linux/drivers/infiniband/core/cache.c
Kees Cook 6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

1300 lines
32 KiB
C

/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005 Voltaire, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <net/addrconf.h>
#include <rdma/ib_cache.h>
#include "core_priv.h"
struct ib_pkey_cache {
int table_len;
u16 table[0];
};
struct ib_update_work {
struct work_struct work;
struct ib_device *device;
u8 port_num;
bool enforce_security;
};
union ib_gid zgid;
EXPORT_SYMBOL(zgid);
enum gid_attr_find_mask {
GID_ATTR_FIND_MASK_GID = 1UL << 0,
GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3,
};
enum gid_table_entry_props {
GID_TABLE_ENTRY_INVALID = 1UL << 0,
GID_TABLE_ENTRY_DEFAULT = 1UL << 1,
};
struct ib_gid_table_entry {
unsigned long props;
union ib_gid gid;
struct ib_gid_attr attr;
void *context;
};
struct ib_gid_table {
int sz;
/* In RoCE, adding a GID to the table requires:
* (a) Find if this GID is already exists.
* (b) Find a free space.
* (c) Write the new GID
*
* Delete requires different set of operations:
* (a) Find the GID
* (b) Delete it.
*
**/
/* Any writer to data_vec must hold this lock and the write side of
* rwlock. readers must hold only rwlock. All writers must be in a
* sleepable context.
*/
struct mutex lock;
/* rwlock protects data_vec[ix]->props. */
rwlock_t rwlock;
struct ib_gid_table_entry *data_vec;
};
static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
{
struct ib_event event;
event.device = ib_dev;
event.element.port_num = port;
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
static const char * const gid_type_str[] = {
[IB_GID_TYPE_IB] = "IB/RoCE v1",
[IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2",
};
const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
{
if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
return gid_type_str[gid_type];
return "Invalid GID type";
}
EXPORT_SYMBOL(ib_cache_gid_type_str);
/** rdma_is_zero_gid - Check if given GID is zero or not.
* @gid: GID to check
* Returns true if given GID is zero, returns false otherwise.
*/
bool rdma_is_zero_gid(const union ib_gid *gid)
{
return !memcmp(gid, &zgid, sizeof(*gid));
}
EXPORT_SYMBOL(rdma_is_zero_gid);
int ib_cache_gid_parse_type_str(const char *buf)
{
unsigned int i;
size_t len;
int err = -EINVAL;
len = strlen(buf);
if (len == 0)
return -EINVAL;
if (buf[len - 1] == '\n')
len--;
for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
len == strlen(gid_type_str[i])) {
err = i;
break;
}
return err;
}
EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
{
return device->cache.ports[port - rdma_start_port(device)].gid;
}
static void del_roce_gid(struct ib_device *device, u8 port_num,
struct ib_gid_table *table, int ix)
{
pr_debug("%s device=%s port=%d index=%d gid %pI6\n", __func__,
device->name, port_num, ix,
table->data_vec[ix].gid.raw);
if (rdma_cap_roce_gid_table(device, port_num))
device->del_gid(&table->data_vec[ix].attr,
&table->data_vec[ix].context);
dev_put(table->data_vec[ix].attr.ndev);
}
static int add_roce_gid(struct ib_gid_table *table,
const union ib_gid *gid,
const struct ib_gid_attr *attr)
{
struct ib_gid_table_entry *entry;
int ix = attr->index;
int ret = 0;
if (!attr->ndev) {
pr_err("%s NULL netdev device=%s port=%d index=%d\n",
__func__, attr->device->name, attr->port_num,
attr->index);
return -EINVAL;
}
entry = &table->data_vec[ix];
if ((entry->props & GID_TABLE_ENTRY_INVALID) == 0) {
WARN(1, "GID table corruption device=%s port=%d index=%d\n",
attr->device->name, attr->port_num,
attr->index);
return -EINVAL;
}
if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
ret = attr->device->add_gid(gid, attr, &entry->context);
if (ret) {
pr_err("%s GID add failed device=%s port=%d index=%d\n",
__func__, attr->device->name, attr->port_num,
attr->index);
goto add_err;
}
}
dev_hold(attr->ndev);
add_err:
if (!ret)
pr_debug("%s device=%s port=%d index=%d gid %pI6\n", __func__,
attr->device->name, attr->port_num, ix, gid->raw);
return ret;
}
/**
* add_modify_gid - Add or modify GID table entry
*
* @table: GID table in which GID to be added or modified
* @gid: GID content
* @attr: Attributes of the GID
*
* Returns 0 on success or appropriate error code. It accepts zero
* GID addition for non RoCE ports for HCA's who report them as valid
* GID. However such zero GIDs are not added to the cache.
