linux/Documentation/DocBook/gpu.tmpl
Lionel Landwerlin 5488dc16fd drm: introduce pipe color correction properties
Patch based on a previous series by Shashank Sharma.

This introduces optional properties to enable color correction at the
pipe level. It relies on 3 transformations applied to every pixels
displayed. First a lookup into a degamma table, then a multiplication
of the rgb components by a 3x3 matrix and finally another lookup into
a gamma table.

The following properties can be added to a pipe :
  - DEGAMMA_LUT : blob containing degamma LUT
  - DEGAMMA_LUT_SIZE : number of elements in DEGAMMA_LUT
  - CTM : transformation matrix applied after the degamma LUT
  - GAMMA_LUT : blob containing gamma LUT
  - GAMMA_LUT_SIZE : number of elements in GAMMA_LUT

DEGAMMA_LUT_SIZE and GAMMA_LUT_SIZE are read only properties, set by
the driver to tell userspace applications what sizes should be the
lookup tables in DEGAMMA_LUT and GAMMA_LUT.

A helper is also provided so legacy gamma correction is redirected
through these new properties.

v2: Register LUT size properties as range

v3: Fix round in drm_color_lut_get_value() helper
    More docs on how degamma/gamma properties are used

v4: Update contributors

v5: Rename CTM_MATRIX property to CTM (Doh!)
    Add legacy gamma_set atomic helper
    Describe CTM/LUT acronyms in the kernel doc

v6: Fix missing blob unref in drm_atomic_helper_crtc_reset

Signed-off-by: Shashank Sharma <shashank.sharma@intel.com>
Signed-off-by: Kumar, Kiran S <kiran.s.kumar@intel.com>
Signed-off-by: Kausal Malladi <kausalmalladi@gmail.com>
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Matt Roper <matthew.d.roper@intel.com>
Acked-by: Rob Bradford <robert.bradford@intel.com>
[danvet: CrOS maintainers are also happy with the userspacde side:
https://codereview.chromium.org/1182063002/ ]
Reviewed-by: Daniel Stone <daniels@collabora.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/1456506302-640-4-git-send-email-lionel.g.landwerlin@intel.com
2016-03-08 13:57:32 +01:00

3522 lines
139 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="gpuDevelopersGuide">
<bookinfo>
<title>Linux GPU Driver Developer's Guide</title>
<authorgroup>
<author>
<firstname>Jesse</firstname>
<surname>Barnes</surname>
<contrib>Initial version</contrib>
<affiliation>
<orgname>Intel Corporation</orgname>
<address>
<email>jesse.barnes@intel.com</email>
</address>
</affiliation>
</author>
<author>
<firstname>Laurent</firstname>
<surname>Pinchart</surname>
<contrib>Driver internals</contrib>
<affiliation>
<orgname>Ideas on board SPRL</orgname>
<address>
<email>laurent.pinchart@ideasonboard.com</email>
</address>
</affiliation>
</author>
<author>
<firstname>Daniel</firstname>
<surname>Vetter</surname>
<contrib>Contributions all over the place</contrib>
<affiliation>
<orgname>Intel Corporation</orgname>
<address>
<email>daniel.vetter@ffwll.ch</email>
</address>
</affiliation>
</author>
<author>
<firstname>Lukas</firstname>
<surname>Wunner</surname>
<contrib>vga_switcheroo documentation</contrib>
<affiliation>
<address>
<email>lukas@wunner.de</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2008-2009</year>
<year>2013-2014</year>
<holder>Intel Corporation</holder>
</copyright>
<copyright>
<year>2012</year>
<holder>Laurent Pinchart</holder>
</copyright>
<copyright>
<year>2015</year>
<holder>Lukas Wunner</holder>
</copyright>
<legalnotice>
<para>
The contents of this file may be used under the terms of the GNU
General Public License version 2 (the "GPL") as distributed in
the kernel source COPYING file.
</para>
</legalnotice>
<revhistory>
<!-- Put document revisions here, newest first. -->
<revision>
<revnumber>1.0</revnumber>
<date>2012-07-13</date>
<authorinitials>LP</authorinitials>
<revremark>Added extensive documentation about driver internals.
</revremark>
</revision>
<revision>
<revnumber>1.1</revnumber>
<date>2015-10-11</date>
<authorinitials>LW</authorinitials>
<revremark>Added vga_switcheroo documentation.
</revremark>
</revision>
</revhistory>
</bookinfo>
<toc></toc>
<part id="drmCore">
<title>DRM Core</title>
<partintro>
<para>
This first part of the GPU Driver Developer's Guide documents core DRM
code, helper libraries for writing drivers and generic userspace
interfaces exposed by DRM drivers.
</para>
</partintro>
<chapter id="drmIntroduction">
<title>Introduction</title>
<para>
The Linux DRM layer contains code intended to support the needs
of complex graphics devices, usually containing programmable
pipelines well suited to 3D graphics acceleration. Graphics
drivers in the kernel may make use of DRM functions to make
tasks like memory management, interrupt handling and DMA easier,
and provide a uniform interface to applications.
</para>
<para>
A note on versions: this guide covers features found in the DRM
tree, including the TTM memory manager, output configuration and
mode setting, and the new vblank internals, in addition to all
the regular features found in current kernels.
</para>
<para>
[Insert diagram of typical DRM stack here]
</para>
<sect1>
<title>Style Guidelines</title>
<para>
For consistency this documentation uses American English. Abbreviations
are written as all-uppercase, for example: DRM, KMS, IOCTL, CRTC, and so
on. To aid in reading, documentations make full use of the markup
characters kerneldoc provides: @parameter for function parameters, @member
for structure members, &amp;structure to reference structures and
function() for functions. These all get automatically hyperlinked if
kerneldoc for the referenced objects exists. When referencing entries in
function vtables please use -&gt;vfunc(). Note that kerneldoc does
not support referencing struct members directly, so please add a reference
to the vtable struct somewhere in the same paragraph or at least section.
</para>
<para>
Except in special situations (to separate locked from unlocked variants)
locking requirements for functions aren't documented in the kerneldoc.
Instead locking should be check at runtime using e.g.
<code>WARN_ON(!mutex_is_locked(...));</code>. Since it's much easier to
ignore documentation than runtime noise this provides more value. And on
top of that runtime checks do need to be updated when the locking rules
change, increasing the chances that they're correct. Within the
documentation the locking rules should be explained in the relevant
structures: Either in the comment for the lock explaining what it
protects, or data fields need a note about which lock protects them, or
both.
</para>
<para>
Functions which have a non-<code>void</code> return value should have a
section called "Returns" explaining the expected return values in
different cases and their meanings. Currently there's no consensus whether
that section name should be all upper-case or not, and whether it should
end in a colon or not. Go with the file-local style. Other common section
names are "Notes" with information for dangerous or tricky corner cases,
and "FIXME" where the interface could be cleaned up.
</para>
</sect1>
</chapter>
<!-- Internals -->
<chapter id="drmInternals">
<title>DRM Internals</title>
<para>
This chapter documents DRM internals relevant to driver authors
and developers working to add support for the latest features to
existing drivers.
</para>
<para>
First, we go over some typical driver initialization
requirements, like setting up command buffers, creating an
initial output configuration, and initializing core services.
Subsequent sections cover core internals in more detail,
providing implementation notes and examples.
</para>
<para>
The DRM layer provides several services to graphics drivers,
many of them driven by the application interfaces it provides
through libdrm, the library that wraps most of the DRM ioctls.
These include vblank event handling, memory
management, output management, framebuffer management, command
submission &amp; fencing, suspend/resume support, and DMA
services.
</para>
<!-- Internals: driver init -->
<sect1>
<title>Driver Initialization</title>
<para>
At the core of every DRM driver is a <structname>drm_driver</structname>
structure. Drivers typically statically initialize a drm_driver structure,
and then pass it to <function>drm_dev_alloc()</function> to allocate a
device instance. After the device instance is fully initialized it can be
registered (which makes it accessible from userspace) using
<function>drm_dev_register()</function>.
</para>
<para>
The <structname>drm_driver</structname> structure contains static
information that describes the driver and features it supports, and
pointers to methods that the DRM core will call to implement the DRM API.
We will first go through the <structname>drm_driver</structname> static
information fields, and will then describe individual operations in
details as they get used in later sections.
</para>
<sect2>
<title>Driver Information</title>
<sect3>
<title>Driver Features</title>
<para>
Drivers inform the DRM core about their requirements and supported
features by setting appropriate flags in the
<structfield>driver_features</structfield> field. Since those flags
influence the DRM core behaviour since registration time, most of them
must be set to registering the <structname>drm_driver</structname>
instance.
</para>
<synopsis>u32 driver_features;</synopsis>
<variablelist>
<title>Driver Feature Flags</title>
<varlistentry>
<term>DRIVER_USE_AGP</term>
<listitem><para>
Driver uses AGP interface, the DRM core will manage AGP resources.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_REQUIRE_AGP</term>
<listitem><para>
Driver needs AGP interface to function. AGP initialization failure
will become a fatal error.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PCI_DMA</term>
<listitem><para>
Driver is capable of PCI DMA, mapping of PCI DMA buffers to
userspace will be enabled. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_SG</term>
<listitem><para>
Driver can perform scatter/gather DMA, allocation and mapping of
scatter/gather buffers will be enabled. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_DMA</term>
<listitem><para>
Driver supports DMA, the userspace DMA API will be supported.
Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
<listitem><para>
DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
managed by the DRM Core. The core will support simple IRQ handler
installation when the flag is set. The installation process is
described in <xref linkend="drm-irq-registration"/>.</para>
<para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
support shared IRQs (note that this is required of PCI drivers).
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_GEM</term>
<listitem><para>
Driver use the GEM memory manager.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_MODESET</term>
<listitem><para>
Driver supports mode setting interfaces (KMS).
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PRIME</term>
<listitem><para>
Driver implements DRM PRIME buffer sharing.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_RENDER</term>
<listitem><para>
Driver supports dedicated render nodes.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_ATOMIC</term>
<listitem><para>
Driver supports atomic properties. In this case the driver
must implement appropriate obj->atomic_get_property() vfuncs
for any modeset objects with driver specific properties.
</para></listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3>
<title>Major, Minor and Patchlevel</title>
<synopsis>int major;
int minor;
int patchlevel;</synopsis>
<para>
The DRM core identifies driver versions by a major, minor and patch
level triplet. The information is printed to the kernel log at
initialization time and passed to userspace through the
DRM_IOCTL_VERSION ioctl.
</para>
<para>
The major and minor numbers are also used to verify the requested driver
API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
between minor versions, applications can call DRM_IOCTL_SET_VERSION to
select a specific version of the API. If the requested major isn't equal
to the driver major, or the requested minor is larger than the driver
minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
the driver's set_version() method will be called with the requested
version.
</para>
</sect3>
<sect3>
<title>Name, Description and Date</title>
<synopsis>char *name;
char *desc;
char *date;</synopsis>
<para>
The driver name is printed to the kernel log at initialization time,
used for IRQ registration and passed to userspace through
DRM_IOCTL_VERSION.
</para>
<para>
The driver description is a purely informative string passed to
userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
the kernel.
</para>
<para>
The driver date, formatted as YYYYMMDD, is meant to identify the date of
the latest modification to the driver. However, as most drivers fail to
update it, its value is mostly useless. The DRM core prints it to the
kernel log at initialization time and passes it to userspace through the
DRM_IOCTL_VERSION ioctl.
