mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
3041808b52
Now that only SLOB use __kmem_cache_{alloc,free}_bulk(), move them to SLOB. No functional change intended. Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
864 lines
22 KiB
C
864 lines
22 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef MM_SLAB_H
|
|
#define MM_SLAB_H
|
|
/*
|
|
* Internal slab definitions
|
|
*/
|
|
|
|
/* Reuses the bits in struct page */
|
|
struct slab {
|
|
unsigned long __page_flags;
|
|
|
|
#if defined(CONFIG_SLAB)
|
|
|
|
union {
|
|
struct list_head slab_list;
|
|
struct rcu_head rcu_head;
|
|
};
|
|
struct kmem_cache *slab_cache;
|
|
void *freelist; /* array of free object indexes */
|
|
void *s_mem; /* first object */
|
|
unsigned int active;
|
|
|
|
#elif defined(CONFIG_SLUB)
|
|
|
|
union {
|
|
struct list_head slab_list;
|
|
struct rcu_head rcu_head;
|
|
#ifdef CONFIG_SLUB_CPU_PARTIAL
|
|
struct {
|
|
struct slab *next;
|
|
int slabs; /* Nr of slabs left */
|
|
};
|
|
#endif
|
|
};
|
|
struct kmem_cache *slab_cache;
|
|
/* Double-word boundary */
|
|
void *freelist; /* first free object */
|
|
union {
|
|
unsigned long counters;
|
|
struct {
|
|
unsigned inuse:16;
|
|
unsigned objects:15;
|
|
unsigned frozen:1;
|
|
};
|
|
};
|
|
unsigned int __unused;
|
|
|
|
#elif defined(CONFIG_SLOB)
|
|
|
|
struct list_head slab_list;
|
|
void *__unused_1;
|
|
void *freelist; /* first free block */
|
|
long units;
|
|
unsigned int __unused_2;
|
|
|
|
#else
|
|
#error "Unexpected slab allocator configured"
|
|
#endif
|
|
|
|
atomic_t __page_refcount;
|
|
#ifdef CONFIG_MEMCG
|
|
unsigned long memcg_data;
|
|
#endif
|
|
};
|
|
|
|
#define SLAB_MATCH(pg, sl) \
|
|
static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
|
|
SLAB_MATCH(flags, __page_flags);
|
|
SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
|
|
#ifndef CONFIG_SLOB
|
|
SLAB_MATCH(rcu_head, rcu_head);
|
|
#endif
|
|
SLAB_MATCH(_refcount, __page_refcount);
|
|
#ifdef CONFIG_MEMCG
|
|
SLAB_MATCH(memcg_data, memcg_data);
|
|
#endif
|
|
#undef SLAB_MATCH
|
|
static_assert(sizeof(struct slab) <= sizeof(struct page));
|
|
|
|
/**
|
|
* folio_slab - Converts from folio to slab.
|
|
* @folio: The folio.
|
|
*
|
|
* Currently struct slab is a different representation of a folio where
|
|
* folio_test_slab() is true.
|
|
*
|
|
* Return: The slab which contains this folio.
|
|
*/
|
|
#define folio_slab(folio) (_Generic((folio), \
|
|
const struct folio *: (const struct slab *)(folio), \
|
|
struct folio *: (struct slab *)(folio)))
|
|
|
|
/**
|
|
* slab_folio - The folio allocated for a slab
|
|
* @slab: The slab.
|
|
*
|
|
* Slabs are allocated as folios that contain the individual objects and are
|
|
* using some fields in the first struct page of the folio - those fields are
|
|
* now accessed by struct slab. It is occasionally necessary to convert back to
|
|
* a folio in order to communicate with the rest of the mm. Please use this
|
|
* helper function instead of casting yourself, as the implementation may change
|
|
* in the future.
