mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 21:21:41 +00:00
6b1f86f8e9
Primarily this series converts some of the address_space operations to take a folio instead of a page. ->is_partially_uptodate() takes a folio instead of a page and changes the type of the 'from' and 'count' arguments to make it obvious they're bytes. ->invalidatepage() becomes ->invalidate_folio() and has a similar type change. ->launder_page() becomes ->launder_folio() ->set_page_dirty() becomes ->dirty_folio() and adds the address_space as an argument. There are a couple of other misc changes up front that weren't worth separating into their own pull request. -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4hqMACgkQDpNsjXcp gj7r7Af/fVJ7m8kKqjP/IayX3HiJRuIDQw+vM++BlRNXdjz+IyED6whdmFGxJeOY BMyT+8ApOAz7ErS4G+7fAv4ScJK/aEgFUsnSeAiCp0PliiEJ5NNJzElp6sVmQ7H5 SX7+Ek444FZUGsQuy0qL7/ELpR3ditnD7x+5U2g0p5TeaHGUQn84crRyfR4xuhNG EBD9D71BOb7OxUcOHe93pTkK51QsQ0aCrcIsB1tkK5KR0BAthn1HqF7ehL90Rvrr omx5M7aDWGY4oj7IKrhlAs+55Ah2WaOzrZBp0FXNbr4UENDBKWKyUxErwa4xPkf6 Gm1iQG/CspOHnxN3YWsd5WjtlL3A+A== =cOiq -----END PGP SIGNATURE----- Merge tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache Pull filesystem folio updates from Matthew Wilcox: "Primarily this series converts some of the address_space operations to take a folio instead of a page. Notably: - a_ops->is_partially_uptodate() takes a folio instead of a page and changes the type of the 'from' and 'count' arguments to make it obvious they're bytes. - a_ops->invalidatepage() becomes ->invalidate_folio() and has a similar type change. - a_ops->launder_page() becomes ->launder_folio() - a_ops->set_page_dirty() becomes ->dirty_folio() and adds the address_space as an argument. There are a couple of other misc changes up front that weren't worth separating into their own pull request" * tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits) fs: Remove aops ->set_page_dirty fb_defio: Use noop_dirty_folio() fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio fs: Convert __set_page_dirty_buffers to block_dirty_folio nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio() mm: Convert swap_set_page_dirty() to swap_dirty_folio() ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio() btrfs: Convert extent_range_redirty_for_io() to use folios fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio btrfs: Convert from set_page_dirty to dirty_folio fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio() fs: Add aops->dirty_folio fs: Remove aops->launder_page orangefs: Convert launder_page to launder_folio nfs: Convert from launder_page to launder_folio fuse: Convert from launder_page to launder_folio ...
917 lines
27 KiB
C
917 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* mm/readahead.c - address_space-level file readahead.
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds
|
|
*
|
|
* 09Apr2002 Andrew Morton
|
|
* Initial version.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Readahead Overview
|
|
*
|
|
* Readahead is used to read content into the page cache before it is
|
|
* explicitly requested by the application. Readahead only ever
|
|
* attempts to read pages that are not yet in the page cache. If a
|
|
* page is present but not up-to-date, readahead will not try to read
|
|
* it. In that case a simple ->readpage() will be requested.
|
|
*
|
|
* Readahead is triggered when an application read request (whether a
|
|
* systemcall or a page fault) finds that the requested page is not in
|
|
* the page cache, or that it is in the page cache and has the
|
|
* %PG_readahead flag set. This flag indicates that the page was loaded
|
|
* as part of a previous read-ahead request and now that it has been
|
|
* accessed, it is time for the next read-ahead.
|
|
*
|
|
* Each readahead request is partly synchronous read, and partly async
|
|
* read-ahead. This is reflected in the struct file_ra_state which
|
|
* contains ->size being to total number of pages, and ->async_size
|
|
* which is the number of pages in the async section. The first page in
|
|
* this async section will have %PG_readahead set as a trigger for a
|
|
* subsequent read ahead. Once a series of sequential reads has been
|
|
* established, there should be no need for a synchronous component and
|
|
* all read ahead request will be fully asynchronous.
|
|
*
|
|
* When either of the triggers causes a readahead, three numbers need to
|
|
* be determined: the start of the region, the size of the region, and
|
|
* the size of the async tail.