</para>
</sect3>
</sect2>
<sect2>
<title>Device Instance and Driver Handling</title>
!Pdrivers/gpu/drm/drm_drv.c driver instance overview
!Edrivers/gpu/drm/drm_drv.c
</sect2>
<sect2>
<title>Driver Load</title>
<sect3 id="drm-irq-registration">
<title>IRQ Registration</title>
<para>
The DRM core tries to facilitate IRQ handler registration and
unregistration by providing <function>drm_irq_install</function> and
<function>drm_irq_uninstall</function> functions. Those functions only
support a single interrupt per device, devices that use more than one
IRQs need to be handled manually.
</para>
<sect4>
<title>Managed IRQ Registration</title>
<para>
<function>drm_irq_install</function> starts by calling the
<methodname>irq_preinstall</methodname> driver operation. The operation
is optional and must make sure that the interrupt will not get fired by
clearing all pending interrupt flags or disabling the interrupt.
</para>
<para>
The passed-in IRQ will then be requested by a call to
<function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
requested.
</para>
<para>
The IRQ handler function must be provided as the mandatory irq_handler
driver operation. It will get passed directly to
<function>request_irq</function> and thus has the same prototype as all
IRQ handlers. It will get called with a pointer to the DRM device as the
second argument.
</para>
<para>
Finally the function calls the optional
<methodname>irq_postinstall</methodname> driver operation. The operation
usually enables interrupts (excluding the vblank interrupt, which is
enabled separately), but drivers may choose to enable/disable interrupts
at a different time.
</para>
<para>
<function>drm_irq_uninstall</function> is similarly used to uninstall an
IRQ handler. It starts by waking up all processes waiting on a vblank
interrupt to make sure they don't hang, and then calls the optional
<methodname>irq_uninstall</methodname> driver operation. The operation
must disable all hardware interrupts. Finally the function frees the IRQ
by calling <function>free_irq</function>.
</para>
</sect4>
<sect4>
<title>Manual IRQ Registration</title>
<para>
Drivers that require multiple interrupt handlers can't use the managed
IRQ registration functions. In that case IRQs must be registered and
unregistered manually (usually with the <function>request_irq</function>
and <function>free_irq</function> functions, or their devm_* equivalent).
</para>
<para>
When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
driver feature flag, and must not provide the
<methodname>irq_handler</methodname> driver operation. They must set the
<structname>drm_device</structname> <structfield>irq_enabled</structfield>
field to 1 upon registration of the IRQs, and clear it to 0 after
unregistering the IRQs.
</para>
</sect4>
</sect3>
<sect3>
<title>Memory Manager Initialization</title>
<para>
Every DRM driver requires a memory manager which must be initialized at
load time. DRM currently contains two memory managers, the Translation
Table Manager (TTM) and the Graphics Execution Manager (GEM).
This document describes the use of the GEM memory manager only. See
<xref linkend="drm-memory-management"/> for details.
</para>
</sect3>
<sect3>
<title>Miscellaneous Device Configuration</title>
<para>
Another task that may be necessary for PCI devices during configuration
is mapping the video BIOS. On many devices, the VBIOS describes device
configuration, LCD panel timings (if any), and contains flags indicating
device state. Mapping the BIOS can be done using the pci_map_rom() call,
a convenience function that takes care of mapping the actual ROM,
whether it has been shadowed into memory (typically at address 0xc0000)
or exists on the PCI device in the ROM BAR. Note that after the ROM has
been mapped and any necessary information has been extracted, it should
be unmapped; on many devices, the ROM address decoder is shared with
other BARs, so leaving it mapped could cause undesired behaviour like
hangs or memory corruption.
<!--!Fdrivers/pci/rom.c pci_map_rom-->
</para>
</sect3>
</sect2>
<sect2>
<title>Bus-specific Device Registration and PCI Support</title>
<para>
A number of functions are provided to help with device registration.
The functions deal with PCI and platform devices respectively and are
only provided for historical reasons. These are all deprecated and
shouldn't be used in new drivers. Besides that there's a few
helpers for pci drivers.
</para>
!Edrivers/gpu/drm/drm_pci.c
!Edrivers/gpu/drm/drm_platform.c
</sect2>
</sect1>
<!-- Internals: memory management -->
<sect1 id="drm-memory-management">
<title>Memory management</title>
<para>
Modern Linux systems require large amount of graphics memory to store
frame buffers, textures, vertices and other graphics-related data. Given
the very dynamic nature of many of that data, managing graphics memory
efficiently is thus crucial for the graphics stack and plays a central
role in the DRM infrastructure.
</para>
<para>
The DRM core includes two memory managers, namely Translation Table Maps
(TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
manager to be developed and tried to be a one-size-fits-them all
solution. It provides a single userspace API to accommodate the need of
all hardware, supporting both Unified Memory Architecture (UMA) devices
and devices with dedicated video RAM (i.e. most discrete video cards).
This resulted in a large, complex piece of code that turned out to be
hard to use for driver development.
</para>
<para>
GEM started as an Intel-sponsored project in reaction to TTM's
complexity. Its design philosophy is completely different: instead of
providing a solution to every graphics memory-related problems, GEM
identified common code between drivers and created a support library to
share it. GEM has simpler initialization and execution requirements than
TTM, but has no video RAM management capabilities and is thus limited to
UMA devices.
</para>
<sect2>
<title>The Translation Table Manager (TTM)</title>
<para>
TTM design background and information belongs here.
</para>
<sect3>
<title>TTM initialization</title>
<warning><para>This section is outdated.</para></warning>
<para>
Drivers wishing to support TTM must fill out a drm_bo_driver
structure. The structure contains several fields with function
pointers for initializing the TTM, allocating and freeing memory,
waiting for command completion and fence synchronization, and memory
migration. See the radeon_ttm.c file for an example of usage.
</para>
<para>
The ttm_global_reference structure is made up of several fields:
</para>
<programlisting>
struct ttm_global_reference {
enum ttm_global_types global_type;
size_t size;
void *object;
int (*init) (struct ttm_global_reference *);
void (*release) (struct ttm_global_reference *);
};
</programlisting>
<para>
There should be one global reference structure for your memory
manager as a whole, and there will be others for each object
created by the memory manager at runtime. Your global TTM should
have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
object should be sizeof(struct ttm_mem_global), and the init and
release hooks should point at your driver-specific init and
release routines, which probably eventually call
ttm_mem_global_init and ttm_mem_global_release, respectively.
</para>
<para>
Once your global TTM accounting structure is set up and initialized
by calling ttm_global_item_ref() on it,
you need to create a buffer object TTM to
provide a pool for buffer object allocation by clients and the
kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
and its size should be sizeof(struct ttm_bo_global). Again,
driver-specific init and release functions may be provided,
likely eventually calling ttm_bo_global_init() and
ttm_bo_global_release(), respectively. Also, like the previous
object, ttm_global_item_ref() is used to create an initial reference
count for the TTM, which will call your initialization function.
</para>
</sect3>
</sect2>
<sect2 id="drm-gem">
<title>The Graphics Execution Manager (GEM)</title>
<para>
The GEM design approach has resulted in a memory manager that doesn't
provide full coverage of all (or even all common) use cases in its
userspace or kernel API. GEM exposes a set of standard memory-related
operations to userspace and a set of helper functions to drivers, and let
drivers implement hardware-specific operations with their own private API.
</para>
<para>
The GEM userspace API is described in the
<ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
Execution Manager</citetitle></ulink> article on LWN. While slightly
outdated, the document provides a good overview of the GEM API principles.
Buffer allocation and read and write operations, described as part of the
common GEM API, are currently implemented using driver-specific ioctls.
</para>
<para>
GEM is data-agnostic. It manages abstract buffer objects without knowing
what individual buffers contain. APIs that require knowledge of buffer
contents or purpose, such as buffer allocation or synchronization
primitives, are thus outside of the scope of GEM and must be implemented
using driver-specific ioctls.
</para>
<para>
On a fundamental level, GEM involves several operations:
<itemizedlist>
<listitem>Memory allocation and freeing</listitem>
<listitem>Command execution</listitem>
<listitem>Aperture management at command execution time</listitem>
</itemizedlist>
Buffer object allocation is relatively straightforward and largely
provided by Linux's shmem layer, which provides memory to back each
object.
</para>
<para>
Device-specific operations, such as command execution, pinning, buffer
read &amp; write, mapping, and domain ownership transfers are left to
driver-specific ioctls.
</para>
<sect3>
<title>GEM Initialization</title>
<para>
Drivers that use GEM must set the DRIVER_GEM bit in the struct
<structname>drm_driver</structname>
<structfield>driver_features</structfield> field. The DRM core will
then automatically initialize the GEM core before calling the
<methodname>load</methodname> operation. Behind the scene, this will
create a DRM Memory Manager object which provides an address space
pool for object allocation.
</para>
<para>
In a KMS configuration, drivers need to allocate and initialize a
command ring buffer following core GEM initialization if required by
the hardware. UMA devices usually have what is called a "stolen"
memory region, which provides space for the initial framebuffer and
large, contiguous memory regions required by the device. This space is
typically not managed by GEM, and must be initialized separately into
its own DRM MM object.
</para>
</sect3>
<sect3>
<title>GEM Objects Creation</title>
<para>
GEM splits creation of GEM objects and allocation of the memory that
backs them in two distinct operations.
</para>
<para>
GEM objects are represented by an instance of struct
<structname>drm_gem_object</structname>. Drivers usually need to extend
GEM objects with private information and thus create a driver-specific
GEM object structure type that embeds an instance of struct
<structname>drm_gem_object</structname>.
</para>
<para>
To create a GEM object, a driver allocates memory for an instance of its
specific GEM object type and initializes the embedded struct
<structname>drm_gem_object</structname> with a call to
<function>drm_gem_object_init</function>. The function takes a pointer to
the DRM device, a pointer to the GEM object and the buffer object size
in bytes.
</para>
<para>
GEM uses shmem to allocate anonymous pageable memory.
<function>drm_gem_object_init</function> will create an shmfs file of
the requested size and store it into the struct
<structname>drm_gem_object</structname> <structfield>filp</structfield>
field. The memory is used as either main storage for the object when the
graphics hardware uses system memory directly or as a backing store
otherwise.
</para>
<para>
Drivers are responsible for the actual physical pages allocation by
calling <function>shmem_read_mapping_page_gfp</function> for each page.
Note that they can decide to allocate pages when initializing the GEM
object, or to delay allocation until the memory is needed (for instance
when a page fault occurs as a result of a userspace memory access or
when the driver needs to start a DMA transfer involving the memory).
</para>
<para>
Anonymous pageable memory allocation is not always desired, for instance
when the hardware requires physically contiguous system memory as is
often the case in embedded devices. Drivers can create GEM objects with
no shmfs backing (called private GEM objects) by initializing them with
a call to <function>drm_gem_private_object_init</function> instead of
<function>drm_gem_object_init</function>. Storage for private GEM
objects must be managed by drivers.
</para>
</sect3>
<sect3>
<title>GEM Objects Lifetime</title>
<para>
All GEM objects are reference-counted by the GEM core. References can be
acquired and release by <function>calling drm_gem_object_reference</function>
and <function>drm_gem_object_unreference</function> respectively. The
caller must hold the <structname>drm_device</structname>
<structfield>struct_mutex</structfield> lock when calling
<function>drm_gem_object_reference</function>. As a convenience, GEM
provides <function>drm_gem_object_unreference_unlocked</function>
functions that can be called without holding the lock.