|
|
*/
|
|
#define slab_folio(s) (_Generic((s), \
|
|
const struct slab *: (const struct folio *)s, \
|
|
struct slab *: (struct folio *)s))
|
|
|
|
/**
|
|
* page_slab - Converts from first struct page to slab.
|
|
* @p: The first (either head of compound or single) page of slab.
|
|
*
|
|
* A temporary wrapper to convert struct page to struct slab in situations where
|
|
* we know the page is the compound head, or single order-0 page.
|
|
*
|
|
* Long-term ideally everything would work with struct slab directly or go
|
|
* through folio to struct slab.
|
|
*
|
|
* Return: The slab which contains this page
|
|
*/
|
|
#define page_slab(p) (_Generic((p), \
|
|
const struct page *: (const struct slab *)(p), \
|
|
struct page *: (struct slab *)(p)))
|
|
|
|
/**
|
|
* slab_page - The first struct page allocated for a slab
|
|
* @slab: The slab.
|
|
*
|
|
* A convenience wrapper for converting slab to the first struct page of the
|
|
* underlying folio, to communicate with code not yet converted to folio or
|
|
* struct slab.
|
|
*/
|
|
#define slab_page(s) folio_page(slab_folio(s), 0)
|
|
|
|
/*
|
|
* If network-based swap is enabled, sl*b must keep track of whether pages
|
|
* were allocated from pfmemalloc reserves.
|
|
*/
|
|
static inline bool slab_test_pfmemalloc(const struct slab *slab)
|
|
{
|
|
return folio_test_active((struct folio *)slab_folio(slab));
|
|
}
|
|
|
|
static inline void slab_set_pfmemalloc(struct slab *slab)
|
|
{
|
|
folio_set_active(slab_folio(slab));
|
|
}
|
|
|
|
static inline void slab_clear_pfmemalloc(struct slab *slab)
|
|
{
|
|
folio_clear_active(slab_folio(slab));
|
|
}
|
|
|
|
static inline void __slab_clear_pfmemalloc(struct slab *slab)
|
|
{
|
|
__folio_clear_active(slab_folio(slab));
|
|
}
|
|
|
|
static inline void *slab_address(const struct slab *slab)
|
|
{
|
|
return folio_address(slab_folio(slab));
|
|
}
|
|
|
|
static inline int slab_nid(const struct slab *slab)
|
|
{
|
|
return folio_nid(slab_folio(slab));
|
|
}
|
|
|
|
static inline pg_data_t *slab_pgdat(const struct slab *slab)
|
|
{
|
|
return folio_pgdat(slab_folio(slab));
|
|
}
|
|
|
|
static inline struct slab *virt_to_slab(const void *addr)
|
|
{
|
|
struct folio *folio = virt_to_folio(addr);
|
|
|
|
if (!folio_test_slab(folio))
|
|
return NULL;
|
|
|
|
return folio_slab(folio);
|
|
}
|
|
|
|
static inline int slab_order(const struct slab *slab)
|
|
{
|
|
return folio_order((struct folio *)slab_folio(slab));
|
|
}
|
|
|
|
static inline size_t slab_size(const struct slab *slab)
|
|
{
|
|
return PAGE_SIZE << slab_order(slab);
|
|
}
|
|
|
|
#ifdef CONFIG_SLOB
|
|
/*
|
|
* Common fields provided in kmem_cache by all slab allocators
|
|
* This struct is either used directly by the allocator (SLOB)
|
|
* or the allocator must include definitions for all fields
|
|
* provided in kmem_cache_common in their definition of kmem_cache.
|
|
*
|
|
* Once we can do anonymous structs (C11 standard) we could put a
|
|
* anonymous struct definition in these allocators so that the
|
|
* separate allocations in the kmem_cache structure of SLAB and
|
|
* SLUB is no longer needed.