|
|
*
|
|
* The start of the region is simply the first page address at or after
|
|
* the accessed address, which is not currently populated in the page
|
|
* cache. This is found with a simple search in the page cache.
|
|
*
|
|
* The size of the async tail is determined by subtracting the size that
|
|
* was explicitly requested from the determined request size, unless
|
|
* this would be less than zero - then zero is used. NOTE THIS
|
|
* CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
|
|
* PAGE.
|
|
*
|
|
* The size of the region is normally determined from the size of the
|
|
* previous readahead which loaded the preceding pages. This may be
|
|
* discovered from the struct file_ra_state for simple sequential reads,
|
|
* or from examining the state of the page cache when multiple
|
|
* sequential reads are interleaved. Specifically: where the readahead
|
|
* was triggered by the %PG_readahead flag, the size of the previous
|
|
* readahead is assumed to be the number of pages from the triggering
|
|
* page to the start of the new readahead. In these cases, the size of
|
|
* the previous readahead is scaled, often doubled, for the new
|
|
* readahead, though see get_next_ra_size() for details.
|
|
*
|
|
* If the size of the previous read cannot be determined, the number of
|
|
* preceding pages in the page cache is used to estimate the size of
|
|
* a previous read. This estimate could easily be misled by random
|
|
* reads being coincidentally adjacent, so it is ignored unless it is
|
|
* larger than the current request, and it is not scaled up, unless it
|
|
* is at the start of file.
|
|
*
|
|
* In general read ahead is accelerated at the start of the file, as
|
|
* reads from there are often sequential. There are other minor
|
|
* adjustments to the read ahead size in various special cases and these
|
|
* are best discovered by reading the code.
|
|
*
|
|
* The above calculation determines the readahead, to which any requested
|
|
* read size may be added.
|
|
*
|
|
* Readahead requests are sent to the filesystem using the ->readahead()
|
|
* address space operation, for which mpage_readahead() is a canonical
|
|
* implementation. ->readahead() should normally initiate reads on all
|
|
* pages, but may fail to read any or all pages without causing an IO
|
|
* error. The page cache reading code will issue a ->readpage() request
|
|
* for any page which ->readahead() does not provided, and only an error
|
|
* from this will be final.
|
|
*
|
|
* ->readahead() will generally call readahead_page() repeatedly to get
|
|
* each page from those prepared for read ahead. It may fail to read a
|
|
* page by:
|
|
*
|
|
* * not calling readahead_page() sufficiently many times, effectively
|
|
* ignoring some pages, as might be appropriate if the path to
|
|
* storage is congested.
|
|
*
|
|
* * failing to actually submit a read request for a given page,
|
|
* possibly due to insufficient resources, or
|
|
*
|
|
* * getting an error during subsequent processing of a request.
|
|
*
|
|
* In the last two cases, the page should be unlocked to indicate that
|
|
* the read attempt has failed. In the first case the page will be
|
|
* unlocked by the caller.
|
|
*
|
|
* Those pages not in the final ``async_size`` of the request should be
|
|
* considered to be important and ->readahead() should not fail them due
|
|
* to congestion or temporary resource unavailability, but should wait
|
|
* for necessary resources (e.g. memory or indexing information) to
|
|
* become available. Pages in the final ``async_size`` may be
|
|
* considered less urgent and failure to read them is more acceptable.
|
|
* In this case it is best to use delete_from_page_cache() to remove the
|
|
* pages from the page cache as is automatically done for pages that
|
|
* were not fetched with readahead_page(). This will allow a
|
|
* subsequent synchronous read ahead request to try them again. If they
|
|
* are left in the page cache, then they will be read individually using
|
|
* ->readpage().