</para>
<para>
When the last reference to a GEM object is released the GEM core calls
the <structname>drm_driver</structname>
<methodname>gem_free_object</methodname> operation. That operation is
mandatory for GEM-enabled drivers and must free the GEM object and all
associated resources.
</para>
<para>
<synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
Drivers are responsible for freeing all GEM object resources. This includes
the resources created by the GEM core, which need to be released with
<function>drm_gem_object_release</function>.
</para>
</sect3>
<sect3>
<title>GEM Objects Naming</title>
<para>
Communication between userspace and the kernel refers to GEM objects
using local handles, global names or, more recently, file descriptors.
All of those are 32-bit integer values; the usual Linux kernel limits
apply to the file descriptors.
</para>
<para>
GEM handles are local to a DRM file. Applications get a handle to a GEM
object through a driver-specific ioctl, and can use that handle to refer
to the GEM object in other standard or driver-specific ioctls. Closing a
DRM file handle frees all its GEM handles and dereferences the
associated GEM objects.
</para>
<para>
To create a handle for a GEM object drivers call
<function>drm_gem_handle_create</function>. The function takes a pointer
to the DRM file and the GEM object and returns a locally unique handle.
When the handle is no longer needed drivers delete it with a call to
<function>drm_gem_handle_delete</function>. Finally the GEM object
associated with a handle can be retrieved by a call to
<function>drm_gem_object_lookup</function>.
</para>
<para>
Handles don't take ownership of GEM objects, they only take a reference
to the object that will be dropped when the handle is destroyed. To
avoid leaking GEM objects, drivers must make sure they drop the
reference(s) they own (such as the initial reference taken at object
creation time) as appropriate, without any special consideration for the
handle. For example, in the particular case of combined GEM object and
handle creation in the implementation of the
<methodname>dumb_create</methodname> operation, drivers must drop the
initial reference to the GEM object before returning the handle.
</para>
<para>
GEM names are similar in purpose to handles but are not local to DRM
files. They can be passed between processes to reference a GEM object
globally. Names can't be used directly to refer to objects in the DRM
API, applications must convert handles to names and names to handles
using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
respectively. The conversion is handled by the DRM core without any
driver-specific support.
</para>
<para>
GEM also supports buffer sharing with dma-buf file descriptors through
PRIME. GEM-based drivers must use the provided helpers functions to
implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
Since sharing file descriptors is inherently more secure than the
easily guessable and global GEM names it is the preferred buffer
sharing mechanism. Sharing buffers through GEM names is only supported
for legacy userspace. Furthermore PRIME also allows cross-device
buffer sharing since it is based on dma-bufs.
</para>
</sect3>
<sect3 id="drm-gem-objects-mapping">
<title>GEM Objects Mapping</title>
<para>
Because mapping operations are fairly heavyweight GEM favours
read/write-like access to buffers, implemented through driver-specific
ioctls, over mapping buffers to userspace. However, when random access
to the buffer is needed (to perform software rendering for instance),
direct access to the object can be more efficient.
</para>
<para>
The mmap system call can't be used directly to map GEM objects, as they
don't have their own file handle. Two alternative methods currently
co-exist to map GEM objects to userspace. The first method uses a
driver-specific ioctl to perform the mapping operation, calling
<function>do_mmap</function> under the hood. This is often considered
dubious, seems to be discouraged for new GEM-enabled drivers, and will
thus not be described here.
</para>
<para>
The second method uses the mmap system call on the DRM file handle.
<synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
off_t offset);</synopsis>
DRM identifies the GEM object to be mapped by a fake offset passed
through the mmap offset argument. Prior to being mapped, a GEM object
must thus be associated with a fake offset. To do so, drivers must call
<function>drm_gem_create_mmap_offset</function> on the object.
</para>
<para>
Once allocated, the fake offset value
must be passed to the application in a driver-specific way and can then
be used as the mmap offset argument.
</para>
<para>
The GEM core provides a helper method <function>drm_gem_mmap</function>
to handle object mapping. The method can be set directly as the mmap
file operation handler. It will look up the GEM object based on the
offset value and set the VMA operations to the
<structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
field. Note that <function>drm_gem_mmap</function> doesn't map memory to
userspace, but relies on the driver-provided fault handler to map pages
individually.
</para>
<para>
To use <function>drm_gem_mmap</function>, drivers must fill the struct
<structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
field with a pointer to VM operations.
</para>
<para>
<synopsis>struct vm_operations_struct *gem_vm_ops
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
};</synopsis>
</para>
<para>
The <methodname>open</methodname> and <methodname>close</methodname>
operations must update the GEM object reference count. Drivers can use
the <function>drm_gem_vm_open</function> and
<function>drm_gem_vm_close</function> helper functions directly as open
and close handlers.
</para>
<para>
The fault operation handler is responsible for mapping individual pages
to userspace when a page fault occurs. Depending on the memory
allocation scheme, drivers can allocate pages at fault time, or can
decide to allocate memory for the GEM object at the time the object is
created.
</para>
<para>
Drivers that want to map the GEM object upfront instead of handling page
faults can implement their own mmap file operation handler.
</para>
</sect3>
<sect3>
<title>Memory Coherency</title>
<para>
When mapped to the device or used in a command buffer, backing pages
for an object are flushed to memory and marked write combined so as to
be coherent with the GPU. Likewise, if the CPU accesses an object
after the GPU has finished rendering to the object, then the object
must be made coherent with the CPU's view of memory, usually involving
GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
coherency management is provided by a device-specific ioctl, which
evaluates an object's current domain and performs any necessary
flushing or synchronization to put the object into the desired
coherency domain (note that the object may be busy, i.e. an active
render target; in that case, setting the domain blocks the client and
waits for rendering to complete before performing any necessary
flushing operations).
</para>
</sect3>
<sect3>
<title>Command Execution</title>
<para>
Perhaps the most important GEM function for GPU devices is providing a
command execution interface to clients. Client programs construct
command buffers containing references to previously allocated memory
objects, and then submit them to GEM. At that point, GEM takes care to
bind all the objects into the GTT, execute the buffer, and provide
necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding
others (a fairly expensive operation), and providing relocation
support which hides fixed GTT offsets from clients. Clients must take
care not to submit command buffers that reference more objects than
can fit in the GTT; otherwise, GEM will reject them and no rendering
will occur. Similarly, if several objects in the buffer require fence
registers to be allocated for correct rendering (e.g. 2D blits on
pre-965 chips), care must be taken not to require more fence registers
than are available to the client. Such resource management should be
abstracted from the client in libdrm.
</para>
</sect3>
</sect2>
<sect2>
<title>GEM Function Reference</title>
!Edrivers/gpu/drm/drm_gem.c
!Iinclude/drm/drm_gem.h
</sect2>
<sect2>
<title>VMA Offset Manager</title>
!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
!Edrivers/gpu/drm/drm_vma_manager.c
!Iinclude/drm/drm_vma_manager.h
</sect2>
<sect2 id="drm-prime-support">
<title>PRIME Buffer Sharing</title>
<para>
PRIME is the cross device buffer sharing framework in drm, originally
created for the OPTIMUS range of multi-gpu platforms. To userspace
PRIME buffers are dma-buf based file descriptors.
</para>
<sect3>
<title>Overview and Driver Interface</title>
<para>
Similar to GEM global names, PRIME file descriptors are
also used to share buffer objects across processes. They offer
additional security: as file descriptors must be explicitly sent over
UNIX domain sockets to be shared between applications, they can't be
guessed like the globally unique GEM names.
</para>
<para>
Drivers that support the PRIME
API must set the DRIVER_PRIME bit in the struct
<structname>drm_driver</structname>
<structfield>driver_features</structfield> field, and implement the
<methodname>prime_handle_to_fd</methodname> and
<methodname>prime_fd_to_handle</methodname> operations.
</para>
<para>
<synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
struct drm_file *file_priv, uint32_t handle,
uint32_t flags, int *prime_fd);
int (*prime_fd_to_handle)(struct drm_device *dev,
struct drm_file *file_priv, int prime_fd,
uint32_t *handle);</synopsis>
Those two operations convert a handle to a PRIME file descriptor and
vice versa. Drivers must use the kernel dma-buf buffer sharing framework
to manage the PRIME file descriptors. Similar to the mode setting
API PRIME is agnostic to the underlying buffer object manager, as
long as handles are 32bit unsigned integers.
</para>
<para>
While non-GEM drivers must implement the operations themselves, GEM
drivers must use the <function>drm_gem_prime_handle_to_fd</function>
and <function>drm_gem_prime_fd_to_handle</function> helper functions.
Those helpers rely on the driver
<methodname>gem_prime_export</methodname> and
<methodname>gem_prime_import</methodname> operations to create a dma-buf
instance from a GEM object (dma-buf exporter role) and to create a GEM
object from a dma-buf instance (dma-buf importer role).
</para>
<para>
<synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
struct drm_gem_object *obj,
int flags);
struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
struct dma_buf *dma_buf);</synopsis>
These two operations are mandatory for GEM drivers that support
PRIME.
</para>
</sect3>
<sect3>
<title>PRIME Helper Functions</title>
!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
</sect3>
</sect2>
<sect2>
<title>PRIME Function References</title>
!Edrivers/gpu/drm/drm_prime.c
</sect2>
<sect2>
<title>DRM MM Range Allocator</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_mm.c Overview
</sect3>
<sect3>
<title>LRU Scan/Eviction Support</title>
!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
</sect3>
</sect2>
<sect2>
<title>DRM MM Range Allocator Function References</title>
!Edrivers/gpu/drm/drm_mm.c
!Iinclude/drm/drm_mm.h
</sect2>
<sect2>
<title>CMA Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
!Edrivers/gpu/drm/drm_gem_cma_helper.c
!Iinclude/drm/drm_gem_cma_helper.h
</sect2>
</sect1>
<!-- Internals: mode setting -->
<sect1 id="drm-mode-setting">
<title>Mode Setting</title>
<para>
Drivers must initialize the mode setting core by calling
<function>drm_mode_config_init</function> on the DRM device. The function
initializes the <structname>drm_device</structname>
<structfield>mode_config</structfield> field and never fails. Once done,
mode configuration must be setup by initializing the following fields.
</para>
<itemizedlist>
<listitem>
<synopsis>int min_width, min_height;
int max_width, max_height;</synopsis>
<para>
Minimum and maximum width and height of the frame buffers in pixel
units.
</para>
</listitem>
<listitem>
<synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
<para>Mode setting functions.</para>
</listitem>
</itemizedlist>
<sect2>
<title>Display Modes Function Reference</title>
!Iinclude/drm/drm_modes.h
!Edrivers/gpu/drm/drm_modes.c
</sect2>
<sect2>
<title>Atomic Mode Setting Function Reference</title>
!Edrivers/gpu/drm/drm_atomic.c
!Idrivers/gpu/drm/drm_atomic.c
</sect2>
<sect2>
<title>Frame Buffer Abstraction</title>
<para>
Frame buffers are abstract memory objects that provide a source of
pixels to scanout to a CRTC. Applications explicitly request the
creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
receive an opaque handle that can be passed to the KMS CRTC control,
plane configuration and page flip functions.