|
|
*/
|
|
struct kmem_cache {
|
|
unsigned int object_size;/* The original size of the object */
|
|
unsigned int size; /* The aligned/padded/added on size */
|
|
unsigned int align; /* Alignment as calculated */
|
|
slab_flags_t flags; /* Active flags on the slab */
|
|
unsigned int useroffset;/* Usercopy region offset */
|
|
unsigned int usersize; /* Usercopy region size */
|
|
const char *name; /* Slab name for sysfs */
|
|
int refcount; /* Use counter */
|
|
void (*ctor)(void *); /* Called on object slot creation */
|
|
struct list_head list; /* List of all slab caches on the system */
|
|
};
|
|
|
|
#endif /* CONFIG_SLOB */
|
|
|
|
#ifdef CONFIG_SLAB
|
|
#include <linux/slab_def.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
#include <linux/slub_def.h>
|
|
#endif
|
|
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/list_lru.h>
|
|
|
|
/*
|
|
* State of the slab allocator.
|
|
*
|
|
* This is used to describe the states of the allocator during bootup.
|
|
* Allocators use this to gradually bootstrap themselves. Most allocators
|
|
* have the problem that the structures used for managing slab caches are
|
|
* allocated from slab caches themselves.
|
|
*/
|
|
enum slab_state {
|
|
DOWN, /* No slab functionality yet */
|
|
PARTIAL, /* SLUB: kmem_cache_node available */
|
|
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
|
|
UP, /* Slab caches usable but not all extras yet */
|
|
FULL /* Everything is working */
|
|
};
|
|
|
|
extern enum slab_state slab_state;
|
|
|
|
/* The slab cache mutex protects the management structures during changes */
|
|
extern struct mutex slab_mutex;
|
|
|
|
/* The list of all slab caches on the system */
|
|
extern struct list_head slab_caches;
|
|
|
|
/* The slab cache that manages slab cache information */
|
|
extern struct kmem_cache *kmem_cache;
|
|
|
|
/* A table of kmalloc cache names and sizes */
|
|
extern const struct kmalloc_info_struct {
|
|
const char *name[NR_KMALLOC_TYPES];
|
|
unsigned int size;
|
|
} kmalloc_info[];
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/* Kmalloc array related functions */
|
|
void setup_kmalloc_cache_index_table(void);
|
|
void create_kmalloc_caches(slab_flags_t);
|
|
|
|
/* Find the kmalloc slab corresponding for a certain size */
|
|
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
|
|
#endif
|
|
|
|
gfp_t kmalloc_fix_flags(gfp_t flags);
|
|
|
|
/* Functions provided by the slab allocators */
|
|
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
|
|
|
|
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
|
|
slab_flags_t flags, unsigned int useroffset,
|
|
unsigned int usersize);
|
|
extern void create_boot_cache(struct kmem_cache *, const char *name,
|
|
unsigned int size, slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize);
|
|
|
|
int slab_unmergeable(struct kmem_cache *s);
|
|
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
|
|
slab_flags_t flags, const char *name, void (*ctor)(void *));
|
|
#ifndef CONFIG_SLOB
|
|
struct kmem_cache *
|
|
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
|
|
slab_flags_t flags, void (*ctor)(void *));
|
|
|
|
slab_flags_t kmem_cache_flags(unsigned int object_size,
|
|
slab_flags_t flags, const char *name);
|
|
#else
|
|
static inline struct kmem_cache *
|
|
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
|
|
slab_flags_t flags, void (*ctor)(void *))
|
|
{ return NULL; }
|
|
|
|
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
|
|
slab_flags_t flags, const char *name)
|
|
{
|
|
return flags;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Legal flag mask for kmem_cache_create(), for various configurations */
|
|
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
|
|
SLAB_CACHE_DMA32 | SLAB_PANIC | \
|
|
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
|
|
|
|
#if defined(CONFIG_DEBUG_SLAB)
|
|
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
|
|
#elif defined(CONFIG_SLUB_DEBUG)
|
|
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
|
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
|
|
#else
|
|
