linux/drivers/net/ethernet/cavium/liquidio/octeon_network.h
Raghu Vatsavayi a2c64b67c6 liquidio: Remove redundant code
This patch removes redundant file includes and conditions.
Provides some meaningful comments and code alignment.

Signed-off-by: Derek Chickles <derek.chickles@caviumnetworks.com>
Signed-off-by: Satanand Burla <satananda.burla@caviumnetworks.com>
Signed-off-by: Felix Manlunas <felix.manlunas@caviumnetworks.com>
Signed-off-by: Raghu Vatsavayi <raghu.vatsavayi@caviumnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-04 16:15:32 -07:00

425 lines
10 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2015 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium, Inc. for more information
**********************************************************************/
/*! \file octeon_network.h
* \brief Host NIC Driver: Structure and Macro definitions used by NIC Module.
*/
#ifndef __OCTEON_NETWORK_H__
#define __OCTEON_NETWORK_H__
#include <linux/version.h>
#include <linux/dma-mapping.h>
#include <linux/ptp_clock_kernel.h>
#define LIO_MAX_MTU_SIZE (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE)
#define LIO_MIN_MTU_SIZE 68
struct oct_nic_stats_resp {
u64 rh;
struct oct_link_stats stats;
u64 status;
};
struct oct_nic_stats_ctrl {
struct completion complete;
struct net_device *netdev;
};
/** LiquidIO per-interface network private data */
struct lio {
/** State of the interface. Rx/Tx happens only in the RUNNING state. */
atomic_t ifstate;
/** Octeon Interface index number. This device will be represented as
* oct<ifidx> in the system.
*/
int ifidx;
/** Octeon Input queue to use to transmit for this network interface. */
int txq;
/** Octeon Output queue from which pkts arrive
* for this network interface.
*/
int rxq;
/** Guards each glist */
spinlock_t *glist_lock;
/** Array of gather component linked lists */
struct list_head *glist;
/** Pointer to the NIC properties for the Octeon device this network
* interface is associated with.
*/
struct octdev_props *octprops;
/** Pointer to the octeon device structure. */
struct octeon_device *oct_dev;
struct net_device *netdev;
/** Link information sent by the core application for this interface. */
struct oct_link_info linfo;
/** counter of link changes */
u64 link_changes;
/** Size of Tx queue for this octeon device. */
u32 tx_qsize;
/** Size of Rx queue for this octeon device. */
u32 rx_qsize;
/** Size of MTU this octeon device. */
u32 mtu;
/** msg level flag per interface. */
u32 msg_enable;
/** Copy of Interface capabilities: TSO, TSO6, LRO, Chescksums . */
u64 dev_capability;
/* Copy of transmit encapsulation capabilities:
* TSO, TSO6, Checksums for this device for Kernel
* 3.10.0 onwards
*/
u64 enc_dev_capability;
/** Copy of beacaon reg in phy */
u32 phy_beacon_val;
/** Copy of ctrl reg in phy */
u32 led_ctrl_val;
/* PTP clock information */
struct ptp_clock_info ptp_info;
struct ptp_clock *ptp_clock;
s64 ptp_adjust;
/* for atomic access to Octeon PTP reg and data struct */
spinlock_t ptp_lock;
/* Interface info */
u32 intf_open;
/* work queue for txq status */
struct cavium_wq txq_status_wq;
};
#define LIO_SIZE (sizeof(struct lio))
#define GET_LIO(netdev) ((struct lio *)netdev_priv(netdev))
/**
* \brief Enable or disable feature
* @param netdev pointer to network device
* @param cmd Command that just requires acknowledgment
* @param param1 Parameter to command
*/
int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1);
/**
* \brief Link control command completion callback
* @param nctrl_ptr pointer to control packet structure
*
* This routine is called by the callback function when a ctrl pkt sent to
* core app completes. The nctrl_ptr contains a copy of the command type
* and data sent to the core app. This routine is only called if the ctrl
* pkt was sent successfully to the core app.