</para>
<para>
Frame buffers rely on the underneath memory manager for low-level memory
operations. When creating a frame buffer applications pass a memory
handle (or a list of memory handles for multi-planar formats) through
the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
GEM as their userspace buffer management interface this would be a GEM
handle. Drivers are however free to use their own backing storage object
handles, e.g. vmwgfx directly exposes special TTM handles to userspace
and so expects TTM handles in the create ioctl and not GEM handles.
</para>
<para>
The lifetime of a drm framebuffer is controlled with a reference count,
drivers can grab additional references with
<function>drm_framebuffer_reference</function>and drop them
again with <function>drm_framebuffer_unreference</function>. For
driver-private framebuffers for which the last reference is never
dropped (e.g. for the fbdev framebuffer when the struct
<structname>drm_framebuffer</structname> is embedded into the fbdev
helper struct) drivers can manually clean up a framebuffer at module
unload time with
<function>drm_framebuffer_unregister_private</function>.
</para>
</sect2>
<sect2>
<title>Dumb Buffer Objects</title>
<para>
The KMS API doesn't standardize backing storage object creation and
leaves it to driver-specific ioctls. Furthermore actually creating a
buffer object even for GEM-based drivers is done through a
driver-specific ioctl - GEM only has a common userspace interface for
sharing and destroying objects. While not an issue for full-fledged
graphics stacks that include device-specific userspace components (in
libdrm for instance), this limit makes DRM-based early boot graphics
unnecessarily complex.
</para>
<para>
Dumb objects partly alleviate the problem by providing a standard
API to create dumb buffers suitable for scanout, which can then be used
to create KMS frame buffers.
</para>
<para>
To support dumb objects drivers must implement the
<methodname>dumb_create</methodname>,
<methodname>dumb_destroy</methodname> and
<methodname>dumb_map_offset</methodname> operations.
</para>
<itemizedlist>
<listitem>
<synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
struct drm_mode_create_dumb *args);</synopsis>
<para>
The <methodname>dumb_create</methodname> operation creates a driver
object (GEM or TTM handle) suitable for scanout based on the
width, height and depth from the struct
<structname>drm_mode_create_dumb</structname> argument. It fills the
argument's <structfield>handle</structfield>,
<structfield>pitch</structfield> and <structfield>size</structfield>
fields with a handle for the newly created object and its line
pitch and size in bytes.
</para>
</listitem>
<listitem>
<synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
uint32_t handle);</synopsis>
<para>
The <methodname>dumb_destroy</methodname> operation destroys a dumb
object created by <methodname>dumb_create</methodname>.
</para>
</listitem>
<listitem>
<synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
uint32_t handle, uint64_t *offset);</synopsis>
<para>
The <methodname>dumb_map_offset</methodname> operation associates an
mmap fake offset with the object given by the handle and returns
it. Drivers must use the
<function>drm_gem_create_mmap_offset</function> function to
associate the fake offset as described in
<xref linkend="drm-gem-objects-mapping"/>.
</para>
</listitem>
</itemizedlist>
<para>
Note that dumb objects may not be used for gpu acceleration, as has been
attempted on some ARM embedded platforms. Such drivers really must have
a hardware-specific ioctl to allocate suitable buffer objects.
</para>
</sect2>
<sect2>
<title>Output Polling</title>
<synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
<para>
This operation notifies the driver that the status of one or more
connectors has changed. Drivers that use the fb helper can just call the
<function>drm_fb_helper_hotplug_event</function> function to handle this
operation.
</para>
</sect2>
<sect2>
<title>Locking</title>
<para>
Beside some lookup structures with their own locking (which is hidden
behind the interface functions) most of the modeset state is protected
by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
per-crtc locks to allow cursor updates, pageflips and similar operations
to occur concurrently with background tasks like output detection.
Operations which cross domains like a full modeset always grab all
locks. Drivers there need to protect resources shared between crtcs with
additional locking. They also need to be careful to always grab the
relevant crtc locks if a modset functions touches crtc state, e.g. for
load detection (which does only grab the <code>mode_config.lock</code>
to allow concurrent screen updates on live crtcs).
</para>
</sect2>
</sect1>
<!-- Internals: kms initialization and cleanup -->
<sect1 id="drm-kms-init">
<title>KMS Initialization and Cleanup</title>
<para>
A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
and connectors. KMS drivers must thus create and initialize all those
objects at load time after initializing mode setting.
</para>
<sect2>
<title>CRTCs (struct <structname>drm_crtc</structname>)</title>
<para>
A CRTC is an abstraction representing a part of the chip that contains a
pointer to a scanout buffer. Therefore, the number of CRTCs available
determines how many independent scanout buffers can be active at any
given time. The CRTC structure contains several fields to support this:
a pointer to some video memory (abstracted as a frame buffer object), a
display mode, and an (x, y) offset into the video memory to support
panning or configurations where one piece of video memory spans multiple
CRTCs.
</para>
<sect3>
<title>CRTC Initialization</title>
<para>
A KMS device must create and register at least one struct
<structname>drm_crtc</structname> instance. The instance is allocated
and zeroed by the driver, possibly as part of a larger structure, and
registered with a call to <function>drm_crtc_init</function> with a
pointer to CRTC functions.
</para>
</sect3>
</sect2>
<sect2>
<title>Planes (struct <structname>drm_plane</structname>)</title>
<para>
A plane represents an image source that can be blended with or overlayed
on top of a CRTC during the scanout process. Planes are associated with
a frame buffer to crop a portion of the image memory (source) and
optionally scale it to a destination size. The result is then blended
with or overlayed on top of a CRTC.
</para>
<para>
The DRM core recognizes three types of planes:
<itemizedlist>
<listitem>
DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
planes are the planes operated upon by CRTC modesetting and flipping
operations described in the page_flip hook in <structname>drm_crtc_funcs</structname>.
</listitem>
<listitem>
DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
DRM_IOCTL_MODE_CURSOR2 ioctls.
</listitem>
<listitem>
DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
Some drivers refer to these types of planes as "sprites" internally.
</listitem>
</itemizedlist>
For compatibility with legacy userspace, only overlay planes are made
available to userspace by default. Userspace clients may set the
DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
they wish to receive a universal plane list containing all plane types.
</para>
<sect3>
<title>Plane Initialization</title>
<para>
To create a plane, a KMS drivers allocates and
zeroes an instances of struct <structname>drm_plane</structname>
(possibly as part of a larger structure) and registers it with a call
to <function>drm_universal_plane_init</function>. The function takes a bitmask
of the CRTCs that can be associated with the plane, a pointer to the
plane functions, a list of format supported formats, and the type of
plane (primary, cursor, or overlay) being initialized.
</para>
<para>
Cursor and overlay planes are optional. All drivers should provide
one primary plane per CRTC (although this requirement may change in
the future); drivers that do not wish to provide special handling for
primary planes may make use of the helper functions described in
<xref linkend="drm-kms-planehelpers"/> to create and register a
primary plane with standard capabilities.
</para>
</sect3>
</sect2>
<sect2>
<title>Encoders (struct <structname>drm_encoder</structname>)</title>
<para>
An encoder takes pixel data from a CRTC and converts it to a format
suitable for any attached connectors. On some devices, it may be
possible to have a CRTC send data to more than one encoder. In that
case, both encoders would receive data from the same scanout buffer,
resulting in a "cloned" display configuration across the connectors
attached to each encoder.
</para>
<sect3>
<title>Encoder Initialization</title>
<para>
As for CRTCs, a KMS driver must create, initialize and register at
least one struct <structname>drm_encoder</structname> instance. The
instance is allocated and zeroed by the driver, possibly as part of a
larger structure.
</para>
<para>
Drivers must initialize the struct <structname>drm_encoder</structname>
<structfield>possible_crtcs</structfield> and
<structfield>possible_clones</structfield> fields before registering the
encoder. Both fields are bitmasks of respectively the CRTCs that the
encoder can be connected to, and sibling encoders candidate for cloning.
</para>
<para>
After being initialized, the encoder must be registered with a call to
<function>drm_encoder_init</function>. The function takes a pointer to
the encoder functions and an encoder type. Supported types are
<itemizedlist>
<listitem>
DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
</listitem>
<listitem>
DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
</listitem>
<listitem>
DRM_MODE_ENCODER_LVDS for display panels
</listitem>
<listitem>
DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
SCART)
</listitem>
<listitem>
DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
</listitem>
</itemizedlist>
</para>
<para>
Encoders must be attached to a CRTC to be used. DRM drivers leave
encoders unattached at initialization time. Applications (or the fbdev
compatibility layer when implemented) are responsible for attaching the
encoders they want to use to a CRTC.
</para>
</sect3>
</sect2>
<sect2>
<title>Connectors (struct <structname>drm_connector</structname>)</title>
<para>
A connector is the final destination for pixel data on a device, and
usually connects directly to an external display device like a monitor
or laptop panel. A connector can only be attached to one encoder at a
time. The connector is also the structure where information about the
attached display is kept, so it contains fields for display data, EDID
data, DPMS &amp; connection status, and information about modes
supported on the attached displays.
</para>
<sect3>
<title>Connector Initialization</title>
<para>
Finally a KMS driver must create, initialize, register and attach at
least one struct <structname>drm_connector</structname> instance. The
instance is created as other KMS objects and initialized by setting the
following fields.
</para>
<variablelist>
<varlistentry>
<term><structfield>interlace_allowed</structfield></term>
<listitem><para>
Whether the connector can handle interlaced modes.
</para></listitem>
</varlistentry>
<varlistentry>
<term><structfield>doublescan_allowed</structfield></term>
<listitem><para>
Whether the connector can handle doublescan.
</para></listitem>
</varlistentry>
<varlistentry>
<term><structfield>display_info
</structfield></term>
<listitem><para>
Display information is filled from EDID information when a display
is detected. For non hot-pluggable displays such as flat panels in
embedded systems, the driver should initialize the
<structfield>display_info</structfield>.<structfield>width_mm</structfield>
and
<structfield>display_info</structfield>.<structfield>height_mm</structfield>
fields with the physical size of the display.
</para></listitem>
</varlistentry>
<varlistentry>
<term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
<listitem><para>
Connector polling mode, a combination of
<variablelist>
<varlistentry>
<term>DRM_CONNECTOR_POLL_HPD</term>
<listitem><para>
The connector generates hotplug events and doesn't need to be
periodically polled. The CONNECT and DISCONNECT flags must not
be set together with the HPD flag.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_CONNECTOR_POLL_CONNECT</term>
<listitem><para>
Periodically poll the connector for connection.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_CONNECTOR_POLL_DISCONNECT</term>
<listitem><para>
Periodically poll the connector for disconnection.
</para></listitem>
</varlistentry>
</variablelist>
Set to 0 for connectors that don't support connection status
discovery.
</para></listitem>
</varlistentry>
</variablelist>
<para>
The connector is then registered with a call to
<function>drm_connector_init</function> with a pointer to the connector
functions and a connector type, and exposed through sysfs with a call to
<function>drm_connector_register</function>.