#define SLAB_DEBUG_FLAGS (0)
|
|
#endif
|
|
|
|
#if defined(CONFIG_SLAB)
|
|
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
|
|
SLAB_ACCOUNT)
|
|
#elif defined(CONFIG_SLUB)
|
|
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
|
|
SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
|
|
#else
|
|
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
|
|
#endif
|
|
|
|
/* Common flags available with current configuration */
|
|
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
|
|
|
|
/* Common flags permitted for kmem_cache_create */
|
|
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
|
|
SLAB_RED_ZONE | \
|
|
SLAB_POISON | \
|
|
SLAB_STORE_USER | \
|
|
SLAB_TRACE | \
|
|
SLAB_CONSISTENCY_CHECKS | \
|
|
SLAB_MEM_SPREAD | \
|
|
SLAB_NOLEAKTRACE | \
|
|
SLAB_RECLAIM_ACCOUNT | \
|
|
SLAB_TEMPORARY | \
|
|
SLAB_ACCOUNT | \
|
|
SLAB_NO_USER_FLAGS)
|
|
|
|
bool __kmem_cache_empty(struct kmem_cache *);
|
|
int __kmem_cache_shutdown(struct kmem_cache *);
|
|
void __kmem_cache_release(struct kmem_cache *);
|
|
int __kmem_cache_shrink(struct kmem_cache *);
|
|
void slab_kmem_cache_release(struct kmem_cache *);
|
|
|
|
struct seq_file;
|
|
struct file;
|
|
|
|
struct slabinfo {
|
|
unsigned long active_objs;
|
|
unsigned long num_objs;
|
|
unsigned long active_slabs;
|
|
unsigned long num_slabs;
|
|
unsigned long shared_avail;
|
|
unsigned int limit;
|
|
unsigned int batchcount;
|
|
unsigned int shared;
|
|
unsigned int objects_per_slab;
|
|
unsigned int cache_order;
|
|
};
|
|
|
|
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
|
|
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
|
|
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos);
|
|
|
|
static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
|
|
{
|
|
return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
|
|
NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
#ifdef CONFIG_SLUB_DEBUG_ON
|
|
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
|
|
#else
|
|
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
|
|
#endif
|
|
extern void print_tracking(struct kmem_cache *s, void *object);
|
|
long validate_slab_cache(struct kmem_cache *s);
|
|
static inline bool __slub_debug_enabled(void)
|
|
{
|
|
return static_branch_unlikely(&slub_debug_enabled);
|
|
}
|
|
#else
|
|
static inline void print_tracking(struct kmem_cache *s, void *object)
|
|
{
|
|
}
|
|
static inline bool __slub_debug_enabled(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns true if any of the specified slub_debug flags is enabled for the
|
|
* cache. Use only for flags parsed by setup_slub_debug() as it also enables
|
|
* the static key.
|
|
*/
|
|
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
|
|
{
|
|
if (IS_ENABLED(CONFIG_SLUB_DEBUG))
|
|
VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
|
|
if (__slub_debug_enabled())
|
|
return s->flags & flags;
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
/*
|
|
* slab_objcgs - get the object cgroups vector associated with a slab
|
|
* @slab: a pointer to the slab struct
|
|
*
|
|
* Returns a pointer to the object cgroups vector associated with the slab,
|
|
* or NULL if no such vector has been associated yet.
|
|
*/
|
|
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
|
|
{
|
|
unsigned long memcg_data = READ_ONCE(slab->memcg_data);
|
|
|
|
VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
|
|
slab_page(slab));
|
|
VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
|
|
|
|
return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
|
|
}
|
|
|
|
int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
|
|
gfp_t gfp, bool new_slab);
|
|
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
|
|
enum node_stat_item idx, int nr);
|
|
|
|
static inline void memcg_free_slab_cgroups(struct slab *slab)
|
|
{
|
|
kfree(slab_objcgs(slab));
|
|
slab->memcg_data = 0;
|
|
}
|
|
|
|
static inline size_t obj_full_size(struct kmem_cache *s)
|
|
{
|
|
/*
|
|
* For each accounted object there is an extra space which is used
|
|
* to store obj_cgroup membership. Charge it too.