*/
static int add_modify_gid(struct ib_gid_table *table,
const union ib_gid *gid,
const struct ib_gid_attr *attr)
{
int ret;
if (rdma_protocol_roce(attr->device, attr->port_num)) {
ret = add_roce_gid(table, gid, attr);
if (ret)
return ret;
} else {
/*
* Some HCA's report multiple GID entries with only one
* valid GID, but remaining as zero GID.
* So ignore such behavior for IB link layer and don't
* fail the call, but don't add such entry to GID cache.
*/
if (rdma_is_zero_gid(gid))
return 0;
}
lockdep_assert_held(&table->lock);
memcpy(&table->data_vec[attr->index].gid, gid, sizeof(*gid));
memcpy(&table->data_vec[attr->index].attr, attr, sizeof(*attr));
write_lock_irq(&table->rwlock);
table->data_vec[attr->index].props &= ~GID_TABLE_ENTRY_INVALID;
write_unlock_irq(&table->rwlock);
return 0;
}
/**
* del_gid - Delete GID table entry
*
* @ib_dev: IB device whose GID entry to be deleted
* @port: Port number of the IB device
* @table: GID table of the IB device for a port
* @ix: GID entry index to delete
*
*/
static void del_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix)
{
lockdep_assert_held(&table->lock);
write_lock_irq(&table->rwlock);
table->data_vec[ix].props |= GID_TABLE_ENTRY_INVALID;
write_unlock_irq(&table->rwlock);
if (rdma_protocol_roce(ib_dev, port))
del_roce_gid(ib_dev, port, table, ix);
memset(&table->data_vec[ix].gid, 0, sizeof(table->data_vec[ix].gid));
memset(&table->data_vec[ix].attr, 0, sizeof(table->data_vec[ix].attr));
table->data_vec[ix].context = NULL;
}
/* rwlock should be read locked, or lock should be held */
static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
const struct ib_gid_attr *val, bool default_gid,
unsigned long mask, int *pempty)
{
int i = 0;
int found = -1;
int empty = pempty ? -1 : 0;
while (i < table->sz && (found < 0 || empty < 0)) {
struct ib_gid_table_entry *data = &table->data_vec[i];
struct ib_gid_attr *attr = &data->attr;
int curr_index = i;
i++;
/* find_gid() is used during GID addition where it is expected
* to return a free entry slot which is not duplicate.
* Free entry slot is requested and returned if pempty is set,
* so lookup free slot only if requested.
*/
if (pempty && empty < 0) {
if (data->props & GID_TABLE_ENTRY_INVALID &&
(default_gid ==
!!(data->props & GID_TABLE_ENTRY_DEFAULT))) {
/*
* Found an invalid (free) entry; allocate it.
* If default GID is requested, then our
* found slot must be one of the DEFAULT
* reserved slots or we fail.
* This ensures that only DEFAULT reserved
* slots are used for default property GIDs.
*/
empty = curr_index;
}
}
/*
* Additionally find_gid() is used to find valid entry during
* lookup operation, where validity needs to be checked. So
* find the empty entry first to continue to search for a free
* slot and ignore its INVALID flag.