</para>
<para>
Supported connector types are
<itemizedlist>
<listitem>DRM_MODE_CONNECTOR_VGA</listitem>
<listitem>DRM_MODE_CONNECTOR_DVII</listitem>
<listitem>DRM_MODE_CONNECTOR_DVID</listitem>
<listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
<listitem>DRM_MODE_CONNECTOR_Composite</listitem>
<listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
<listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
<listitem>DRM_MODE_CONNECTOR_Component</listitem>
<listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
<listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
<listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
<listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
<listitem>DRM_MODE_CONNECTOR_TV</listitem>
<listitem>DRM_MODE_CONNECTOR_eDP</listitem>
<listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
</itemizedlist>
</para>
<para>
Connectors must be attached to an encoder to be used. For devices that
map connectors to encoders 1:1, the connector should be attached at
initialization time with a call to
<function>drm_mode_connector_attach_encoder</function>. The driver must
also set the <structname>drm_connector</structname>
<structfield>encoder</structfield> field to point to the attached
encoder.
</para>
<para>
Finally, drivers must initialize the connectors state change detection
with a call to <function>drm_kms_helper_poll_init</function>. If at
least one connector is pollable but can't generate hotplug interrupts
(indicated by the DRM_CONNECTOR_POLL_CONNECT and
DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
automatically be queued to periodically poll for changes. Connectors
that can generate hotplug interrupts must be marked with the
DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
call <function>drm_helper_hpd_irq_event</function>. The function will
queue a delayed work to check the state of all connectors, but no
periodic polling will be done.
</para>
</sect3>
<sect3>
<title>Connector Operations</title>
<note><para>
Unless otherwise state, all operations are mandatory.
</para></note>
<sect4>
<title>DPMS</title>
<synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
<para>
The DPMS operation sets the power state of a connector. The mode
argument is one of
<itemizedlist>
<listitem><para>DRM_MODE_DPMS_ON</para></listitem>
<listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
<listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
<listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
</itemizedlist>
</para>
<para>
In all but DPMS_ON mode the encoder to which the connector is attached
should put the display in low-power mode by driving its signals
appropriately. If more than one connector is attached to the encoder
care should be taken not to change the power state of other displays as
a side effect. Low-power mode should be propagated to the encoders and
CRTCs when all related connectors are put in low-power mode.
</para>
</sect4>
<sect4>
<title>Modes</title>
<synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
uint32_t max_height);</synopsis>
<para>
Fill the mode list with all supported modes for the connector. If the
<parameter>max_width</parameter> and <parameter>max_height</parameter>
arguments are non-zero, the implementation must ignore all modes wider
than <parameter>max_width</parameter> or higher than
<parameter>max_height</parameter>.
</para>
<para>
The connector must also fill in this operation its
<structfield>display_info</structfield>
<structfield>width_mm</structfield> and
<structfield>height_mm</structfield> fields with the connected display
physical size in millimeters. The fields should be set to 0 if the value
isn't known or is not applicable (for instance for projector devices).
</para>
</sect4>
<sect4>
<title>Connection Status</title>
<para>
The connection status is updated through polling or hotplug events when
supported (see <xref linkend="drm-kms-connector-polled"/>). The status
value is reported to userspace through ioctls and must not be used
inside the driver, as it only gets initialized by a call to
<function>drm_mode_getconnector</function> from userspace.
</para>
<synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
bool force);</synopsis>
<para>
Check to see if anything is attached to the connector. The
<parameter>force</parameter> parameter is set to false whilst polling or
to true when checking the connector due to user request.
<parameter>force</parameter> can be used by the driver to avoid
expensive, destructive operations during automated probing.
</para>
<para>
Return connector_status_connected if something is connected to the
connector, connector_status_disconnected if nothing is connected and
connector_status_unknown if the connection state isn't known.
</para>
<para>
Drivers should only return connector_status_connected if the connection
status has really been probed as connected. Connectors that can't detect
the connection status, or failed connection status probes, should return
connector_status_unknown.
</para>
</sect4>
</sect3>
</sect2>
<sect2>
<title>Cleanup</title>
<para>
The DRM core manages its objects' lifetime. When an object is not needed
anymore the core calls its destroy function, which must clean up and
free every resource allocated for the object. Every
<function>drm_*_init</function> call must be matched with a
corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
(<function>drm_crtc_cleanup</function>), planes
(<function>drm_plane_cleanup</function>), encoders
(<function>drm_encoder_cleanup</function>) and connectors
(<function>drm_connector_cleanup</function>). Furthermore, connectors
that have been added to sysfs must be removed by a call to
<function>drm_connector_unregister</function> before calling
<function>drm_connector_cleanup</function>.
</para>
<para>
Connectors state change detection must be cleanup up with a call to
<function>drm_kms_helper_poll_fini</function>.
</para>
</sect2>
<sect2>
<title>Output discovery and initialization example</title>
<programlisting><![CDATA[
void intel_crt_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct intel_output *intel_output;
intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output)
return;
connector = &intel_output->base;
drm_connector_init(dev, &intel_output->base,
&intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);
drm_mode_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
/* Set up the DDC bus. */
intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
if (!intel_output->ddc_bus) {
dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
return;
}
intel_output->type = INTEL_OUTPUT_ANALOG;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
drm_connector_register(connector);
}]]></programlisting>
<para>
In the example above (taken from the i915 driver), a CRTC, connector and
encoder combination is created. A device-specific i2c bus is also
created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to
make its properties available to applications.
</para>
</sect2>
<sect2>
<title>KMS API Functions</title>
!Edrivers/gpu/drm/drm_crtc.c
</sect2>
<sect2>
<title>KMS Data Structures</title>
!Iinclude/drm/drm_crtc.h
</sect2>
<sect2>
<title>KMS Locking</title>
!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
!Iinclude/drm/drm_modeset_lock.h
!Edrivers/gpu/drm/drm_modeset_lock.c
</sect2>
</sect1>
<!-- Internals: kms helper functions -->
<sect1>
<title>Mode Setting Helper Functions</title>
<para>
The plane, CRTC, encoder and connector functions provided by the drivers
implement the DRM API. They're called by the DRM core and ioctl handlers
to handle device state changes and configuration request. As implementing
those functions often requires logic not specific to drivers, mid-layer
helper functions are available to avoid duplicating boilerplate code.
</para>
<para>
The DRM core contains one mid-layer implementation. The mid-layer provides
implementations of several plane, CRTC, encoder and connector functions
(called from the top of the mid-layer) that pre-process requests and call
lower-level functions provided by the driver (at the bottom of the
mid-layer). For instance, the
<function>drm_crtc_helper_set_config</function> function can be used to
fill the struct <structname>drm_crtc_funcs</structname>
<structfield>set_config</structfield> field. When called, it will split
the <methodname>set_config</methodname> operation in smaller, simpler
operations and call the driver to handle them.
</para>
<para>
To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
<function>drm_encoder_helper_add</function> and
<function>drm_connector_helper_add</function> functions to install their
mid-layer bottom operations handlers, and fill the
<structname>drm_crtc_funcs</structname>,
<structname>drm_encoder_funcs</structname> and
<structname>drm_connector_funcs</structname> structures with pointers to
the mid-layer top API functions. Installing the mid-layer bottom operation
handlers is best done right after registering the corresponding KMS object.
</para>
<para>
The mid-layer is not split between CRTC, encoder and connector operations.
To use it, a driver must provide bottom functions for all of the three KMS
entities.
</para>
<sect2>
<title>Atomic Modeset Helper Functions Reference</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c overview
</sect3>
<sect3>
<title>Implementing Asynchronous Atomic Commit</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit
</sect3>
<sect3>
<title>Atomic State Reset and Initialization</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
</sect3>
!Iinclude/drm/drm_atomic_helper.h
!Edrivers/gpu/drm/drm_atomic_helper.c
</sect2>
<sect2>
<title>Modeset Helper Reference for Common Vtables</title>
!Iinclude/drm/drm_modeset_helper_vtables.h
!Pinclude/drm/drm_modeset_helper_vtables.h overview
</sect2>
<sect2>
<title>Legacy CRTC/Modeset Helper Functions Reference</title>
!Edrivers/gpu/drm/drm_crtc_helper.c
!Pdrivers/gpu/drm/drm_crtc_helper.c overview
</sect2>
<sect2>
<title>Output Probing Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
!Edrivers/gpu/drm/drm_probe_helper.c
</sect2>
<sect2>
<title>fbdev Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
!Edrivers/gpu/drm/drm_fb_helper.c
!Iinclude/drm/drm_fb_helper.h
</sect2>
<sect2>
<title>Display Port Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
!Iinclude/drm/drm_dp_helper.h
!Edrivers/gpu/drm/drm_dp_helper.c
</sect2>
<sect2>
<title>Display Port MST Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
!Iinclude/drm/drm_dp_mst_helper.h
!Edrivers/gpu/drm/drm_dp_mst_topology.c
</sect2>
<sect2>
<title>MIPI DSI Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers
!Iinclude/drm/drm_mipi_dsi.h
!Edrivers/gpu/drm/drm_mipi_dsi.c
</sect2>
<sect2>
<title>EDID Helper Functions Reference</title>
!Edrivers/gpu/drm/drm_edid.c
</sect2>
<sect2>
<title>Rectangle Utilities Reference</title>
!Pinclude/drm/drm_rect.h rect utils
!Iinclude/drm/drm_rect.h
!Edrivers/gpu/drm/drm_rect.c
</sect2>
<sect2>
<title>Flip-work Helper Reference</title>
!Pinclude/drm/drm_flip_work.h flip utils
!Iinclude/drm/drm_flip_work.h
!Edrivers/gpu/drm/drm_flip_work.c
</sect2>
<sect2>
<title>HDMI Infoframes Helper Reference</title>
<para>
Strictly speaking this is not a DRM helper library but generally useable
by any driver interfacing with HDMI outputs like v4l or alsa drivers.
But it nicely fits into the overall topic of mode setting helper
libraries and hence is also included here.
</para>
!Iinclude/linux/hdmi.h
!Edrivers/video/hdmi.c
</sect2>
<sect2>
<title id="drm-kms-planehelpers">Plane Helper Reference</title>
!Edrivers/gpu/drm/drm_plane_helper.c
!Pdrivers/gpu/drm/drm_plane_helper.c overview
</sect2>
<sect2>
<title>Tile group</title>
!Pdrivers/gpu/drm/drm_crtc.c Tile group
</sect2>
<sect2>
<title>Bridges</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_bridge.c overview
</sect3>
<sect3>
<title>Default bridge callback sequence</title>
!Pdrivers/gpu/drm/drm_bridge.c bridge callbacks
</sect3>
!Edrivers/gpu/drm/drm_bridge.c
</sect2>
</sect1>
<!-- Internals: kms properties -->
<sect1 id="drm-kms-properties">
<title>KMS Properties</title>
<para>
Drivers may need to expose additional parameters to applications than
those described in the previous sections. KMS supports attaching
properties to CRTCs, connectors and planes and offers a userspace API to
list, get and set the property values.
</para>
<para>
Properties are identified by a name that uniquely defines the property
purpose, and store an associated value. For all property types except blob
properties the value is a 64-bit unsigned integer.
</para>
<para>
KMS differentiates between properties and property instances. Drivers
first create properties and then create and associate individual instances
of those properties to objects. A property can be instantiated multiple
times and associated with different objects. Values are stored in property
instances, and all other property information are stored in the property
and shared between all instances of the property.