|
|
*/
|
|
return s->size + sizeof(struct obj_cgroup *);
|
|
}
|
|
|
|
/*
|
|
* Returns false if the allocation should fail.
|
|
*/
|
|
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
|
|
struct list_lru *lru,
|
|
struct obj_cgroup **objcgp,
|
|
size_t objects, gfp_t flags)
|
|
{
|
|
struct obj_cgroup *objcg;
|
|
|
|
if (!memcg_kmem_enabled())
|
|
return true;
|
|
|
|
if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
|
|
return true;
|
|
|
|
objcg = get_obj_cgroup_from_current();
|
|
if (!objcg)
|
|
return true;
|
|
|
|
if (lru) {
|
|
int ret;
|
|
struct mem_cgroup *memcg;
|
|
|
|
memcg = get_mem_cgroup_from_objcg(objcg);
|
|
ret = memcg_list_lru_alloc(memcg, lru, flags);
|
|
css_put(&memcg->css);
|
|
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
|
|
goto out;
|
|
|
|
*objcgp = objcg;
|
|
return true;
|
|
out:
|
|
obj_cgroup_put(objcg);
|
|
return false;
|
|
}
|
|
|
|
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
|
|
struct obj_cgroup *objcg,
|
|
gfp_t flags, size_t size,
|
|
void **p)
|
|
{
|
|
struct slab *slab;
|
|
unsigned long off;
|
|
size_t i;
|
|
|
|
if (!memcg_kmem_enabled() || !objcg)
|
|
return;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
if (likely(p[i])) {
|
|
slab = virt_to_slab(p[i]);
|
|
|
|
if (!slab_objcgs(slab) &&
|
|
memcg_alloc_slab_cgroups(slab, s, flags,
|
|
false)) {
|
|
obj_cgroup_uncharge(objcg, obj_full_size(s));
|
|
continue;
|
|
}
|
|
|
|
off = obj_to_index(s, slab, p[i]);
|
|
obj_cgroup_get(objcg);
|
|
slab_objcgs(slab)[off] = objcg;
|
|
mod_objcg_state(objcg, slab_pgdat(slab),
|
|
cache_vmstat_idx(s), obj_full_size(s));
|
|
} else {
|
|
obj_cgroup_uncharge(objcg, obj_full_size(s));
|
|
}
|
|
}
|
|
obj_cgroup_put(objcg);
|
|
}
|
|
|
|
static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
|
|
void **p, int objects)
|
|
{
|
|
struct obj_cgroup **objcgs;
|
|
int i;
|
|
|
|
if (!memcg_kmem_enabled())
|
|
return;
|
|
|
|
objcgs = slab_objcgs(slab);
|
|
if (!objcgs)
|
|
return;
|
|
|
|
for (i = 0; i < objects; i++) {
|
|
struct obj_cgroup *objcg;
|
|
unsigned int off;
|
|
|
|
off = obj_to_index(s, slab, p[i]);
|
|
objcg = objcgs[off];
|
|
if (!objcg)
|
|
continue;
|
|
|
|
objcgs[off] = NULL;
|
|
obj_cgroup_uncharge(objcg, obj_full_size(s));
|
|
mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
|
|
-obj_full_size(s));
|
|
obj_cgroup_put(objcg);
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_MEMCG_KMEM */
|
|
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline int memcg_alloc_slab_cgroups(struct slab *slab,
|
|
struct kmem_cache *s, gfp_t gfp,
|
|
bool new_slab)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void memcg_free_slab_cgroups(struct slab *slab)
|
|
{
|
|
}
|
|
|
|
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
|
|
struct list_lru *lru,
|
|
struct obj_cgroup **objcgp,
|
|
size_t objects, gfp_t flags)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
|
|
struct obj_cgroup *objcg,
|
|
gfp_t flags, size_t size,
|
|
void **p)
|
|
{
|
|
}
|
|
|
|
static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
|
|
