mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
5ef1630586
Only bfq needs to code to track icq, so make it conditional. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20211209063131.18537-12-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
510 lines
15 KiB
C
510 lines
15 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef BLK_INTERNAL_H
|
|
#define BLK_INTERNAL_H
|
|
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/memblock.h> /* for max_pfn/max_low_pfn */
|
|
#include <xen/xen.h>
|
|
#include "blk-crypto-internal.h"
|
|
|
|
struct elevator_type;
|
|
|
|
/* Max future timer expiry for timeouts */
|
|
#define BLK_MAX_TIMEOUT (5 * HZ)
|
|
|
|
extern struct dentry *blk_debugfs_root;
|
|
|
|
struct blk_flush_queue {
|
|
unsigned int flush_pending_idx:1;
|
|
unsigned int flush_running_idx:1;
|
|
blk_status_t rq_status;
|
|
unsigned long flush_pending_since;
|
|
struct list_head flush_queue[2];
|
|
struct list_head flush_data_in_flight;
|
|
struct request *flush_rq;
|
|
|
|
spinlock_t mq_flush_lock;
|
|
};
|
|
|
|
extern struct kmem_cache *blk_requestq_cachep;
|
|
extern struct kmem_cache *blk_requestq_srcu_cachep;
|
|
extern struct kobj_type blk_queue_ktype;
|
|
extern struct ida blk_queue_ida;
|
|
|
|
static inline void __blk_get_queue(struct request_queue *q)
|
|
{
|
|
kobject_get(&q->kobj);
|
|
}
|
|
|
|
bool is_flush_rq(struct request *req);
|
|
|
|
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
|
|
gfp_t flags);
|
|
void blk_free_flush_queue(struct blk_flush_queue *q);
|
|
|
|
void blk_freeze_queue(struct request_queue *q);
|
|
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
|
|
void blk_queue_start_drain(struct request_queue *q);
|
|
int __bio_queue_enter(struct request_queue *q, struct bio *bio);
|
|
bool submit_bio_checks(struct bio *bio);
|
|
|
|
static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
|
|
{
|
|
rcu_read_lock();
|
|
if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
|
|
goto fail;
|
|
|
|
/*
|
|
* The code that increments the pm_only counter must ensure that the
|
|
* counter is globally visible before the queue is unfrozen.
|
|
*/
|
|
if (blk_queue_pm_only(q) &&
|
|
(!pm || queue_rpm_status(q) == RPM_SUSPENDED))
|
|
goto fail_put;
|
|
|
|
rcu_read_unlock();
|
|
return true;
|
|
|
|
fail_put:
|
|
blk_queue_exit(q);
|
|
fail:
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
static inline int bio_queue_enter(struct bio *bio)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
|
|
|
|
if (blk_try_enter_queue(q, false))
|
|
return 0;
|
|
return __bio_queue_enter(q, bio);
|
|
}
|
|
|
|
#define BIO_INLINE_VECS 4
|
|
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
|
|
gfp_t gfp_mask);
|
|
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
|
|
|
|
static inline bool biovec_phys_mergeable(struct request_queue *q,
|
|
struct bio_vec *vec1, struct bio_vec *vec2)
|
|
{
|
|
unsigned long mask = queue_segment_boundary(q);
|
|
phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
|
|
phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
|
|
|
|
if (addr1 + vec1->bv_len != addr2)
|
|
return false;
|
|
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
|
|
return false;
|
|
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool __bvec_gap_to_prev(struct request_queue *q,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
return (offset & queue_virt_boundary(q)) ||
|
|
((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
|
|
}
|
|
|
|
/*
|
|
* Check if adding a bio_vec after bprv with offset would create a gap in
|
|
* the SG list. Most drivers don't care about this, but some do.
|
|
*/
|
|
static inline bool bvec_gap_to_prev(struct request_queue *q,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
if (!queue_virt_boundary(q))
|
|
return false;
|
|
return __bvec_gap_to_prev(q, bprv, offset);
|
|
}
|
|
|
|
static inline bool rq_mergeable(struct request *rq)
|
|
{
|
|
if (blk_rq_is_passthrough(rq))
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_FLUSH)
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_WRITE_ZEROES)
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_ZONE_APPEND)
|
|
return false;
|
|
|
|
if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
|
|
return false;
|
|
if (rq->rq_flags & RQF_NOMERGE_FLAGS)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* There are two different ways to handle DISCARD merges:
|
|
* 1) If max_discard_segments > 1, the driver treats every bio as a range and
|
|
* send the bios to controller together. The ranges don't need to be
|
|
* contiguous.
|
|
* 2) Otherwise, the request will be normal read/write requests. The ranges
|
|
* need to be contiguous.