*/
if (data->props & GID_TABLE_ENTRY_INVALID)
continue;
if (found >= 0)
continue;
if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
attr->gid_type != val->gid_type)
continue;
if (mask & GID_ATTR_FIND_MASK_GID &&
memcmp(gid, &data->gid, sizeof(*gid)))
continue;
if (mask & GID_ATTR_FIND_MASK_NETDEV &&
attr->ndev != val->ndev)
continue;
if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
!!(data->props & GID_TABLE_ENTRY_DEFAULT) !=
default_gid)
continue;
found = curr_index;
}
if (pempty)
*pempty = empty;
return found;
}
static void make_default_gid(struct net_device *dev, union ib_gid *gid)
{
gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
addrconf_ifid_eui48(&gid->raw[8], dev);
}
static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr,
unsigned long mask, bool default_gid)
{
struct ib_gid_table *table;
int ret = 0;
int empty;
int ix;
/* Do not allow adding zero GID in support of
* IB spec version 1.3 section 4.1.1 point (6) and
* section 12.7.10 and section 12.7.20
*/
if (rdma_is_zero_gid(gid))
return -EINVAL;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, default_gid, mask, &empty);
if (ix >= 0)
goto out_unlock;
if (empty < 0) {
ret = -ENOSPC;
goto out_unlock;
}
attr->device = ib_dev;
attr->index = empty;
attr->port_num = port;
ret = add_modify_gid(table, gid, attr);
if (!ret)
dispatch_gid_change_event(ib_dev, port);
out_unlock:
mutex_unlock(&table->lock);
if (ret)
pr_warn("%s: unable to add gid %pI6 error=%d\n",
__func__, gid->raw, ret);
return ret;
}
int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
struct net_device *idev;
unsigned long mask;
int ret;
if (ib_dev->get_netdev) {
idev = ib_dev->get_netdev(ib_dev, port);
if (idev && attr->ndev != idev) {
union ib_gid default_gid;
/* Adding default GIDs in not permitted */
make_default_gid(idev, &default_gid);
if (!memcmp(gid, &default_gid, sizeof(*gid))) {
dev_put(idev);
return -EPERM;
}
}
if (idev)
dev_put(idev);
}
mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_NETDEV;
ret = __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
return ret;
}
static int
_ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr,
unsigned long mask, bool default_gid)
{
struct ib_gid_table *table;
int ret = 0;
int ix;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, default_gid, mask, NULL);
if (ix < 0) {
ret = -EINVAL;
goto out_unlock;
}
del_gid(ib_dev, port, table, ix);
dispatch_gid_change_event(ib_dev, port);
out_unlock:
mutex_unlock(&table->lock);
if (ret)
pr_debug("%s: can't delete gid %pI6 error=%d\n",
__func__, gid->raw, ret);
return ret;
}
int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_DEFAULT |
GID_ATTR_FIND_MASK_NETDEV;
return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
}
int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
struct net_device *ndev)
{
struct ib_gid_table *table;
int ix;
bool deleted = false;
table = rdma_gid_table(ib_dev, port);
mutex_lock(&table->lock);
for (ix = 0; ix < table->sz; ix++) {
if (table->data_vec[ix].attr.ndev == ndev) {
del_gid(ib_dev, port, table, ix);
deleted = true;
}
}
mutex_unlock(&table->lock);
if (deleted)
dispatch_gid_change_event(ib_dev, port);
return 0;
}
static int __ib_cache_gid_get(struct ib_device *ib_dev, u8 port, int index,
union ib_gid *gid, struct ib_gid_attr *attr)
{
struct ib_gid_table *table;
table = rdma_gid_table(ib_dev, port);
if (index < 0 || index >= table->sz)
return -EINVAL;
if (table->data_vec[index].props & GID_TABLE_ENTRY_INVALID)
return -EINVAL;
memcpy(gid, &table->data_vec[index].gid, sizeof(*gid));
if (attr) {
memcpy(attr, &table->data_vec[index].attr, sizeof(*attr));
if (attr->ndev)
dev_hold(attr->ndev);
}
return 0;
}
static int _ib_cache_gid_table_find(struct ib_device *ib_dev,
const union ib_gid *gid,
const struct ib_gid_attr *val,
unsigned long mask,
u8 *port, u16 *index)
{
struct ib_gid_table *table;
u8 p;
int local_index;
unsigned long flags;
for (p = 0; p < ib_dev->phys_port_cnt; p++) {
table = ib_dev->cache.ports[p].gid;
read_lock_irqsave(&table->rwlock, flags);
local_index = find_gid(table, gid, val, false, mask, NULL);
if (local_index >= 0) {
if (index)
*index = local_index;
if (port)
*port = p + rdma_start_port(ib_dev);
read_unlock_irqrestore(&table->rwlock, flags);
return 0;
}
read_unlock_irqrestore(&table->rwlock, flags);
}
return -ENOENT;
}
static int ib_cache_gid_find(struct ib_device *ib_dev,
const union ib_gid *gid,
enum ib_gid_type gid_type,
struct net_device *ndev, u8 *port,
u16 *index)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE;
struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
return _ib_cache_gid_table_find(ib_dev, gid, &gid_attr_val,
mask, port, index);
}
/**
* ib_find_cached_gid_by_port - Returns the GID table index where a specified
* GID value occurs. It searches for the specified GID value in the local
* software cache.