void **p, int objects)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG_KMEM */
|
|
|
|
#ifndef CONFIG_SLOB
|
|
static inline struct kmem_cache *virt_to_cache(const void *obj)
|
|
{
|
|
struct slab *slab;
|
|
|
|
slab = virt_to_slab(obj);
|
|
if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
|
|
__func__))
|
|
return NULL;
|
|
return slab->slab_cache;
|
|
}
|
|
|
|
static __always_inline void account_slab(struct slab *slab, int order,
|
|
struct kmem_cache *s, gfp_t gfp)
|
|
{
|
|
if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
|
|
memcg_alloc_slab_cgroups(slab, s, gfp, true);
|
|
|
|
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
|
|
PAGE_SIZE << order);
|
|
}
|
|
|
|
static __always_inline void unaccount_slab(struct slab *slab, int order,
|
|
struct kmem_cache *s)
|
|
{
|
|
if (memcg_kmem_enabled())
|
|
memcg_free_slab_cgroups(slab);
|
|
|
|
mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
|
|
-(PAGE_SIZE << order));
|
|
}
|
|
|
|
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
|
|
if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
|
|
!kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
|
|
return s;
|
|
|
|
cachep = virt_to_cache(x);
|
|
if (WARN(cachep && cachep != s,
|
|
"%s: Wrong slab cache. %s but object is from %s\n",
|
|
__func__, s->name, cachep->name))
|
|
print_tracking(cachep, x);
|
|
return cachep;
|
|
}
|
|
#endif /* CONFIG_SLOB */
|
|
|
|
static inline size_t slab_ksize(const struct kmem_cache *s)
|
|
{
|
|
#ifndef CONFIG_SLUB
|
|
return s->object_size;
|
|
|
|
#else /* CONFIG_SLUB */
|
|
# ifdef CONFIG_SLUB_DEBUG
|
|
/*
|
|
* Debugging requires use of the padding between object
|
|
* and whatever may come after it.
|
|
*/
|
|
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
|
return s->object_size;
|
|
# endif
|
|
if (s->flags & SLAB_KASAN)
|
|
return s->object_size;
|
|
/*
|
|
* If we have the need to store the freelist pointer
|
|
* back there or track user information then we can
|
|
* only use the space before that information.
|
|
*/
|
|
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
|
|
return s->inuse;
|
|
/*
|
|
* Else we can use all the padding etc for the allocation
|
|
*/
|
|
return s->size;
|
|
#endif
|
|
}
|
|
|
|
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
|
|
struct list_lru *lru,
|
|
struct obj_cgroup **objcgp,
|
|
size_t size, gfp_t flags)
|
|
{
|
|
flags &= gfp_allowed_mask;
|
|
|
|
might_alloc(flags);
|
|
|
|
if (should_failslab(s, flags))
|
|
return NULL;
|
|
|
|
if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
|
|
return NULL;
|
|
|
|
return s;
|
|
}
|
|
|
|
static inline void slab_post_alloc_hook(struct kmem_cache *s,
|
|
struct obj_cgroup *objcg, gfp_t flags,
|
|
size_t size, void **p, bool init)
|
|
{
|
|
size_t i;
|
|
|
|
flags &= gfp_allowed_mask;
|
|
|
|
/*
|
|
* As memory initialization might be integrated into KASAN,
|
|
* kasan_slab_alloc and initialization memset must be
|
|
* kept together to avoid discrepancies in behavior.
|
|
*
|
|
* As p[i] might get tagged, memset and kmemleak hook come after KASAN.