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/export.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/blk-cgroup.h>
|
|
#include <linux/fadvise.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Initialise a struct file's readahead state. Assumes that the caller has
|
|
* memset *ra to zero.
|
|
*/
|
|
void
|
|
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
|
|
{
|
|
ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
|
|
ra->prev_pos = -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(file_ra_state_init);
|
|
|
|
/*
|
|
* see if a page needs releasing upon read_cache_pages() failure
|
|
* - the caller of read_cache_pages() may have set PG_private or PG_fscache
|
|
* before calling, such as the NFS fs marking pages that are cached locally
|
|
* on disk, thus we need to give the fs a chance to clean up in the event of
|
|
* an error
|
|
*/
|
|
static void read_cache_pages_invalidate_page(struct address_space *mapping,
|
|
struct page *page)
|
|
{
|
|
if (page_has_private(page)) {
|
|
if (!trylock_page(page))
|
|
BUG();
|
|
page->mapping = mapping;
|
|
folio_invalidate(page_folio(page), 0, PAGE_SIZE);
|
|
page->mapping = NULL;
|
|
unlock_page(page);
|
|
}
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* release a list of pages, invalidating them first if need be
|
|
*/
|
|
static void read_cache_pages_invalidate_pages(struct address_space *mapping,
|
|
struct list_head *pages)
|
|
{
|
|
struct page *victim;
|
|
|
|
while (!list_empty(pages)) {
|
|
victim = lru_to_page(pages);
|
|
list_del(&victim->lru);
|
|
read_cache_pages_invalidate_page(mapping, victim);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* read_cache_pages - populate an address space with some pages & start reads against them
|
|
* @mapping: the address_space
|
|
* @pages: The address of a list_head which contains the target pages. These
|
|
* pages have their ->index populated and are otherwise uninitialised.
|
|
* @filler: callback routine for filling a single page.
|
|
* @data: private data for the callback routine.
|
|
*
|
|
* Hides the details of the LRU cache etc from the filesystems.
|
|
*
|
|
* Returns: %0 on success, error return by @filler otherwise
|
|
*/
|
|
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
|
|
int (*filler)(void *, struct page *), void *data)
|
|
{
|
|
struct page *page;
|
|
int ret = 0;
|
|
|
|
while (!list_empty(pages)) {
|
|
page = lru_to_page(pages);
|
|
list_del(&page->lru);
|
|
if (add_to_page_cache_lru(page, mapping, page->index,
|
|
readahead_gfp_mask(mapping))) {
|
|
read_cache_pages_invalidate_page(mapping, page);
|
|
continue;
|
|
}
|
|
put_page(page);
|
|
|
|
ret = filler(data, page);
|
|
if (unlikely(ret)) {
|
|
read_cache_pages_invalidate_pages(mapping, pages);
|
|
break;
|
|
}
|
|
task_io_account_read(PAGE_SIZE);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(read_cache_pages);
|
|
|
|
static void read_pages(struct readahead_control *rac, struct list_head *pages,
|
|
bool skip_page)
|
|
{
|
|
const struct address_space_operations *aops = rac->mapping->a_ops;
|
|
struct page *page;
|
|
struct blk_plug plug;
|
|
|
|
if (!readahead_count(rac))
|
|
goto out;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
if (aops->readahead) {
|
|
aops->readahead(rac);
|
|
/*
|
|
* Clean up the remaining pages. The sizes in ->ra
|
|
* maybe be used to size next read-ahead, so make sure
|
|
* they accurately reflect what happened.
|
|
*/
|
|
while ((page = readahead_page(rac))) {
|
|
rac->ra->size -= 1;
|
|
if (rac->ra->async_size > 0) {
|
|
rac->ra->async_size -= 1;
|
|
delete_from_page_cache(page);
|
|
}
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
} else if (aops->readpages) {
|
|
aops->readpages(rac->file, rac->mapping, pages,
|
|
readahead_count(rac));
|
|
/* Clean up the remaining pages */
|
|
put_pages_list(pages);
|
|
rac->_index += rac->_nr_pages;
|
|
rac->_nr_pages = 0;
|
|
} else {
|
|
while ((page = readahead_page(rac))) {
|
|
aops->readpage(rac->file, page);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
BUG_ON(pages && !list_empty(pages));
|
|
BUG_ON(readahead_count(rac));
|
|
|
|
out:
|
|
if (skip_page)
|
|
rac->_index++;
|
|
}
|
|
|
|
/**
|
|
* page_cache_ra_unbounded - Start unchecked readahead.
|
|
* @ractl: Readahead control.
|
|
* @nr_to_read: The number of pages to read.
|
|
* @lookahead_size: Where to start the next readahead.
|
|
*
|
|
* This function is for filesystems to call when they want to start
|
|
* readahead beyond a file's stated i_size. This is almost certainly
|
|
* not the function you want to call. Use page_cache_async_readahead()
|
|
* or page_cache_sync_readahead() instead.