</para>
<para>
Every property is created with a type that influences how the KMS core
handles the property. Supported property types are
<variablelist>
<varlistentry>
<term>DRM_MODE_PROP_RANGE</term>
<listitem><para>Range properties report their minimum and maximum
admissible values. The KMS core verifies that values set by
application fit in that range.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_ENUM</term>
<listitem><para>Enumerated properties take a numerical value that
ranges from 0 to the number of enumerated values defined by the
property minus one, and associate a free-formed string name to each
value. Applications can retrieve the list of defined value-name pairs
and use the numerical value to get and set property instance values.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_BITMASK</term>
<listitem><para>Bitmask properties are enumeration properties that
additionally restrict all enumerated values to the 0..63 range.
Bitmask property instance values combine one or more of the
enumerated bits defined by the property.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_BLOB</term>
<listitem><para>Blob properties store a binary blob without any format
restriction. The binary blobs are created as KMS standalone objects,
and blob property instance values store the ID of their associated
blob object.</para>
<para>Blob properties are only used for the connector EDID property
and cannot be created by drivers.</para></listitem>
</varlistentry>
</variablelist>
</para>
<para>
To create a property drivers call one of the following functions depending
on the property type. All property creation functions take property flags
and name, as well as type-specific arguments.
<itemizedlist>
<listitem>
<synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
const char *name,
uint64_t min, uint64_t max);</synopsis>
<para>Create a range property with the given minimum and maximum
values.</para>
</listitem>
<listitem>
<synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
const char *name,
const struct drm_prop_enum_list *props,
int num_values);</synopsis>
<para>Create an enumerated property. The <parameter>props</parameter>
argument points to an array of <parameter>num_values</parameter>
value-name pairs.</para>
</listitem>
<listitem>
<synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
int flags, const char *name,
const struct drm_prop_enum_list *props,
int num_values);</synopsis>
<para>Create a bitmask property. The <parameter>props</parameter>
argument points to an array of <parameter>num_values</parameter>
value-name pairs.</para>
</listitem>
</itemizedlist>
</para>
<para>
Properties can additionally be created as immutable, in which case they
will be read-only for applications but can be modified by the driver. To
create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
flag at property creation time.
</para>
<para>
When no array of value-name pairs is readily available at property
creation time for enumerated or range properties, drivers can create
the property using the <function>drm_property_create</function> function
and manually add enumeration value-name pairs by calling the
<function>drm_property_add_enum</function> function. Care must be taken to
properly specify the property type through the <parameter>flags</parameter>
argument.
</para>
<para>
After creating properties drivers can attach property instances to CRTC,
connector and plane objects by calling the
<function>drm_object_attach_property</function>. The function takes a
pointer to the target object, a pointer to the previously created property
and an initial instance value.
</para>
<sect2>
<title>Existing KMS Properties</title>
<para>
The following table gives description of drm properties exposed by various
modules/drivers.
</para>
<table border="1" cellpadding="0" cellspacing="0">
<tbody>
<tr style="font-weight: bold;">
<td valign="top" >Owner Module/Drivers</td>
<td valign="top" >Group</td>
<td valign="top" >Property Name</td>
<td valign="top" >Type</td>
<td valign="top" >Property Values</td>
<td valign="top" >Object attached</td>
<td valign="top" >Description/Restrictions</td>
</tr>
<tr>
<td rowspan="42" valign="top" >DRM</td>
<td valign="top" >Generic</td>
<td valign="top" >“rotation”</td>
<td valign="top" >BITMASK</td>
<td valign="top" >{ 0, "rotate-0" },
{ 1, "rotate-90" },
{ 2, "rotate-180" },
{ 3, "rotate-270" },
{ 4, "reflect-x" },
{ 5, "reflect-y" }</td>
<td valign="top" >CRTC, Plane</td>
<td valign="top" >rotate-(degrees) rotates the image by the specified amount in degrees
in counter clockwise direction. reflect-x and reflect-y reflects the
image along the specified axis prior to rotation</td>
</tr>
<tr>
<td rowspan="5" valign="top" >Connector</td>
<td valign="top" >“EDID”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains id of edid blob ptr object.</td>
</tr>
<tr>
<td valign="top" >“DPMS”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains DPMS operation mode value.</td>
</tr>
<tr>
<td valign="top" >“PATH”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains topology path to a connector.</td>
</tr>
<tr>
<td valign="top" >“TILE”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains tiling information for a connector.</td>
</tr>
<tr>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Connector</td>
<td valign="top" >CRTC that connector is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="11" valign="top" >Plane</td>
<td valign="top" >“type”</td>
<td valign="top" >ENUM | IMMUTABLE</td>
<td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
<td valign="top" >Plane</td>
<td valign="top" >Plane type</td>
</tr>
<tr>
<td valign="top" >“SRC_X”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_Y”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_X”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_Y”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) width (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) height (atomic)</td>
</tr>
<tr>
<td valign="top" >“FB_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_FB</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout framebuffer (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Plane</td>
<td valign="top" >CRTC that plane is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="2" valign="top" >DVI-I</td>
<td valign="top" >“subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“select subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="13" valign="top" >TV</td>
<td valign="top" >“subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“select subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“left margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“right margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“top margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“bottom margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker reduction”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“overscan”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >Virtual GPU</td>
<td valign="top" >“suggested X”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffffff</td>
<td valign="top" >Connector</td>
<td valign="top" >property to suggest an X offset for a connector</td>
</tr>
<tr>
<td valign="top" >“suggested Y”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffffff</td>
<td valign="top" >Connector</td>
<td valign="top" >property to suggest an Y offset for a connector</td>
</tr>
<tr>
<td rowspan="8" valign="top" >Optional</td>
<td valign="top" >“scaling mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"aspect ratio"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "None", "4:3", "16:9" }</td>
<td valign="top" >Connector</td>
<td valign="top" >DRM property to set aspect ratio from user space app.
This enum is made generic to allow addition of custom aspect
ratios.</td>
</tr>
<tr>
<td valign="top" >“dirty”</td>
<td valign="top" >ENUM | IMMUTABLE</td>
<td valign="top" >{ "Off", "On", "Annotate" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“DEGAMMA_LUT”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the degamma lookup table
(LUT) mapping pixel data from the framebuffer before it is
given to the transformation matrix. The data is an interpreted
as an array of struct drm_color_lut elements. Hardware might
choose not to use the full precision of the LUT elements nor
use all the elements of the LUT (for example the hardware
might choose to interpolate between LUT[0] and LUT[4]). </td>
</tr>
<tr>
<td valign="top" >“DEGAMMA_LUT_SIZE”</td>
<td valign="top" >RANGE | IMMUTABLE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to gives the size of the lookup
table to be set on the DEGAMMA_LUT property (the size depends
on the underlying hardware).</td>
</tr>
<tr>
<td valign="top" >“CTM”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the current
transformation matrix (CTM) apply to pixel data after the
lookup through the degamma LUT and before the lookup through
the gamma LUT. The data is an interpreted as a struct
drm_color_ctm.</td>
</tr>
<tr>
<td valign="top" >“GAMMA_LUT”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the gamma lookup table
(LUT) mapping pixel data after to the transformation matrix to
data sent to the connector. The data is an interpreted as an
array of struct drm_color_lut elements. Hardware might choose
not to use the full precision of the LUT elements nor use all
the elements of the LUT (for example the hardware might choose
to interpolate between LUT[0] and LUT[4]).</td>
</tr>
<tr>
<td valign="top" >“GAMMA_LUT_SIZE”</td>
<td valign="top" >RANGE | IMMUTABLE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to gives the size of the lookup
table to be set on the GAMMA_LUT property (the size depends on
the underlying hardware).</td>
</tr>
<tr>
<td rowspan="20" valign="top" >i915</td>
<td rowspan="2" valign="top" >Generic</td>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“audio”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="17" valign="top" >SDVO-TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"left_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"right_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"top_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"bottom_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“sharpness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_adaptive”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_2d”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_chroma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_luma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dot_crawl”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >SDVO-TV/LVDS</td>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >CDV gma-500</td>
<td rowspan="2" valign="top" >Generic</td>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Full”, “Limited 16:235” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “off”, “auto”, “on” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="19" valign="top" >Poulsbo</td>
<td rowspan="1" valign="top" >Generic</td>
<td valign="top" >“backlight”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="17" valign="top" >SDVO-TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"left_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"right_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"top_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"bottom_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“sharpness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_adaptive”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_2d”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_chroma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_luma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dot_crawl”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >SDVO-TV/LVDS</td>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="11" valign="top" >armada</td>
<td rowspan="2" valign="top" >CRTC</td>
<td valign="top" >"CSC_YUV"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"CSC_RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="9" valign="top" >Overlay</td>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_min"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_max"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_val"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_alpha"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_mode"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "disabled", "Y component", "U component"
, "V component", "RGB", “R component", "G component", "B component" }</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"brightness"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=256 + 255</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"contrast"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x7fff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"saturation"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x7fff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >exynos</td>
<td valign="top" >CRTC</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "normal", "blank" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >Overlay</td>
<td valign="top" >“zpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=MAX_PLANE-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >i2c/ch7006_drv</td>
<td valign="top" >Generic</td>
<td valign="top" >“scale”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=2</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="1" valign="top" >TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
, "PAL-60", "NTSC-M", "NTSC-J" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="15" valign="top" >nouveau</td>
<td rowspan="6" valign="top" >NV10 Overlay</td>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=8192-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1024</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=359</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=8192-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“iturbt_709”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >Nv04 Overlay</td>
<td valign="top" >“colorkey”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1024</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="7" valign="top" >Display</td>
<td valign="top" >“dithering mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "off", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dithering depth”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan hborder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan vborder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vibrant hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=180</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“color vibrance”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=200</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >omap</td>
<td valign="top" >Generic</td>
<td valign="top" >“zorder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=3</td>
<td valign="top" >CRTC, Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >qxl</td>
<td valign="top" >Generic</td>
<td valign="top" >“hotplug_mode_update"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="9" valign="top" >radeon</td>
<td valign="top" >DVI-I</td>
<td valign="top" >“coherent”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >DAC enable load detect</td>
<td valign="top" >“load detection”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >TV Standard</td>
<td valign="top" >"tv standard"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
, "scart-pal", "pal-cn", "secam" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >legacy TMDS PLL detect</td>
<td valign="top" >"tmds_pll"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "driver", "bios" }</td>
<td valign="top" >-</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="3" valign="top" >Underscan</td>
<td valign="top" >"underscan"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on", "auto" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"underscan hborder"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"underscan vborder"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >Audio</td>
<td valign="top" >“audio”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on", "auto" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >FMT Dithering</td>
<td valign="top" >“dither”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="3" valign="top" >rcar-du</td>
<td rowspan="3" valign="top" >Generic</td>
<td valign="top" >"alpha"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=255</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"zpos"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=1, Max=7</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
</tbody>
</table>
</sect2>
</sect1>
<!-- Internals: vertical blanking -->
<sect1 id="drm-vertical-blank">
<title>Vertical Blanking</title>
<para>
Vertical blanking plays a major role in graphics rendering. To achieve
tear-free display, users must synchronize page flips and/or rendering to
vertical blanking. The DRM API offers ioctls to perform page flips
synchronized to vertical blanking and wait for vertical blanking.
</para>
<para>
The DRM core handles most of the vertical blanking management logic, which
involves filtering out spurious interrupts, keeping race-free blanking
counters, coping with counter wrap-around and resets and keeping use
counts. It relies on the driver to generate vertical blanking interrupts
and optionally provide a hardware vertical blanking counter. Drivers must
implement the following operations.
