
|
/*
|
|
* Only add valid (hashed) inodes to the superblock's
|
|
* dirty list. Add blockdev inodes as well.
|
|
*/
|
|
if (!S_ISBLK(inode->i_mode)) {
|
|
if (hlist_unhashed(&inode->i_hash))
|
|
goto out;
|
|
}
|
|
if (inode->i_state & (I_FREEING|I_CLEAR))
|
|
goto out;
|
|
|
|
/*
|
|
* If the inode was already on b_dirty/b_io/b_more_io, don't
|
|
* reposition it (that would break b_dirty time-ordering).
|
|
*/
|
|
if (!was_dirty) {
|
|
struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
|
|
struct backing_dev_info *bdi = wb->bdi;
|
|
|
|
if (bdi_cap_writeback_dirty(bdi) &&
|
|
!test_bit(BDI_registered, &bdi->state)) {
|
|
WARN_ON(1);
|
|
printk(KERN_ERR "bdi-%s not registered\n",
|
|
bdi->name);
|
|
}
|
|
|
|
inode->dirtied_when = jiffies;
|
|
list_move(&inode->i_list, &wb->b_dirty);
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&inode_lock);
|
|
}
|
|
EXPORT_SYMBOL(__mark_inode_dirty);
|
|
|
|
/*
|
|
* Write out a superblock's list of dirty inodes. A wait will be performed
|
|
* upon no inodes, all inodes or the final one, depending upon sync_mode.
|
|
*
|
|
* If older_than_this is non-NULL, then only write out inodes which
|
|
* had their first dirtying at a time earlier than *older_than_this.
|
|
*
|
|
* If `bdi' is non-zero then we're being asked to writeback a specific queue.
|
|
* This function assumes that the blockdev superblock's inodes are backed by
|
|
* a variety of queues, so all inodes are searched. For other superblocks,
|
|
* assume that all inodes are backed by the same queue.
|
|
*
|
|
* The inodes to be written are parked on bdi->b_io. They are moved back onto
|
|
* bdi->b_dirty as they are selected for writing. This way, none can be missed
|
|
* on the writer throttling path, and we get decent balancing between many
|
|
* throttled threads: we don't want them all piling up on inode_sync_wait.
|
|
*/
|
|
static void wait_sb_inodes(struct super_block *sb)
|
|
{
|
|
struct inode *inode, *old_inode = NULL;
|
|
|
|
/*
|
|
* We need to be protected against the filesystem going from
|
|
* r/o to r/w or vice versa.
|
|
*/
|
|
WARN_ON(!rwsem_is_locked(&sb->s_umount));
|
|
|
|
spin_lock(&inode_lock);
|
|
|
|
/*
|
|
* Data integrity sync. Must wait for all pages under writeback,
|
|
* because there may have been pages dirtied before our sync
|
|
* call, but which had writeout started before we write it out.
|
|
* In which case, the inode may not be on the dirty list, but
|
|
* we still have to wait for that writeout.
|
|
*/
|
|
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
|
|
struct address_space *mapping;
|
|
|
|
if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
|
|
continue;
|
|
mapping = inode->i_mapping;
|
|
if (mapping->nrpages == 0)
|
|
continue;
|
|
__iget(inode);
|
|
spin_unlock(&inode_lock);
|
|
/*
|
|
* We hold a reference to 'inode' so it couldn't have
|
|
* been removed from s_inodes list while we dropped the
|
|
* inode_lock. We cannot iput the inode now as we can
|
|
* be holding the last reference and we cannot iput it
|
|
* under inode_lock. So we keep the reference and iput
|
|
* it later.
|
|
*/
|
|
iput(old_inode);
|
|
old_inode = inode;
|
|
|
|
filemap_fdatawait(mapping);
|
|
|
|
cond_resched();
|
|
|
|
spin_lock(&inode_lock);
|
|
}
|
|
spin_unlock(&inode_lock);
|
|
iput(old_inode);
|
|
}
|
|
|
|
/**
|
|
* writeback_inodes_sb - writeback dirty inodes from given super_block
|
|
* @sb: the superblock
|
|
*
|
|
* Start writeback on some inodes on this super_block. No guarantees are made
|
|
* on how many (if any) will be written, and this function does not wait
|
|
* for IO completion of submitted IO. The number of pages submitted is
|
|
* returned.
|
|
*/
|
|
void writeback_inodes_sb(struct super_block *sb)
|
|
{
|
|
unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
|
|
unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
|
|
long nr_to_write;
|
|
|
|
nr_to_write = nr_dirty + nr_unstable +
|
|
(inodes_stat.nr_inodes - inodes_stat.nr_unused);
|
|
|
|
bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
|
|
}
|
|
EXPORT_SYMBOL(writeback_inodes_sb);
|
|
|
|
/**
|
|
* writeback_inodes_sb_if_idle - start writeback if none underway
|
|
* @sb: the superblock
|
|
*
|
|
* Invoke writeback_inodes_sb if no writeback is currently underway.
|
|
* Returns 1 if writeback was started, 0 if not.
|
|
*/
|
|
int writeback_inodes_sb_if_idle(struct super_block *sb)
|
|
{
|
|
if (!writeback_in_progress(sb->s_bdi)) {
|
|
writeback_inodes_sb(sb);
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
|
|
|
|
/**
|
|
* sync_inodes_sb - sync sb inode pages
|
|
* @sb: the superblock
|
|
*
|
|
* This function writes and waits on any dirty inode belonging to this
|
|
* super_block. The number of pages synced is returned.
|
|
*/
|
|
void sync_inodes_sb(struct super_block *sb)
|
|
{
|
|
bdi_sync_writeback(sb->s_bdi, sb);
|
|
wait_sb_inodes(sb);
|
|
}
|
|
EXPORT_SYMBOL(sync_inodes_sb);
|
|
|
|
/**
|
|
* write_inode_now - write an inode to disk
|
|
* @inode: inode to write to disk
|
|
* @sync: whether the write should be synchronous or not
|
|
*
|
|
* This function commits an inode to disk immediately if it is dirty. This is
|
|
* primarily needed by knfsd.
|
|
*
|
|
* The caller must either have a ref on the inode or must have set I_WILL_FREE.
|
|
*/
|
|
int write_inode_now(struct inode *inode, int sync)
|
|
{
|
|
int ret;
|
|
struct writeback_control wbc = {
|
|
.nr_to_write = LONG_MAX,
|
|
.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
};
|
|
|
|
if (!mapping_cap_writeback_dirty(inode->i_mapping))
|
|
wbc.nr_to_write = 0;
|
|
|
|
might_sleep();
|
|
spin_lock(&inode_lock);
|
|
ret = writeback_single_inode(inode, &wbc);
|
|
spin_unlock(&inode_lock);
|
|
if (sync)
|
|
inode_sync_wait(inode);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(write_inode_now);
|
|
|
|
/**
|
|
* sync_inode - write an inode and its pages to disk.
|
|
* @inode: the inode to sync
|
|
* @wbc: controls the writeback mode
|
|
*
|
|
* sync_inode() will write an inode and its pages to disk. It will also
|
|
* correctly update the inode on its superblock's dirty inode lists and will
|
|
* update inode->i_state.
|
|
*
|
|
* The caller must have a ref on the inode.
|
|
*/
|
|
int sync_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
|
|
spin_lock(&inode_lock);
|
|
ret = writeback_single_inode(inode, wbc);
|
|
spin_unlock(&inode_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sync_inode);
|