|
|
*
|
|
* Context: File is referenced by caller. Mutexes may be held by caller.
|
|
* May sleep, but will not reenter filesystem to reclaim memory.
|
|
*/
|
|
void page_cache_ra_unbounded(struct readahead_control *ractl,
|
|
unsigned long nr_to_read, unsigned long lookahead_size)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
unsigned long index = readahead_index(ractl);
|
|
LIST_HEAD(page_pool);
|
|
gfp_t gfp_mask = readahead_gfp_mask(mapping);
|
|
unsigned long i;
|
|
|
|
/*
|
|
* Partway through the readahead operation, we will have added
|
|
* locked pages to the page cache, but will not yet have submitted
|
|
* them for I/O. Adding another page may need to allocate memory,
|
|
* which can trigger memory reclaim. Telling the VM we're in
|
|
* the middle of a filesystem operation will cause it to not
|
|
* touch file-backed pages, preventing a deadlock. Most (all?)
|
|
* filesystems already specify __GFP_NOFS in their mapping's
|
|
* gfp_mask, but let's be explicit here.
|
|
*/
|
|
unsigned int nofs = memalloc_nofs_save();
|
|
|
|
filemap_invalidate_lock_shared(mapping);
|
|
/*
|
|
* Preallocate as many pages as we will need.
|
|
*/
|
|
for (i = 0; i < nr_to_read; i++) {
|
|
struct folio *folio = xa_load(&mapping->i_pages, index + i);
|
|
|
|
if (folio && !xa_is_value(folio)) {
|
|
/*
|
|
* Page already present? Kick off the current batch
|
|
* of contiguous pages before continuing with the
|
|
* next batch. This page may be the one we would
|
|
* have intended to mark as Readahead, but we don't
|
|
* have a stable reference to this page, and it's
|
|
* not worth getting one just for that.
|
|
*/
|
|
read_pages(ractl, &page_pool, true);
|
|
i = ractl->_index + ractl->_nr_pages - index - 1;
|
|
continue;
|
|
}
|
|
|
|
folio = filemap_alloc_folio(gfp_mask, 0);
|
|
if (!folio)
|
|
break;
|
|
if (mapping->a_ops->readpages) {
|
|
folio->index = index + i;
|
|
list_add(&folio->lru, &page_pool);
|
|
} else if (filemap_add_folio(mapping, folio, index + i,
|
|
gfp_mask) < 0) {
|
|
folio_put(folio);
|
|
read_pages(ractl, &page_pool, true);
|
|
i = ractl->_index + ractl->_nr_pages - index - 1;
|
|
continue;
|
|
}
|
|
if (i == nr_to_read - lookahead_size)
|
|
folio_set_readahead(folio);
|
|
ractl->_nr_pages++;
|
|
}
|
|
|
|
/*
|
|
* Now start the IO. We ignore I/O errors - if the page is not
|
|
* uptodate then the caller will launch readpage again, and
|
|
* will then handle the error.
|
|
*/
|
|
read_pages(ractl, &page_pool, false);
|
|
filemap_invalidate_unlock_shared(mapping);
|
|
memalloc_nofs_restore(nofs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
|
|
|
|
/*
|
|
* do_page_cache_ra() actually reads a chunk of disk. It allocates
|
|
* the pages first, then submits them for I/O. This avoids the very bad
|
|
* behaviour which would occur if page allocations are causing VM writeback.
|
|
* We really don't want to intermingle reads and writes like that.
|
|
*/
|
|
static void do_page_cache_ra(struct readahead_control *ractl,
|
|
unsigned long nr_to_read, unsigned long lookahead_size)
|
|
{
|
|
struct inode *inode = ractl->mapping->host;
|
|
unsigned long index = readahead_index(ractl);
|
|
loff_t isize = i_size_read(inode);
|
|
pgoff_t end_index; /* The last page we want to read */
|
|
|
|
if (isize == 0)
|
|
return;
|
|
|
|
end_index = (isize - 1) >> PAGE_SHIFT;
|
|
if (index > end_index)
|
|
return;
|
|
/* Don't read past the page containing the last byte of the file */
|
|
if (nr_to_read > end_index - index)
|
|
nr_to_read = end_index - index + 1;
|
|
|
|
page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
|
|
}
|
|
|
|
/*
|
|
* Chunk the readahead into 2 megabyte units, so that we don't pin too much
|
|
* memory at once.