* @device: The device to query.
* @gid: The GID value to search for.
* @gid_type: The GID type to search for.
* @port_num: The port number of the device where the GID value should be
* searched.
* @ndev: In RoCE, the net device of the device. Null means ignore.
* @index: The index into the cached GID table where the GID was found. This
* parameter may be NULL.
*/
int ib_find_cached_gid_by_port(struct ib_device *ib_dev,
const union ib_gid *gid,
enum ib_gid_type gid_type,
u8 port, struct net_device *ndev,
u16 *index)
{
int local_index;
struct ib_gid_table *table;
unsigned long mask = GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_GID_TYPE;
struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
unsigned long flags;
if (!rdma_is_port_valid(ib_dev, port))
return -ENOENT;
table = rdma_gid_table(ib_dev, port);
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
read_lock_irqsave(&table->rwlock, flags);
local_index = find_gid(table, gid, &val, false, mask, NULL);
if (local_index >= 0) {
if (index)
*index = local_index;
read_unlock_irqrestore(&table->rwlock, flags);
return 0;
}
read_unlock_irqrestore(&table->rwlock, flags);
return -ENOENT;
}
EXPORT_SYMBOL(ib_find_cached_gid_by_port);
/**
* ib_cache_gid_find_by_filter - Returns the GID table index where a specified
* GID value occurs
* @device: The device to query.
* @gid: The GID value to search for.
* @port_num: The port number of the device where the GID value could be
* searched.
* @filter: The filter function is executed on any matching GID in the table.
* If the filter function returns true, the corresponding index is returned,
* otherwise, we continue searching the GID table. It's guaranteed that
* while filter is executed, ndev field is valid and the structure won't
* change. filter is executed in an atomic context. filter must not be NULL.
* @index: The index into the cached GID table where the GID was found. This
* parameter may be NULL.
*
* ib_cache_gid_find_by_filter() searches for the specified GID value
* of which the filter function returns true in the port's GID table.
* This function is only supported on RoCE ports.
*
*/
static int ib_cache_gid_find_by_filter(struct ib_device *ib_dev,
const union ib_gid *gid,
u8 port,
bool (*filter)(const union ib_gid *,
const struct ib_gid_attr *,
void *),
void *context,
u16 *index)
{
struct ib_gid_table *table;
unsigned int i;
unsigned long flags;
bool found = false;
if (!rdma_is_port_valid(ib_dev, port) ||
!rdma_protocol_roce(ib_dev, port))
return -EPROTONOSUPPORT;
table = rdma_gid_table(ib_dev, port);
read_lock_irqsave(&table->rwlock, flags);
for (i = 0; i < table->sz; i++) {
struct ib_gid_attr attr;
if (table->data_vec[i].props & GID_TABLE_ENTRY_INVALID)
continue;
if (memcmp(gid, &table->data_vec[i].gid, sizeof(*gid)))
continue;
memcpy(&attr, &table->data_vec[i].attr, sizeof(attr));
if (filter(gid, &attr, context)) {
found = true;
if (index)
*index = i;
break;
}
}
read_unlock_irqrestore(&table->rwlock, flags);
if (!found)
return -ENOENT;
return 0;
}
static struct ib_gid_table *alloc_gid_table(int sz)
{
struct ib_gid_table *table =
kzalloc(sizeof(struct ib_gid_table), GFP_KERNEL);
int i;
if (!table)
return NULL;
table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
if (!table->data_vec)
goto err_free_table;
mutex_init(&table->lock);
table->sz = sz;
rwlock_init(&table->rwlock);
/* Mark all entries as invalid so that allocator can allocate
* one of the invalid (free) entry.
