mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
4041b9bbfb
Add documentation about deterministic automaton and its possible representations (formal, graphic, .dot and C). Link: https://lkml.kernel.org/r/387edaed87630bd5eb37c4275045dfd229700aa6.1659052063.git.bristot@kernel.org Cc: Wim Van Sebroeck <wim@linux-watchdog.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Gabriele Paoloni <gpaoloni@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Clark Williams <williams@redhat.com> Cc: Tao Zhou <tao.zhou@linux.dev> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-trace-devel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
175 lines
5.7 KiB
Python
175 lines
5.7 KiB
Python
#!/usr/bin/env python3
|
|
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# Copyright (C) 2019-2022 Red Hat, Inc. Daniel Bristot de Oliveira <bristot@kernel.org>
|
|
#
|
|
# Automata object: parse an automata in dot file digraph format into a python object
|
|
#
|
|
# For further information, see:
|
|
# Documentation/trace/rv/deterministic_automata.rst
|
|
|
|
import ntpath
|
|
|
|
class Automata:
|
|
"""Automata class: Reads a dot file and part it as an automata.
|
|
|
|
Attributes:
|
|
dot_file: A dot file with an state_automaton definition.
|
|
"""
|
|
|
|
invalid_state_str = "INVALID_STATE"
|
|
|
|
def __init__(self, file_path):
|
|
self.__dot_path = file_path
|
|
self.name = self.__get_model_name()
|
|
self.__dot_lines = self.__open_dot()
|
|
self.states, self.initial_state, self.final_states = self.__get_state_variables()
|
|
self.events = self.__get_event_variables()
|
|
self.function = self.__create_matrix()
|
|
|
|
def __get_model_name(self):
|
|
basename = ntpath.basename(self.__dot_path)
|
|
if basename.endswith(".dot") == False:
|
|
print("not a dot file")
|
|
raise Exception("not a dot file: %s" % self.__dot_path)
|
|
|
|
model_name = basename[0:-4]
|
|
if model_name.__len__() == 0:
|
|
raise Exception("not a dot file: %s" % self.__dot_path)
|
|
|
|
return model_name
|
|
|
|
def __open_dot(self):
|
|
cursor = 0
|
|
dot_lines = []
|
|
try:
|
|
dot_file = open(self.__dot_path)
|
|
except:
|
|
raise Exception("Cannot open the file: %s" % self.__dot_path)
|
|
|
|
dot_lines = dot_file.read().splitlines()
|
|
dot_file.close()
|
|
|
|
# checking the first line:
|
|
line = dot_lines[cursor].split()
|
|
|
|
if (line[0] != "digraph") and (line[1] != "state_automaton"):
|
|
raise Exception("Not a valid .dot format: %s" % self.__dot_path)
|
|
else:
|
|
cursor += 1
|
|
return dot_lines
|
|
|
|
def __get_cursor_begin_states(self):
|
|
cursor = 0
|
|
while self.__dot_lines[cursor].split()[0] != "{node":
|
|
cursor += 1
|
|
return cursor
|
|
|
|
def __get_cursor_begin_events(self):
|
|
cursor = 0
|
|
while self.__dot_lines[cursor].split()[0] != "{node":
|
|
cursor += 1
|
|
while self.__dot_lines[cursor].split()[0] == "{node":
|
|
cursor += 1
|
|
# skip initial state transition
|
|
cursor += 1
|
|
return cursor
|
|
|
|
def __get_state_variables(self):
|
|
# wait for node declaration
|
|
states = []
|
|
final_states = []
|
|
|
|
has_final_states = False
|
|
cursor = self.__get_cursor_begin_states()
|
|
|
|
# process nodes
|
|
while self.__dot_lines[cursor].split()[0] == "{node":
|
|
line = self.__dot_lines[cursor].split()
|
|
raw_state = line[-1]
|
|
|
|
# "enabled_fired"}; -> enabled_fired
|
|
state = raw_state.replace('"', '').replace('};', '').replace(',','_')
|
|
if state[0:7] == "__init_":
|
|
initial_state = state[7:]
|
|
else:
|
|
states.append(state)
|
|
if self.__dot_lines[cursor].__contains__("doublecircle") == True:
|
|
final_states.append(state)
|
|
has_final_states = True
|
|
|
|
if self.__dot_lines[cursor].__contains__("ellipse") == True:
|
|
final_states.append(state)
|
|
has_final_states = True
|
|
|
|
cursor += 1
|
|
|
|
states = sorted(set(states))
|
|
states.remove(initial_state)
|
|
|
|
# Insert the initial state at the bein og the states
|
|
states.insert(0, initial_state)
|
|
|
|
if has_final_states == False:
|
|
final_states.append(initial_state)
|
|
|
|
return states, initial_state, final_states
|
|
|
|
def __get_event_variables(self):
|
|
# here we are at the begin of transitions, take a note, we will return later.
|
|
cursor = self.__get_cursor_begin_events()
|
|
|
|
events = []
|
|
while self.__dot_lines[cursor][1] == '"':
|
|
# transitions have the format:
|
|
# "all_fired" -> "both_fired" [ label = "disable_irq" ];
|
|
# ------------ event is here ------------^^^^^
|
|
if self.__dot_lines[cursor].split()[1] == "->":
|
|
line = self.__dot_lines[cursor].split()
|
|
event = line[-2].replace('"','')
|
|
|
|
# when a transition has more than one lables, they are like this
|
|
# "local_irq_enable\nhw_local_irq_enable_n"
|
|
# so split them.
|
|
|
|
event = event.replace("\\n", " ")
|
|
for i in event.split():
|
|
events.append(i)
|
|
cursor += 1
|
|
|
|
return sorted(set(events))
|
|
|
|
def __create_matrix(self):
|
|
# transform the array into a dictionary
|
|
events = self.events
|
|
states = self.states
|
|
events_dict = {}
|
|
states_dict = {}
|
|
nr_event = 0
|
|
for event in events:
|
|
events_dict[event] = nr_event
|
|
nr_event += 1
|
|
|
|
nr_state = 0
|
|
for state in states:
|
|
states_dict[state] = nr_state
|
|
nr_state += 1
|
|
|
|
# declare the matrix....
|
|
matrix = [[ self.invalid_state_str for x in range(nr_event)] for y in range(nr_state)]
|
|
|
|
# and we are back! Let's fill the matrix
|
|
cursor = self.__get_cursor_begin_events()
|
|
|
|
while self.__dot_lines[cursor][1] == '"':
|
|
if self.__dot_lines[cursor].split()[1] == "->":
|
|
line = self.__dot_lines[cursor].split()
|
|
origin_state = line[0].replace('"','').replace(',','_')
|
|
dest_state = line[2].replace('"','').replace(',','_')
|
|
possible_events = line[-2].replace('"','').replace("\\n", " ")
|
|
for event in possible_events.split():
|
|
matrix[states_dict[origin_state]][events_dict[event]] = dest_state
|
|
cursor += 1
|
|
|
|
return matrix
|