|
|
*/
|
|
void force_page_cache_ra(struct readahead_control *ractl,
|
|
unsigned long nr_to_read)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
struct file_ra_state *ra = ractl->ra;
|
|
struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
|
|
unsigned long max_pages, index;
|
|
|
|
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
|
|
!mapping->a_ops->readahead))
|
|
return;
|
|
|
|
/*
|
|
* If the request exceeds the readahead window, allow the read to
|
|
* be up to the optimal hardware IO size
|
|
*/
|
|
index = readahead_index(ractl);
|
|
max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
|
|
nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
|
|
while (nr_to_read) {
|
|
unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
|
|
|
|
if (this_chunk > nr_to_read)
|
|
this_chunk = nr_to_read;
|
|
ractl->_index = index;
|
|
do_page_cache_ra(ractl, this_chunk, 0);
|
|
|
|
index += this_chunk;
|
|
nr_to_read -= this_chunk;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the initial window size, round to next power of 2 and square
|
|
* for small size, x 4 for medium, and x 2 for large
|
|
* for 128k (32 page) max ra
|
|
* 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
|
|
*/
|
|
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
|
|
{
|
|
unsigned long newsize = roundup_pow_of_two(size);
|
|
|
|
if (newsize <= max / 32)
|
|
newsize = newsize * 4;
|
|
else if (newsize <= max / 4)
|
|
newsize = newsize * 2;
|
|
else
|
|
newsize = max;
|
|
|
|
return newsize;
|
|
}
|
|
|
|
/*
|
|
* Get the previous window size, ramp it up, and
|
|
* return it as the new window size.
|
|
*/
|
|
static unsigned long get_next_ra_size(struct file_ra_state *ra,
|
|
unsigned long max)
|
|
{
|
|
unsigned long cur = ra->size;
|
|
|
|
if (cur < max / 16)
|
|
return 4 * cur;
|
|
if (cur <= max / 2)
|
|
return 2 * cur;
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
* On-demand readahead design.
|
|
*
|
|
* The fields in struct file_ra_state represent the most-recently-executed
|
|
* readahead attempt:
|
|
*
|
|
* |<----- async_size ---------|
|
|
* |------------------- size -------------------->|
|
|
* |==================#===========================|
|
|
* ^start ^page marked with PG_readahead
|
|
*
|
|
* To overlap application thinking time and disk I/O time, we do
|
|
* `readahead pipelining': Do not wait until the application consumed all
|
|
* readahead pages and stalled on the missing page at readahead_index;
|
|
* Instead, submit an asynchronous readahead I/O as soon as there are
|
|
* only async_size pages left in the readahead window. Normally async_size
|
|
* will be equal to size, for maximum pipelining.
|
|
*
|
|
* In interleaved sequential reads, concurrent streams on the same fd can
|
|
* be invalidating each other's readahead state. So we flag the new readahead
|
|
* page at (start+size-async_size) with PG_readahead, and use it as readahead
|
|
* indicator. The flag won't be set on already cached pages, to avoid the
|
|
* readahead-for-nothing fuss, saving pointless page cache lookups.
|
|
*
|
|
* prev_pos tracks the last visited byte in the _previous_ read request.
|
|
* It should be maintained by the caller, and will be used for detecting
|
|
* small random reads. Note that the readahead algorithm checks loosely
|
|
* for sequential patterns. Hence interleaved reads might be served as
|
|
* sequential ones.
|
|
*
|
|
* There is a special-case: if the first page which the application tries to
|
|
* read happens to be the first page of the file, it is assumed that a linear
|
|
* read is about to happen and the window is immediately set to the initial size
|
|
* based on I/O request size and the max_readahead.
|
|
*
|
|
* The code ramps up the readahead size aggressively at first, but slow down as
|
|
* it approaches max_readhead.