*/
for (i = 0; i < sz; i++)
table->data_vec[i].props |= GID_TABLE_ENTRY_INVALID;
return table;
err_free_table:
kfree(table);
return NULL;
}
static void release_gid_table(struct ib_gid_table *table)
{
if (table) {
kfree(table->data_vec);
kfree(table);
}
}
static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
int i;
bool deleted = false;
if (!table)
return;
mutex_lock(&table->lock);
for (i = 0; i < table->sz; ++i) {
if (!rdma_is_zero_gid(&table->data_vec[i].gid)) {
del_gid(ib_dev, port, table, i);
deleted = true;
}
}
mutex_unlock(&table->lock);
if (deleted)
dispatch_gid_change_event(ib_dev, port);
}
void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
struct net_device *ndev,
unsigned long gid_type_mask,
enum ib_cache_gid_default_mode mode)
{
union ib_gid gid = { };
struct ib_gid_attr gid_attr;
struct ib_gid_table *table;
unsigned int gid_type;
unsigned long mask;
table = rdma_gid_table(ib_dev, port);
mask = GID_ATTR_FIND_MASK_GID_TYPE |
GID_ATTR_FIND_MASK_DEFAULT |
GID_ATTR_FIND_MASK_NETDEV;
memset(&gid_attr, 0, sizeof(gid_attr));
gid_attr.ndev = ndev;
for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
if (1UL << gid_type & ~gid_type_mask)
continue;
gid_attr.gid_type = gid_type;
if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
make_default_gid(ndev, &gid);
__ib_cache_gid_add(ib_dev, port, &gid,
&gid_attr, mask, true);
} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
_ib_cache_gid_del(ib_dev, port, &gid,
&gid_attr, mask, true);
}
}
}
static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
unsigned int i;
unsigned long roce_gid_type_mask;
unsigned int num_default_gids;
unsigned int current_gid = 0;
roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
num_default_gids = hweight_long(roce_gid_type_mask);
for (i = 0; i < num_default_gids && i < table->sz; i++) {
struct ib_gid_table_entry *entry = &table->data_vec[i];
entry->props |= GID_TABLE_ENTRY_DEFAULT;
current_gid = find_next_bit(&roce_gid_type_mask,
BITS_PER_LONG,
current_gid);
entry->attr.gid_type = current_gid++;
}
}
static void gid_table_release_one(struct ib_device *ib_dev)
{
struct ib_gid_table *table;
u8 port;
for (port = 0; port < ib_dev->phys_port_cnt; port++) {
table = ib_dev->cache.ports[port].gid;
release_gid_table(table);
ib_dev->cache.ports[port].gid = NULL;
}
}
static int _gid_table_setup_one(struct ib_device *ib_dev)
{
u8 port;
struct ib_gid_table *table;
for (port = 0; port < ib_dev->phys_port_cnt; port++) {
u8 rdma_port = port + rdma_start_port(ib_dev);
table = alloc_gid_table(
ib_dev->port_immutable[rdma_port].gid_tbl_len);
if (!table)
goto rollback_table_setup;
gid_table_reserve_default(ib_dev, rdma_port, table);
ib_dev->cache.ports[port].gid = table;
}
return 0;
rollback_table_setup:
gid_table_release_one(ib_dev);
return -ENOMEM;
}
static void gid_table_cleanup_one(struct ib_device *ib_dev)
{
struct ib_gid_table *table;
u8 port;
for (port = 0; port < ib_dev->phys_port_cnt; port++) {
table = ib_dev->cache.ports[port].gid;
cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev),
table);
}
}
static int gid_table_setup_one(struct ib_device *ib_dev)
{
int err;
err = _gid_table_setup_one(ib_dev);
if (err)
return err;
rdma_roce_rescan_device(ib_dev);
return err;
}
int ib_get_cached_gid(struct ib_device *device,
u8 port_num,
int index,
union ib_gid *gid,
struct ib_gid_attr *gid_attr)
{
int res;
unsigned long flags;
struct ib_gid_table *table;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
table = rdma_gid_table(device, port_num);
read_lock_irqsave(&table->rwlock, flags);
res = __ib_cache_gid_get(device, port_num, index, gid, gid_attr);
read_unlock_irqrestore(&table->rwlock, flags);
return res;
}
EXPORT_SYMBOL(ib_get_cached_gid);
/**
* ib_find_cached_gid - Returns the port number and GID table index where
* a specified GID value occurs.