*/
void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr);
/**
* \brief Register ethtool operations
* @param netdev pointer to network device
*/
void liquidio_set_ethtool_ops(struct net_device *netdev);
#define SKB_ADJ_MASK 0x3F
#define SKB_ADJ (SKB_ADJ_MASK + 1)
#define MIN_SKB_SIZE 256 /* 8 bytes and more - 8 bytes for PTP */
#define LIO_RXBUFFER_SZ 2048
static inline void
*recv_buffer_alloc(struct octeon_device *oct,
struct octeon_skb_page_info *pg_info)
{
struct page *page;
struct sk_buff *skb;
struct octeon_skb_page_info *skb_pg_info;
page = alloc_page(GFP_ATOMIC | __GFP_COLD);
if (unlikely(!page))
return NULL;
skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ);
if (unlikely(!skb)) {
__free_page(page);
pg_info->page = NULL;
return NULL;
}
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
/* Get DMA info */
pg_info->dma = dma_map_page(&oct->pci_dev->dev, page, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
/* Mapping failed!! */
if (dma_mapping_error(&oct->pci_dev->dev, pg_info->dma)) {
__free_page(page);
dev_kfree_skb_any((struct sk_buff *)skb);
pg_info->page = NULL;
return NULL;
}
pg_info->page = page;
pg_info->page_offset = 0;
skb_pg_info->page = page;
skb_pg_info->page_offset = 0;
skb_pg_info->dma = pg_info->dma;
return (void *)skb;
}
static inline void
*recv_buffer_fast_alloc(u32 size)
{
struct sk_buff *skb;
struct octeon_skb_page_info *skb_pg_info;
skb = dev_alloc_skb(size + SKB_ADJ);
if (unlikely(!skb))
return NULL;
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
skb_pg_info->page = NULL;
skb_pg_info->page_offset = 0;
skb_pg_info->dma = 0;
return skb;
}
static inline int
recv_buffer_recycle(struct octeon_device *oct, void *buf)
{
struct octeon_skb_page_info *pg_info = buf;
if (!pg_info->page) {
dev_err(&oct->pci_dev->dev, "%s: pg_info->page NULL\n",
__func__);
return -ENOMEM;
}
if (unlikely(page_count(pg_info->page) != 1) ||
unlikely(page_to_nid(pg_info->page) != numa_node_id())) {
dma_unmap_page(&oct->pci_dev->dev,
pg_info->dma, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
return -ENOMEM;
}
/* Flip to other half of the buffer */
if (pg_info->page_offset == 0)
pg_info->page_offset = LIO_RXBUFFER_SZ;
else
pg_info->page_offset = 0;
page_ref_inc(pg_info->page);
return 0;
}
static inline void
*recv_buffer_reuse(struct octeon_device *oct, void *buf)
{
struct octeon_skb_page_info *pg_info = buf, *skb_pg_info;
struct sk_buff *skb;
skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ);
if (unlikely(!skb)) {
dma_unmap_page(&oct->pci_dev->dev,
pg_info->dma, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
return NULL;
}
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
skb_pg_info->page = pg_info->page;
skb_pg_info->page_offset = pg_info->page_offset;
skb_pg_info->dma = pg_info->dma;
return skb;
}
static inline void
recv_buffer_destroy(void *buffer, struct octeon_skb_page_info *pg_info)
{
struct sk_buff *skb = (struct sk_buff *)buffer;
put_page(pg_info->page);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
if (skb)
dev_kfree_skb_any(skb);
}
static inline void recv_buffer_free(void *buffer)
{
struct sk_buff *skb = (struct sk_buff *)buffer;
struct octeon_skb_page_info *pg_info;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
if (pg_info->page) {
put_page(pg_info->page);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
}
dev_kfree_skb_any((struct sk_buff *)buffer);
}
static inline void
recv_buffer_fast_free(void *buffer)
{
dev_kfree_skb_any((struct sk_buff *)buffer);
}
static inline void tx_buffer_free(void *buffer)
{
dev_kfree_skb_any((struct sk_buff *)buffer);
}
#define lio_dma_alloc(oct, size, dma_addr) \
dma_alloc_coherent(&oct->pci_dev->dev, size, dma_addr, GFP_KERNEL)
#define lio_dma_free(oct, size, virt_addr, dma_addr) \
dma_free_coherent(&oct->pci_dev->dev, size, virt_addr, dma_addr)
static inline
void *get_rbd(struct sk_buff *skb)
{
struct octeon_skb_page_info *pg_info;
unsigned char *va;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
va = page_address(pg_info->page) + pg_info->page_offset;
return va;
}
static inline u64
lio_map_ring_info(struct octeon_droq *droq, u32 i)
{
dma_addr_t dma_addr;
struct octeon_device *oct = droq->oct_dev;
dma_addr = dma_map_single(&oct->pci_dev->dev, &droq->info_list[i],
OCT_DROQ_INFO_SIZE, DMA_FROM_DEVICE);
WARN_ON(dma_mapping_error(&oct->pci_dev->dev, dma_addr));
return (u64)dma_addr;
}
static inline void
lio_unmap_ring_info(struct pci_dev *pci_dev,
u64 info_ptr, u32 size)
{
dma_unmap_single(&pci_dev->dev, info_ptr, size, DMA_FROM_DEVICE);
}
static inline u64
lio_map_ring(void *buf)
{
dma_addr_t dma_addr;
struct sk_buff *skb = (struct sk_buff *)buf;
struct octeon_skb_page_info *pg_info;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
if (!pg_info->page) {
pr_err("%s: pg_info->page NULL\n", __func__);
WARN_ON(1);
}
/* Get DMA info */
dma_addr = pg_info->dma;
if (!pg_info->dma) {
pr_err("%s: ERROR it should be already available\n",
__func__);
WARN_ON(1);
}
dma_addr += pg_info->page_offset;
return (u64)dma_addr;
}
static inline void
lio_unmap_ring(struct pci_dev *pci_dev,
u64 buf_ptr)
{
dma_unmap_page(&pci_dev->dev,
buf_ptr, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
}
static inline void *octeon_fast_packet_alloc(u32 size)
{
return recv_buffer_fast_alloc(size);
}
static inline void octeon_fast_packet_next(struct octeon_droq *droq,
struct sk_buff *nicbuf,
int copy_len,
int idx)
{
memcpy(skb_put(nicbuf, copy_len),
get_rbd(droq->recv_buf_list[idx].buffer), copy_len);
}
#endif