|
|
*/
|
|
|
|
/*
|
|
* Count contiguously cached pages from @index-1 to @index-@max,
|
|
* this count is a conservative estimation of
|
|
* - length of the sequential read sequence, or
|
|
* - thrashing threshold in memory tight systems
|
|
*/
|
|
static pgoff_t count_history_pages(struct address_space *mapping,
|
|
pgoff_t index, unsigned long max)
|
|
{
|
|
pgoff_t head;
|
|
|
|
rcu_read_lock();
|
|
head = page_cache_prev_miss(mapping, index - 1, max);
|
|
rcu_read_unlock();
|
|
|
|
return index - 1 - head;
|
|
}
|
|
|
|
/*
|
|
* page cache context based read-ahead
|
|
*/
|
|
static int try_context_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
pgoff_t index,
|
|
unsigned long req_size,
|
|
unsigned long max)
|
|
{
|
|
pgoff_t size;
|
|
|
|
size = count_history_pages(mapping, index, max);
|
|
|
|
/*
|
|
* not enough history pages:
|
|
* it could be a random read
|
|
*/
|
|
if (size <= req_size)
|
|
return 0;
|
|
|
|
/*
|
|
* starts from beginning of file:
|
|
* it is a strong indication of long-run stream (or whole-file-read)
|
|
*/
|
|
if (size >= index)
|
|
size *= 2;
|
|
|
|
ra->start = index;
|
|
ra->size = min(size + req_size, max);
|
|
ra->async_size = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* There are some parts of the kernel which assume that PMD entries
|
|
* are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
|
|
* limit the maximum allocation order to PMD size. I'm not aware of any
|
|
* assumptions about maximum order if THP are disabled, but 8 seems like
|
|
* a good order (that's 1MB if you're using 4kB pages)
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
|
|
#else
|
|
#define MAX_PAGECACHE_ORDER 8
|
|
#endif
|
|
|
|
static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
|
|
pgoff_t mark, unsigned int order, gfp_t gfp)
|
|
{
|
|
int err;
|
|
struct folio *folio = filemap_alloc_folio(gfp, order);
|
|
|
|
if (!folio)
|
|
return -ENOMEM;
|
|
if (mark - index < (1UL << order))
|
|
folio_set_readahead(folio);
|
|
err = filemap_add_folio(ractl->mapping, folio, index, gfp);
|
|
if (err)
|
|
folio_put(folio);
|
|
else
|
|
ractl->_nr_pages += 1UL << order;
|
|
return err;
|
|
}
|
|
|
|
void page_cache_ra_order(struct readahead_control *ractl,
|
|
struct file_ra_state *ra, unsigned int new_order)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
pgoff_t index = readahead_index(ractl);
|
|
pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
|
|
pgoff_t mark = index + ra->size - ra->async_size;
|
|
int err = 0;
|
|
gfp_t gfp = readahead_gfp_mask(mapping);
|
|
|
|
if (!mapping_large_folio_support(mapping) || ra->size < 4)
|
|
goto fallback;
|
|
|
|
limit = min(limit, index + ra->size - 1);
|
|
|
|
if (new_order < MAX_PAGECACHE_ORDER) {
|
|
new_order += 2;
|
|
if (new_order > MAX_PAGECACHE_ORDER)
|
|
new_order = MAX_PAGECACHE_ORDER;
|
|
while ((1 << new_order) > ra->size)
|
|
new_order--;
|
|
}
|
|
|
|
while (index <= limit) {
|
|
unsigned int order = new_order;
|
|
|
|
/* Align with smaller pages if needed */
|
|
if (index & ((1UL << order) - 1)) {
|
|
order = __ffs(index);
|
|
if (order == 1)
|
|
order = 0;
|
|
}
|
|
/* Don't allocate pages past EOF */
|
|
while (index + (1UL << order) - 1 > limit) {
|
|
if (--order == 1)
|
|
order = 0;
|
|
}
|
|
err = ra_alloc_folio(ractl, index, mark, order, gfp);
|
|
if (err)
|
|
break;
|
|
index += 1UL << order;
|
|
}
|
|
|
|
if (index > limit) {
|
|
ra->size += index - limit - 1;
|
|
ra->async_size += index - limit - 1;
|
|
}
|
|
|
|
read_pages(ractl, NULL, false);
|
|
|
|
/*
|
|
* If there were already pages in the page cache, then we may have
|
|
* left some gaps. Let the regular readahead code take care of this
|
|
* situation.
|
|
*/
|
|
if (!err)
|
|
return;
|
|
fallback:
|
|
do_page_cache_ra(ractl, ra->size, ra->async_size);
|
|
}
|
|
|
|
/*
|
|
* A minimal readahead algorithm for trivial sequential/random reads.