* @device: The device to query.
* @gid: The GID value to search for.
* @gid_type: The GID type to search for.
* @ndev: In RoCE, the net device of the device. NULL means ignore.
* @port_num: The port number of the device where the GID value was found.
* @index: The index into the cached GID table where the GID was found. This
* parameter may be NULL.
*
* ib_find_cached_gid() searches for the specified GID value in
* the local software cache.
*/
int ib_find_cached_gid(struct ib_device *device,
const union ib_gid *gid,
enum ib_gid_type gid_type,
struct net_device *ndev,
u8 *port_num,
u16 *index)
{
return ib_cache_gid_find(device, gid, gid_type, ndev, port_num, index);
}
EXPORT_SYMBOL(ib_find_cached_gid);
int ib_find_gid_by_filter(struct ib_device *device,
const union ib_gid *gid,
u8 port_num,
bool (*filter)(const union ib_gid *gid,
const struct ib_gid_attr *,
void *),
void *context, u16 *index)
{
/* Only RoCE GID table supports filter function */
if (!rdma_protocol_roce(device, port_num) && filter)
return -EPROTONOSUPPORT;
return ib_cache_gid_find_by_filter(device, gid,
port_num, filter,
context, index);
}
int ib_get_cached_pkey(struct ib_device *device,
u8 port_num,
int index,
u16 *pkey)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.ports[port_num - rdma_start_port(device)].pkey;
if (index < 0 || index >= cache->table_len)
ret = -EINVAL;
else
*pkey = cache->table[index];
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_pkey);
int ib_get_cached_subnet_prefix(struct ib_device *device,
u8 port_num,
u64 *sn_pfx)
{
unsigned long flags;
int p;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
p = port_num - rdma_start_port(device);
read_lock_irqsave(&device->cache.lock, flags);
*sn_pfx = device->cache.ports[p].subnet_prefix;
read_unlock_irqrestore(&device->cache.lock, flags);
return 0;
}
EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
int ib_find_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
int partial_ix = -1;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.ports[port_num - rdma_start_port(device)].pkey;
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
if (cache->table[i] & 0x8000) {
*index = i;
ret = 0;
break;
} else
partial_ix = i;
}
if (ret && partial_ix >= 0) {
*index = partial_ix;
ret = 0;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_cached_pkey);
int ib_find_exact_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.ports[port_num - rdma_start_port(device)].pkey;
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if (cache->table[i] == pkey) {
*index = i;
ret = 0;
break;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_exact_cached_pkey);
int ib_get_cached_lmc(struct ib_device *device,
u8 port_num,
u8 *lmc)
{
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*lmc = device->cache.ports[port_num - rdma_start_port(device)].lmc;
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_lmc);
int ib_get_cached_port_state(struct ib_device *device,
u8 port_num,
enum ib_port_state *port_state)
{
unsigned long flags;
int ret = 0;
if (!rdma_is_port_valid(device, port_num))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*port_state = device->cache.ports[port_num
- rdma_start_port(device)].port_state;
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_port_state);
static int config_non_roce_gid_cache(struct ib_device *device,
u8 port, int gid_tbl_len)
{
struct ib_gid_attr gid_attr = {};
struct ib_gid_table *table;
union ib_gid gid;
int ret = 0;
int i;
gid_attr.device = device;
gid_attr.port_num = port;
table = rdma_gid_table(device, port);
mutex_lock(&table->lock);
for (i = 0; i < gid_tbl_len; ++i) {
if (!device->query_gid)
continue;
ret = device->query_gid(device, port, i, &gid);
if (ret) {
pr_warn("query_gid failed (%d) for %s (index %d)\n",
ret, device->name, i);
goto err;
}
gid_attr.index = i;
add_modify_gid(table, &gid, &gid_attr);
}
err:
mutex_unlock(&table->lock);
return ret;
}
static void ib_cache_update(struct ib_device *device,
u8 port,
bool enforce_security)
{
struct ib_port_attr *tprops = NULL;
struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache;
int i;
int ret;
struct ib_gid_table *table;
if (!rdma_is_port_valid(device, port))
return;
table = rdma_gid_table(device, port);
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
if (!tprops)
return;
ret = ib_query_port(device, port, tprops);
if (ret) {
pr_warn("ib_query_port failed (%d) for %s\n",
ret, device->name);
goto err;
}
if (!rdma_protocol_roce(device, port)) {
ret = config_non_roce_gid_cache(device, port,
tprops->gid_tbl_len);
if (ret)
goto err;
}
pkey_cache = kmalloc(struct_size(pkey_cache, table,
tprops->pkey_tbl_len),
GFP_KERNEL);
if (!pkey_cache)
goto err;
pkey_cache->table_len = tprops->pkey_tbl_len;
for (i = 0; i < pkey_cache->table_len; ++i) {
ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
if (ret) {
pr_warn("ib_query_pkey failed (%d) for %s (index %d)\n",
ret, device->name, i);
goto err;
}
}
write_lock_irq(&device->cache.lock);
old_pkey_cache = device->cache.ports[port -
rdma_start_port(device)].pkey;
device->cache.ports[port - rdma_start_port(device)].pkey = pkey_cache;
device->cache.ports[port - rdma_start_port(device)].lmc = tprops->lmc;
device->cache.ports[port - rdma_start_port(device)].port_state =
tprops->state;
device->cache.ports[port - rdma_start_port(device)].subnet_prefix =
tprops->subnet_prefix;
write_unlock_irq(&device->cache.lock);
if (enforce_security)
ib_security_cache_change(device,
port,
tprops->subnet_prefix);
kfree(old_pkey_cache);
kfree(tprops);
return;
err:
kfree(pkey_cache);
kfree(tprops);
}
static void ib_cache_task(struct work_struct *_work)
{
struct ib_update_work *work =
container_of(_work, struct ib_update_work, work);
ib_cache_update(work->device,
work->port_num,
work->enforce_security);
kfree(work);
}
static void ib_cache_event(struct ib_event_handler *handler,
struct ib_event *event)
{
struct ib_update_work *work;
if (event->event == IB_EVENT_PORT_ERR ||
event->event == IB_EVENT_PORT_ACTIVE ||
event->event == IB_EVENT_LID_CHANGE ||
event->event == IB_EVENT_PKEY_CHANGE ||
event->event == IB_EVENT_SM_CHANGE ||
event->event == IB_EVENT_CLIENT_REREGISTER ||
event->event == IB_EVENT_GID_CHANGE) {
work = kmalloc(sizeof *work, GFP_ATOMIC);
if (work) {
INIT_WORK(&work->work, ib_cache_task);
work->device = event->device;
work->port_num = event->element.port_num;
if (event->event == IB_EVENT_PKEY_CHANGE ||
event->event == IB_EVENT_GID_CHANGE)
work->enforce_security = true;
else
work->enforce_security = false;
queue_work(ib_wq, &work->work);
}
}
}
int ib_cache_setup_one(struct ib_device *device)
{
int p;
int err;
rwlock_init(&device->cache.lock);
device->cache.ports =
kcalloc(rdma_end_port(device) - rdma_start_port(device) + 1,
sizeof(*device->cache.ports),
GFP_KERNEL);
if (!device->cache.ports)
return -ENOMEM;
err = gid_table_setup_one(device);
if (err) {
kfree(device->cache.ports);
device->cache.ports = NULL;
return err;
}
for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p)
ib_cache_update(device, p + rdma_start_port(device), true);
INIT_IB_EVENT_HANDLER(&device->cache.event_handler,
device, ib_cache_event);
ib_register_event_handler(&device->cache.event_handler);
return 0;
}
void ib_cache_release_one(struct ib_device *device)
{
int p;
/*
* The release function frees all the cache elements.
* This function should be called as part of freeing
* all the device's resources when the cache could no
* longer be accessed.
*/
for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p)
kfree(device->cache.ports[p].pkey);
gid_table_release_one(device);
kfree(device->cache.ports);
}
void ib_cache_cleanup_one(struct ib_device *device)
{
/* The cleanup function unregisters the event handler,
* waits for all in-progress workqueue elements and cleans
* up the GID cache. This function should be called after
* the device was removed from the devices list and all
* clients were removed, so the cache exists but is
* non-functional and shouldn't be updated anymore.
*/
ib_unregister_event_handler(&device->cache.event_handler);
flush_workqueue(ib_wq);
gid_table_cleanup_one(device);
}