</para>
<itemizedlist>
<listitem>
<synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
<para>
Enable or disable vertical blanking interrupts for the given CRTC.
</para>
</listitem>
<listitem>
<synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
<para>
Retrieve the value of the vertical blanking counter for the given
CRTC. If the hardware maintains a vertical blanking counter its value
should be returned. Otherwise drivers can use the
<function>drm_vblank_count</function> helper function to handle this
operation.
</para>
</listitem>
</itemizedlist>
<para>
Drivers must initialize the vertical blanking handling core with a call to
<function>drm_vblank_init</function> in their
<methodname>load</methodname> operation. The function will set the struct
<structname>drm_device</structname>
<structfield>vblank_disable_allowed</structfield> field to 0. This will
keep vertical blanking interrupts enabled permanently until the first mode
set operation, where <structfield>vblank_disable_allowed</structfield> is
set to 1. The reason behind this is not clear. Drivers can set the field
to 1 after <function>calling drm_vblank_init</function> to make vertical
blanking interrupts dynamically managed from the beginning.
</para>
<para>
Vertical blanking interrupts can be enabled by the DRM core or by drivers
themselves (for instance to handle page flipping operations). The DRM core
maintains a vertical blanking use count to ensure that the interrupts are
not disabled while a user still needs them. To increment the use count,
drivers call <function>drm_vblank_get</function>. Upon return vertical
blanking interrupts are guaranteed to be enabled.
</para>
<para>
To decrement the use count drivers call
<function>drm_vblank_put</function>. Only when the use count drops to zero
will the DRM core disable the vertical blanking interrupts after a delay
by scheduling a timer. The delay is accessible through the vblankoffdelay
module parameter or the <varname>drm_vblank_offdelay</varname> global
variable and expressed in milliseconds. Its default value is 5000 ms.
Zero means never disable, and a negative value means disable immediately.
Drivers may override the behaviour by setting the
<structname>drm_device</structname>
<structfield>vblank_disable_immediate</structfield> flag, which when set
causes vblank interrupts to be disabled immediately regardless of the
drm_vblank_offdelay value. The flag should only be set if there's a
properly working hardware vblank counter present.
</para>
<para>
When a vertical blanking interrupt occurs drivers only need to call the
<function>drm_handle_vblank</function> function to account for the
interrupt.
</para>
<para>
Resources allocated by <function>drm_vblank_init</function> must be freed
with a call to <function>drm_vblank_cleanup</function> in the driver
<methodname>unload</methodname> operation handler.
</para>
<sect2>
<title>Vertical Blanking and Interrupt Handling Functions Reference</title>
!Edrivers/gpu/drm/drm_irq.c
!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
</sect2>
</sect1>
<!-- Internals: open/close, file operations and ioctls -->
<sect1>
<title>Open/Close, File Operations and IOCTLs</title>
<sect2>
<title>Open and Close</title>
<synopsis>int (*firstopen) (struct drm_device *);
void (*lastclose) (struct drm_device *);
int (*open) (struct drm_device *, struct drm_file *);
void (*preclose) (struct drm_device *, struct drm_file *);
void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
<abstract>Open and close handlers. None of those methods are mandatory.
</abstract>
<para>
The <methodname>firstopen</methodname> method is called by the DRM core
for legacy UMS (User Mode Setting) drivers only when an application
opens a device that has no other opened file handle. UMS drivers can
implement it to acquire device resources. KMS drivers can't use the
method and must acquire resources in the <methodname>load</methodname>
method instead.
</para>
<para>
Similarly the <methodname>lastclose</methodname> method is called when
the last application holding a file handle opened on the device closes
it, for both UMS and KMS drivers. Additionally, the method is also
called at module unload time or, for hot-pluggable devices, when the
device is unplugged. The <methodname>firstopen</methodname> and
<methodname>lastclose</methodname> calls can thus be unbalanced.
</para>
<para>
The <methodname>open</methodname> method is called every time the device
is opened by an application. Drivers can allocate per-file private data
in this method and store them in the struct
<structname>drm_file</structname> <structfield>driver_priv</structfield>
field. Note that the <methodname>open</methodname> method is called
before <methodname>firstopen</methodname>.
</para>
<para>
The close operation is split into <methodname>preclose</methodname> and
<methodname>postclose</methodname> methods. Drivers must stop and
cleanup all per-file operations in the <methodname>preclose</methodname>
method. For instance pending vertical blanking and page flip events must
be cancelled. No per-file operation is allowed on the file handle after
returning from the <methodname>preclose</methodname> method.
</para>
<para>
Finally the <methodname>postclose</methodname> method is called as the
last step of the close operation, right before calling the
<methodname>lastclose</methodname> method if no other open file handle
exists for the device. Drivers that have allocated per-file private data
in the <methodname>open</methodname> method should free it here.
</para>
<para>
The <methodname>lastclose</methodname> method should restore CRTC and
plane properties to default value, so that a subsequent open of the
device will not inherit state from the previous user. It can also be
used to execute delayed power switching state changes, e.g. in
conjunction with the vga_switcheroo infrastructure (see
<xref linkend="vga_switcheroo"/>). Beyond that KMS drivers should not
do any further cleanup. Only legacy UMS drivers might need to clean up
device state so that the vga console or an independent fbdev driver
could take over.
</para>
</sect2>
<sect2>
<title>File Operations</title>
!Pdrivers/gpu/drm/drm_fops.c file operations
!Edrivers/gpu/drm/drm_fops.c
</sect2>
<sect2>
<title>IOCTLs</title>
<synopsis>struct drm_ioctl_desc *ioctls;
int num_ioctls;</synopsis>
<abstract>Driver-specific ioctls descriptors table.</abstract>
<para>
Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
descriptors table is indexed by the ioctl number offset from the base
value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
table entries.
</para>
<para>
<programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
<para>
<parameter>ioctl</parameter> is the ioctl name. Drivers must define
the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
offset from DRM_COMMAND_BASE and the ioctl number respectively. The
first macro is private to the device while the second must be exposed
to userspace in a public header.
</para>
<para>
<parameter>func</parameter> is a pointer to the ioctl handler function
compatible with the <type>drm_ioctl_t</type> type.
<programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
struct drm_file *file_priv);</programlisting>
</para>
<para>
<parameter>flags</parameter> is a bitmask combination of the following
values. It restricts how the ioctl is allowed to be called.
<itemizedlist>
<listitem><para>
DRM_AUTH - Only authenticated callers allowed
</para></listitem>
<listitem><para>
DRM_MASTER - The ioctl can only be called on the master file
handle
</para></listitem>
<listitem><para>
DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
</para></listitem>
<listitem><para>
DRM_CONTROL_ALLOW - The ioctl can only be called on a control
device
</para></listitem>
<listitem><para>
DRM_UNLOCKED - The ioctl handler will be called without locking
the DRM global mutex. This is the enforced default for kms drivers
(i.e. using the DRIVER_MODESET flag) and hence shouldn't be used
any more for new drivers.
</para></listitem>
</itemizedlist>
</para>
</para>
!Edrivers/gpu/drm/drm_ioctl.c
</sect2>
</sect1>
<sect1>
<title>Legacy Support Code</title>
<para>
The section very briefly covers some of the old legacy support code which
is only used by old DRM drivers which have done a so-called shadow-attach
to the underlying device instead of registering as a real driver. This
also includes some of the old generic buffer management and command
submission code. Do not use any of this in new and modern drivers.
</para>
<sect2>
<title>Legacy Suspend/Resume</title>
<para>
The DRM core provides some suspend/resume code, but drivers wanting full
suspend/resume support should provide save() and restore() functions.
These are called at suspend, hibernate, or resume time, and should perform
any state save or restore required by your device across suspend or
hibernate states.
</para>
<synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
int (*resume) (struct drm_device *);</synopsis>
<para>
Those are legacy suspend and resume methods which
<emphasis>only</emphasis> work with the legacy shadow-attach driver
registration functions. New driver should use the power management
interface provided by their bus type (usually through
the struct <structname>device_driver</structname> dev_pm_ops) and set
these methods to NULL.
</para>
</sect2>
<sect2>
<title>Legacy DMA Services</title>
<para>
This should cover how DMA mapping etc. is supported by the core.
These functions are deprecated and should not be used.
</para>
</sect2>
</sect1>
</chapter>
<!-- TODO
- Add a glossary
- Document the struct_mutex catch-all lock
- Document connector properties
- Why is the load method optional?
- What are drivers supposed to set the initial display state to, and how?
Connector's DPMS states are not initialized and are thus equal to
DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
drm_helper_disable_unused_functions(), which disables unused encoders and
CRTCs, but doesn't touch the connectors' DPMS state, and
drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
that don't implement (or just don't use) fbcon compatibility need to call
those functions themselves?
- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
around mode setting. Should this be done in the DRM core?
- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
call and never set back to 0. It seems to be safe to permanently set it to 1
in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
well. This should be investigated.
- crtc and connector .save and .restore operations are only used internally in
drivers, should they be removed from the core?
- encoder mid-layer .save and .restore operations are only used internally in
drivers, should they be removed from the core?
- encoder mid-layer .detect operation is only used internally in drivers,
should it be removed from the core?
-->
<!-- External interfaces -->
<chapter id="drmExternals">
<title>Userland interfaces</title>
<para>
The DRM core exports several interfaces to applications,
generally intended to be used through corresponding libdrm
wrapper functions. In addition, drivers export device-specific
interfaces for use by userspace drivers &amp; device-aware
applications through ioctls and sysfs files.
</para>
<para>
External interfaces include: memory mapping, context management,
DMA operations, AGP management, vblank control, fence
management, memory management, and output management.
</para>
<para>
Cover generic ioctls and sysfs layout here. We only need high-level
info, since man pages should cover the rest.
</para>
<!-- External: render nodes -->
<sect1>
<title>Render nodes</title>
<para>
DRM core provides multiple character-devices for user-space to use.
Depending on which device is opened, user-space can perform a different
set of operations (mainly ioctls). The primary node is always created
and called card&lt;num&gt;. Additionally, a currently
unused control node, called controlD&lt;num&gt; is also
created. The primary node provides all legacy operations and
historically was the only interface used by userspace. With KMS, the
control node was introduced. However, the planned KMS control interface
has never been written and so the control node stays unused to date.
</para>
<para>
With the increased use of offscreen renderers and GPGPU applications,
clients no longer require running compositors or graphics servers to
make use of a GPU. But the DRM API required unprivileged clients to
authenticate to a DRM-Master prior to getting GPU access. To avoid this
step and to grant clients GPU access without authenticating, render
nodes were introduced. Render nodes solely serve render clients, that
is, no modesetting or privileged ioctls can be issued on render nodes.
Only non-global rendering commands are allowed. If a driver supports
render nodes, it must advertise it via the DRIVER_RENDER
DRM driver capability. If not supported, the primary node must be used
for render clients together with the legacy drmAuth authentication
procedure.
</para>
<para>
If a driver advertises render node support, DRM core will create a
separate render node called renderD&lt;num&gt;. There will
be one render node per device. No ioctls except PRIME-related ioctls
will be allowed on this node. Especially GEM_OPEN will be
explicitly prohibited. Render nodes are designed to avoid the
buffer-leaks, which occur if clients guess the flink names or mmap
offsets on the legacy interface. Additionally to this basic interface,
drivers must mark their driver-dependent render-only ioctls as
DRM_RENDER_ALLOW so render clients can use them. Driver
authors must be careful not to allow any privileged ioctls on render
nodes.