|
|
*/
|
|
static void ondemand_readahead(struct readahead_control *ractl,
|
|
struct folio *folio, unsigned long req_size)
|
|
{
|
|
struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
|
|
struct file_ra_state *ra = ractl->ra;
|
|
unsigned long max_pages = ra->ra_pages;
|
|
unsigned long add_pages;
|
|
unsigned long index = readahead_index(ractl);
|
|
pgoff_t prev_index;
|
|
|
|
/*
|
|
* If the request exceeds the readahead window, allow the read to
|
|
* be up to the optimal hardware IO size
|
|
*/
|
|
if (req_size > max_pages && bdi->io_pages > max_pages)
|
|
max_pages = min(req_size, bdi->io_pages);
|
|
|
|
/*
|
|
* start of file
|
|
*/
|
|
if (!index)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* It's the expected callback index, assume sequential access.
|
|
* Ramp up sizes, and push forward the readahead window.
|
|
*/
|
|
if ((index == (ra->start + ra->size - ra->async_size) ||
|
|
index == (ra->start + ra->size))) {
|
|
ra->start += ra->size;
|
|
ra->size = get_next_ra_size(ra, max_pages);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* Hit a marked folio without valid readahead state.
|
|
* E.g. interleaved reads.
|
|
* Query the pagecache for async_size, which normally equals to
|
|
* readahead size. Ramp it up and use it as the new readahead size.
|
|
*/
|
|
if (folio) {
|
|
pgoff_t start;
|
|
|
|
rcu_read_lock();
|
|
start = page_cache_next_miss(ractl->mapping, index + 1,
|
|
max_pages);
|
|
rcu_read_unlock();
|
|
|
|
if (!start || start - index > max_pages)
|
|
return;
|
|
|
|
ra->start = start;
|
|
ra->size = start - index; /* old async_size */
|
|
ra->size += req_size;
|
|
ra->size = get_next_ra_size(ra, max_pages);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* oversize read
|
|
*/
|
|
if (req_size > max_pages)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* sequential cache miss
|
|
* trivial case: (index - prev_index) == 1
|
|
* unaligned reads: (index - prev_index) == 0
|
|
*/
|
|
prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
|
|
if (index - prev_index <= 1UL)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* Query the page cache and look for the traces(cached history pages)
|
|
* that a sequential stream would leave behind.
|
|
*/
|
|
if (try_context_readahead(ractl->mapping, ra, index, req_size,
|
|
max_pages))
|
|
goto readit;
|
|
|
|
/*
|
|
* standalone, small random read
|
|
* Read as is, and do not pollute the readahead state.
|
|
*/
|
|
do_page_cache_ra(ractl, req_size, 0);
|
|
return;
|
|
|
|
initial_readahead:
|
|
ra->start = index;
|
|
ra->size = get_init_ra_size(req_size, max_pages);
|
|
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
|
|
|
|
readit:
|
|
/*
|
|
* Will this read hit the readahead marker made by itself?
|
|
* If so, trigger the readahead marker hit now, and merge
|
|
* the resulted next readahead window into the current one.
|
|
* Take care of maximum IO pages as above.
|
|
*/
|
|
if (index == ra->start && ra->size == ra->async_size) {
|
|
add_pages = get_next_ra_size(ra, max_pages);
|
|
if (ra->size + add_pages <= max_pages) {
|
|
ra->async_size = add_pages;
|
|
ra->size += add_pages;
|
|
} else {
|
|
ra->size = max_pages;
|
|
ra->async_size = max_pages >> 1;
|
|
}
|
|
}
|
|
|
|
ractl->_index = ra->start;
|
|
page_cache_ra_order(ractl, ra, folio ? folio_order(folio) : 0);
|
|
}
|
|
|
|
void page_cache_sync_ra(struct readahead_control *ractl,
|
|
unsigned long req_count)
|
|
{
|
|
bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
|
|
|
|
/*
|
|
* Even if read-ahead is disabled, issue this request as read-ahead
|
|
* as we'll need it to satisfy the requested range. The forced
|
|
* read-ahead will do the right thing and limit the read to just the
|
|
* requested range, which we'll set to 1 page for this case.