|
|
*/
|
|
for (i = 0; i < size; i++) {
|
|
p[i] = kasan_slab_alloc(s, p[i], flags, init);
|
|
if (p[i] && init && !kasan_has_integrated_init())
|
|
memset(p[i], 0, s->object_size);
|
|
kmemleak_alloc_recursive(p[i], s->object_size, 1,
|
|
s->flags, flags);
|
|
}
|
|
|
|
memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
|
|
}
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/*
|
|
* The slab lists for all objects.
|
|
*/
|
|
struct kmem_cache_node {
|
|
spinlock_t list_lock;
|
|
|
|
#ifdef CONFIG_SLAB
|
|
struct list_head slabs_partial; /* partial list first, better asm code */
|
|
struct list_head slabs_full;
|
|
struct list_head slabs_free;
|
|
unsigned long total_slabs; /* length of all slab lists */
|
|
unsigned long free_slabs; /* length of free slab list only */
|
|
unsigned long free_objects;
|
|
unsigned int free_limit;
|
|
unsigned int colour_next; /* Per-node cache coloring */
|
|
struct array_cache *shared; /* shared per node */
|
|
struct alien_cache **alien; /* on other nodes */
|
|
unsigned long next_reap; /* updated without locking */
|
|
int free_touched; /* updated without locking */
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
unsigned long nr_partial;
|
|
struct list_head partial;
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
atomic_long_t nr_slabs;
|
|
atomic_long_t total_objects;
|
|
struct list_head full;
|
|
#endif
|
|
#endif
|
|
|
|
};
|
|
|
|
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
|
|
{
|
|
return s->node[node];
|
|
}
|
|
|
|
/*
|
|
* Iterator over all nodes. The body will be executed for each node that has
|
|
* a kmem_cache_node structure allocated (which is true for all online nodes)
|
|
*/
|
|
#define for_each_kmem_cache_node(__s, __node, __n) \
|
|
for (__node = 0; __node < nr_node_ids; __node++) \
|
|
if ((__n = get_node(__s, __node)))
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
|
|
void dump_unreclaimable_slab(void);
|
|
#else
|
|
static inline void dump_unreclaimable_slab(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
|
|
|
|
#ifdef CONFIG_SLAB_FREELIST_RANDOM
|
|
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
|
|
gfp_t gfp);
|
|
void cache_random_seq_destroy(struct kmem_cache *cachep);
|
|
#else
|
|
static inline int cache_random_seq_create(struct kmem_cache *cachep,
|
|
unsigned int count, gfp_t gfp)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
|
|
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
|
|
|
|
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
|
|
{
|
|
if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
|
|
&init_on_alloc)) {
|
|
if (c->ctor)
|
|
return false;
|
|
if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
|
|
return flags & __GFP_ZERO;
|
|
return true;
|
|
}
|
|
return flags & __GFP_ZERO;
|
|
}
|
|
|
|
static inline bool slab_want_init_on_free(struct kmem_cache *c)
|
|
{
|
|
if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
|
|
&init_on_free))
|
|
return !(c->ctor ||
|
|
(c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
|
|
return false;
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
|
|
void debugfs_slab_release(struct kmem_cache *);
|
|
#else
|
|
static inline void debugfs_slab_release(struct kmem_cache *s) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
#define KS_ADDRS_COUNT 16
|
|
struct kmem_obj_info {
|
|
void *kp_ptr;
|
|
struct slab *kp_slab;
|
|
void *kp_objp;
|
|
unsigned long kp_data_offset;
|
|
struct kmem_cache *kp_slab_cache;
|
|
void *kp_ret;
|
|
void *kp_stack[KS_ADDRS_COUNT];
|
|
void *kp_free_stack[KS_ADDRS_COUNT];
|
|
};
|
|
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
|
|
void __check_heap_object(const void *ptr, unsigned long n,
|
|
const struct slab *slab, bool to_user);
|
|
#else
|
|
static inline
|
|
void __check_heap_object(const void *ptr, unsigned long n,
|
|
const struct slab *slab, bool to_user)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#endif /* MM_SLAB_H */
|