</para>
<para>
With render nodes, user-space can now control access to the render node
via basic file-system access-modes. A running graphics server which
authenticates clients on the privileged primary/legacy node is no longer
required. Instead, a client can open the render node and is immediately
granted GPU access. Communication between clients (or servers) is done
via PRIME. FLINK from render node to legacy node is not supported. New
clients must not use the insecure FLINK interface.
</para>
<para>
Besides dropping all modeset/global ioctls, render nodes also drop the
DRM-Master concept. There is no reason to associate render clients with
a DRM-Master as they are independent of any graphics server. Besides,
they must work without any running master, anyway.
Drivers must be able to run without a master object if they support
render nodes. If, on the other hand, a driver requires shared state
between clients which is visible to user-space and accessible beyond
open-file boundaries, they cannot support render nodes.
</para>
</sect1>
<!-- External: vblank handling -->
<sect1>
<title>VBlank event handling</title>
<para>
The DRM core exposes two vertical blank related ioctls:
<variablelist>
<varlistentry>
<term>DRM_IOCTL_WAIT_VBLANK</term>
<listitem>
<para>
This takes a struct drm_wait_vblank structure as its argument,
and it is used to block or request a signal when a specified
vblank event occurs.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRM_IOCTL_MODESET_CTL</term>
<listitem>
<para>
This was only used for user-mode-settind drivers around
modesetting changes to allow the kernel to update the vblank
interrupt after mode setting, since on many devices the vertical
blank counter is reset to 0 at some point during modeset. Modern
drivers should not call this any more since with kernel mode
setting it is a no-op.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</sect1>
</chapter>
</part>
<part id="drmDrivers">
<title>DRM Drivers</title>
<partintro>
<para>
This second part of the GPU Driver Developer's Guide documents driver
code, implementation details and also all the driver-specific userspace
interfaces. Especially since all hardware-acceleration interfaces to
userspace are driver specific for efficiency and other reasons these
interfaces can be rather substantial. Hence every driver has its own
chapter.
</para>
</partintro>
<chapter id="drmI915">
<title>drm/i915 Intel GFX Driver</title>
<para>
The drm/i915 driver supports all (with the exception of some very early
models) integrated GFX chipsets with both Intel display and rendering
blocks. This excludes a set of SoC platforms with an SGX rendering unit,
those have basic support through the gma500 drm driver.
</para>
<sect1>
<title>Core Driver Infrastructure</title>
<para>
This section covers core driver infrastructure used by both the display
and the GEM parts of the driver.
</para>
<sect2>
<title>Runtime Power Management</title>
!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
!Idrivers/gpu/drm/i915/intel_runtime_pm.c
!Idrivers/gpu/drm/i915/intel_uncore.c
</sect2>
<sect2>
<title>Interrupt Handling</title>
!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
</sect2>
<sect2>
<title>Intel GVT-g Guest Support(vGPU)</title>
!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support
!Idrivers/gpu/drm/i915/i915_vgpu.c
</sect2>
</sect1>
<sect1>
<title>Display Hardware Handling</title>
<para>
This section covers everything related to the display hardware including
the mode setting infrastructure, plane, sprite and cursor handling and
display, output probing and related topics.
</para>
<sect2>
<title>Mode Setting Infrastructure</title>
<para>
The i915 driver is thus far the only DRM driver which doesn't use the
common DRM helper code to implement mode setting sequences. Thus it
has its own tailor-made infrastructure for executing a display
configuration change.
</para>
</sect2>
<sect2>
<title>Frontbuffer Tracking</title>
!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
!Idrivers/gpu/drm/i915/intel_frontbuffer.c
!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
</sect2>
<sect2>
<title>Display FIFO Underrun Reporting</title>
!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
!Idrivers/gpu/drm/i915/intel_fifo_underrun.c
</sect2>
<sect2>
<title>Plane Configuration</title>
<para>
This section covers plane configuration and composition with the
primary plane, sprites, cursors and overlays. This includes the
infrastructure to do atomic vsync'ed updates of all this state and
also tightly coupled topics like watermark setup and computation,
framebuffer compression and panel self refresh.
</para>
</sect2>
<sect2>
<title>Atomic Plane Helpers</title>
!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
!Idrivers/gpu/drm/i915/intel_atomic_plane.c
</sect2>
<sect2>
<title>Output Probing</title>
<para>
This section covers output probing and related infrastructure like the
hotplug interrupt storm detection and mitigation code. Note that the
i915 driver still uses most of the common DRM helper code for output
probing, so those sections fully apply.
</para>
</sect2>
<sect2>
<title>Hotplug</title>
!Pdrivers/gpu/drm/i915/intel_hotplug.c Hotplug
!Idrivers/gpu/drm/i915/intel_hotplug.c
</sect2>
<sect2>
<title>High Definition Audio</title>
!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port
!Idrivers/gpu/drm/i915/intel_audio.c
!Iinclude/drm/i915_component.h
</sect2>
<sect2>
<title>Panel Self Refresh PSR (PSR/SRD)</title>
!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
!Idrivers/gpu/drm/i915/intel_psr.c
</sect2>
<sect2>
<title>Frame Buffer Compression (FBC)</title>
!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
!Idrivers/gpu/drm/i915/intel_fbc.c
</sect2>
<sect2>
<title>Display Refresh Rate Switching (DRRS)</title>
!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS)
!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush
!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init
</sect2>
<sect2>
<title>DPIO</title>
!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
</sect2>
<sect2>
<title>CSR firmware support for DMC</title>
!Pdrivers/gpu/drm/i915/intel_csr.c csr support for dmc
!Idrivers/gpu/drm/i915/intel_csr.c
</sect2>
<sect2>
<title>Video BIOS Table (VBT)</title>
!Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
!Idrivers/gpu/drm/i915/intel_bios.c
!Idrivers/gpu/drm/i915/intel_bios.h
</sect2>
</sect1>
<sect1>
<title>Memory Management and Command Submission</title>
<para>
This sections covers all things related to the GEM implementation in the
i915 driver.
</para>
<sect2>
<title>Batchbuffer Parsing</title>
!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
!Idrivers/gpu/drm/i915/i915_cmd_parser.c
</sect2>
<sect2>
<title>Batchbuffer Pools</title>
!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
</sect2>
<sect2>
<title>Logical Rings, Logical Ring Contexts and Execlists</title>
!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
!Idrivers/gpu/drm/i915/intel_lrc.c
</sect2>
<sect2>
<title>Global GTT views</title>
!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
!Idrivers/gpu/drm/i915/i915_gem_gtt.c
</sect2>
<sect2>
<title>GTT Fences and Swizzling</title>
!Idrivers/gpu/drm/i915/i915_gem_fence.c
<sect3>
<title>Global GTT Fence Handling</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
</sect3>
<sect3>
<title>Hardware Tiling and Swizzling Details</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
</sect3>
</sect2>
<sect2>
<title>Object Tiling IOCTLs</title>
!Idrivers/gpu/drm/i915/i915_gem_tiling.c
!Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
</sect2>
<sect2>
<title>Buffer Object Eviction</title>
<para>
This section documents the interface functions for evicting buffer
objects to make space available in the virtual gpu address spaces.
Note that this is mostly orthogonal to shrinking buffer objects
caches, which has the goal to make main memory (shared with the gpu
through the unified memory architecture) available.
</para>
!Idrivers/gpu/drm/i915/i915_gem_evict.c
</sect2>
<sect2>
<title>Buffer Object Memory Shrinking</title>
<para>
This section documents the interface function for shrinking memory
usage of buffer object caches. Shrinking is used to make main memory
available. Note that this is mostly orthogonal to evicting buffer
objects, which has the goal to make space in gpu virtual address
spaces.
</para>
!Idrivers/gpu/drm/i915/i915_gem_shrinker.c
</sect2>
</sect1>
<sect1>
<title>GuC</title>
<sect2>
<title>GuC-specific firmware loader</title>
!Pdrivers/gpu/drm/i915/intel_guc_loader.c GuC-specific firmware loader
!Idrivers/gpu/drm/i915/intel_guc_loader.c
</sect2>
<sect2>
<title>GuC-based command submission</title>
!Pdrivers/gpu/drm/i915/i915_guc_submission.c GuC-based command submission
!Idrivers/gpu/drm/i915/i915_guc_submission.c
</sect2>
<sect2>
<title>GuC Firmware Layout</title>
!Pdrivers/gpu/drm/i915/intel_guc_fwif.h GuC Firmware Layout
</sect2>
</sect1>
<sect1>
<title> Tracing </title>
<para>
This sections covers all things related to the tracepoints implemented in
the i915 driver.
</para>
<sect2>
<title> i915_ppgtt_create and i915_ppgtt_release </title>
!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints
</sect2>
<sect2>
<title> i915_context_create and i915_context_free </title>
!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints
</sect2>
<sect2>
<title> switch_mm </title>
!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint
</sect2>
</sect1>
</chapter>
!Cdrivers/gpu/drm/i915/i915_irq.c
</part>
<part id="vga_switcheroo">
<title>vga_switcheroo</title>
<partintro>
!Pdrivers/gpu/vga/vga_switcheroo.c Overview
</partintro>
<chapter id="modes_of_use">
<title>Modes of Use</title>
<sect1>
<title>Manual switching and manual power control</title>
!Pdrivers/gpu/vga/vga_switcheroo.c Manual switching and manual power control
</sect1>
<sect1>
<title>Driver power control</title>
!Pdrivers/gpu/vga/vga_switcheroo.c Driver power control
</sect1>
</chapter>
<chapter id="api">
<title>API</title>
<sect1>
<title>Public functions</title>
!Edrivers/gpu/vga/vga_switcheroo.c
</sect1>
<sect1>
<title>Public structures</title>
!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler
!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_ops
</sect1>
<sect1>
<title>Public constants</title>
!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler_flags_t
!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_id
!Finclude/linux/vga_switcheroo.h vga_switcheroo_state
</sect1>
<sect1>
<title>Private structures</title>
!Fdrivers/gpu/vga/vga_switcheroo.c vgasr_priv
!Fdrivers/gpu/vga/vga_switcheroo.c vga_switcheroo_client
</sect1>
</chapter>
<chapter id="handlers">
<title>Handlers</title>
<sect1>
<title>apple-gmux Handler</title>
!Pdrivers/platform/x86/apple-gmux.c Overview
!Pdrivers/platform/x86/apple-gmux.c Interrupt
<sect2>
<title>Graphics mux</title>
!Pdrivers/platform/x86/apple-gmux.c Graphics mux
</sect2>
<sect2>
<title>Power control</title>
!Pdrivers/platform/x86/apple-gmux.c Power control
</sect2>
<sect2>
<title>Backlight control</title>
!Pdrivers/platform/x86/apple-gmux.c Backlight control
</sect2>
<sect2>
<title>Public functions</title>
!Iinclude/linux/apple-gmux.h
</sect2>
</sect1>
</chapter>
!Cdrivers/gpu/vga/vga_switcheroo.c
!Cinclude/linux/vga_switcheroo.h
!Cdrivers/platform/x86/apple-gmux.c
</part>
</book>