|
|
*/
|
|
if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
|
|
if (!ractl->file)
|
|
return;
|
|
req_count = 1;
|
|
do_forced_ra = true;
|
|
}
|
|
|
|
/* be dumb */
|
|
if (do_forced_ra) {
|
|
force_page_cache_ra(ractl, req_count);
|
|
return;
|
|
}
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(ractl, NULL, req_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_sync_ra);
|
|
|
|
void page_cache_async_ra(struct readahead_control *ractl,
|
|
struct folio *folio, unsigned long req_count)
|
|
{
|
|
/* no read-ahead */
|
|
if (!ractl->ra->ra_pages)
|
|
return;
|
|
|
|
/*
|
|
* Same bit is used for PG_readahead and PG_reclaim.
|
|
*/
|
|
if (folio_test_writeback(folio))
|
|
return;
|
|
|
|
folio_clear_readahead(folio);
|
|
|
|
if (blk_cgroup_congested())
|
|
return;
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(ractl, folio, req_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_async_ra);
|
|
|
|
ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
struct fd f;
|
|
|
|
ret = -EBADF;
|
|
f = fdget(fd);
|
|
if (!f.file || !(f.file->f_mode & FMODE_READ))
|
|
goto out;
|
|
|
|
/*
|
|
* The readahead() syscall is intended to run only on files
|
|
* that can execute readahead. If readahead is not possible
|
|
* on this file, then we must return -EINVAL.
|
|
*/
|
|
ret = -EINVAL;
|
|
if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
|
|
!S_ISREG(file_inode(f.file)->i_mode))
|
|
goto out;
|
|
|
|
ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
|
|
out:
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
|
|
{
|
|
return ksys_readahead(fd, offset, count);
|
|
}
|
|
|
|
/**
|
|
* readahead_expand - Expand a readahead request
|
|
* @ractl: The request to be expanded
|
|
* @new_start: The revised start
|
|
* @new_len: The revised size of the request
|
|
*
|
|
* Attempt to expand a readahead request outwards from the current size to the
|
|
* specified size by inserting locked pages before and after the current window
|
|
* to increase the size to the new window. This may involve the insertion of
|
|
* THPs, in which case the window may get expanded even beyond what was
|
|
* requested.
|
|
*
|
|
* The algorithm will stop if it encounters a conflicting page already in the
|
|
* pagecache and leave a smaller expansion than requested.
|
|
*
|
|
* The caller must check for this by examining the revised @ractl object for a
|
|
* different expansion than was requested.
|
|
*/
|
|
void readahead_expand(struct readahead_control *ractl,
|
|
loff_t new_start, size_t new_len)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
struct file_ra_state *ra = ractl->ra;
|
|
pgoff_t new_index, new_nr_pages;
|
|
gfp_t gfp_mask = readahead_gfp_mask(mapping);
|
|
|
|
new_index = new_start / PAGE_SIZE;
|
|
|
|
/* Expand the leading edge downwards */
|
|
while (ractl->_index > new_index) {
|
|
unsigned long index = ractl->_index - 1;
|
|
struct page *page = xa_load(&mapping->i_pages, index);
|
|
|
|
if (page && !xa_is_value(page))
|
|
return; /* Page apparently present */
|
|
|
|
page = __page_cache_alloc(gfp_mask);
|
|
if (!page)
|
|
return;
|
|
if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
|
|
put_page(page);
|
|
return;
|
|
}
|
|
|
|
ractl->_nr_pages++;
|
|
ractl->_index = page->index;
|
|
}
|
|
|
|
new_len += new_start - readahead_pos(ractl);
|
|
new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
|
|
|
|
/* Expand the trailing edge upwards */
|
|
while (ractl->_nr_pages < new_nr_pages) {
|
|
unsigned long index = ractl->_index + ractl->_nr_pages;
|
|
struct page *page = xa_load(&mapping->i_pages, index);
|
|
|
|
if (page && !xa_is_value(page))
|
|
return; /* Page apparently present */
|
|
|
|
page = __page_cache_alloc(gfp_mask);
|
|
if (!page)
|
|
return;
|
|
if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
|
|
put_page(page);
|
|
return;
|
|
}
|
|
ractl->_nr_pages++;
|
|
if (ra) {
|
|
ra->size++;
|
|
ra->async_size++;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(readahead_expand);
|