|
|
*/
|
|
static inline bool blk_discard_mergable(struct request *req)
|
|
{
|
|
if (req_op(req) == REQ_OP_DISCARD &&
|
|
queue_max_discard_segments(req->q) > 1)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
void blk_flush_integrity(void);
|
|
bool __bio_integrity_endio(struct bio *);
|
|
void bio_integrity_free(struct bio *bio);
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
if (bio_integrity(bio))
|
|
return __bio_integrity_endio(bio);
|
|
return true;
|
|
}
|
|
|
|
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
|
|
struct request *);
|
|
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
|
|
struct bio *);
|
|
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(req->bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(next);
|
|
|
|
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
|
|
|
|
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
int blk_integrity_add(struct gendisk *disk);
|
|
void blk_integrity_del(struct gendisk *);
|
|
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
|
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
|
|
struct request *r1, struct request *r2)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
|
|
struct request *r, struct bio *b)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void blk_flush_integrity(void)
|
|
{
|
|
}
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
return true;
|
|
}
|
|
static inline void bio_integrity_free(struct bio *bio)
|
|
{
|
|
}
|
|
static inline int blk_integrity_add(struct gendisk *disk)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void blk_integrity_del(struct gendisk *disk)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
unsigned long blk_rq_timeout(unsigned long timeout);
|
|
void blk_add_timer(struct request *req);
|
|
const char *blk_status_to_str(blk_status_t status);
|
|
|
|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
|
|
struct bio *bio, unsigned int nr_segs);
|
|
|
|
/*
|
|
* Plug flush limits
|
|
*/
|
|
#define BLK_MAX_REQUEST_COUNT 32
|
|
#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
|
|
|
|
/*
|
|
* Internal elevator interface
|
|
*/
|
|
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
|
|
|
|
void blk_insert_flush(struct request *rq);
|
|
|
|
int elevator_switch_mq(struct request_queue *q,
|
|
struct elevator_type *new_e);
|
|
void elevator_exit(struct request_queue *q);
|
|
int elv_register_queue(struct request_queue *q, bool uevent);
|
|
void elv_unregister_queue(struct request_queue *q);
|
|
|
|
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count);
|
|
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
|
|
ssize_t part_timeout_store(struct device *, struct device_attribute *,
|
|
const char *, size_t);
|
|
|
|
static inline bool blk_may_split(struct request_queue *q, struct bio *bio)
|
|
{
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_SECURE_ERASE:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
case REQ_OP_WRITE_SAME:
|
|
return true; /* non-trivial splitting decisions */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* All drivers must accept single-segments bios that are <= PAGE_SIZE.
|
|
* This is a quick and dirty check that relies on the fact that
|
|
* bi_io_vec[0] is always valid if a bio has data. The check might
|
|
* lead to occasional false negatives when bios are cloned, but compared
|
|
* to the performance impact of cloned bios themselves the loop below
|
|
* doesn't matter anyway.
|
|
*/
|
|
return q->limits.chunk_sectors || bio->bi_vcnt != 1 ||
|
|
bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
|
|
}
|
|
|
|
void __blk_queue_split(struct request_queue *q, struct bio **bio,
|
|
unsigned int *nr_segs);
|
|
int ll_back_merge_fn(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
|
|
struct request *next);
|
|
unsigned int blk_recalc_rq_segments(struct request *rq);
|
|
void blk_rq_set_mixed_merge(struct request *rq);
|
|
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
|
|
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
|
|
|
|
int blk_dev_init(void);
|
|
|
|
/*
|
|
* Contribute to IO statistics IFF:
|
|
*
|
|
* a) it's attached to a gendisk, and
|
|
* b) the queue had IO stats enabled when this request was started
|
|
*/
|
|
static inline bool blk_do_io_stat(struct request *rq)
|
|
{
|
|
return (rq->rq_flags & RQF_IO_STAT) && rq->q->disk;
|
|
}
|
|
|
|
void update_io_ticks(struct block_device *part, unsigned long now, bool end);
|
|
|
|
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
|
|
{
|
|
req->cmd_flags |= REQ_NOMERGE;
|
|
if (req == q->last_merge)
|
|
q->last_merge = NULL;
|
|
}
|
|
|
|
/*
|
|
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
|
|
* is defined as 'unsigned int', meantime it has to aligned to with logical
|
|
* block size which is the minimum accepted unit by hardware.
|
|
*/
|
|
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
|
|
{
|
|
return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
|
|
}
|
|
|
|
/*
|
|
* The max bio size which is aligned to q->limits.discard_granularity. This
|
|
* is a hint to split large discard bio in generic block layer, then if device
|
|
* driver needs to split the discard bio into smaller ones, their bi_size can
|
|
* be very probably and easily aligned to discard_granularity of the device's
|
|
* queue.
|
|
*/
|
|
static inline unsigned int bio_aligned_discard_max_sectors(
|
|
struct request_queue *q)
|
|
{
|
|
return round_down(UINT_MAX, q->limits.discard_granularity) >>
|
|
SECTOR_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Internal io_context interface
|
|
*/
|
|
struct io_cq *ioc_find_get_icq(struct request_queue *q);
|
|
struct io_cq *ioc_lookup_icq(struct request_queue *q);
|
|
#ifdef CONFIG_BLK_ICQ
|
|
void ioc_clear_queue(struct request_queue *q);
|
|
#else
|
|
static inline void ioc_clear_queue(struct request_queue *q)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_ICQ */
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
|
|
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
|
|
const char *page, size_t count);
|
|
extern void blk_throtl_bio_endio(struct bio *bio);
|
|
extern void blk_throtl_stat_add(struct request *rq, u64 time);
|
|
#else
|
|
static inline void blk_throtl_bio_endio(struct bio *bio) { }
|
|
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
|
|
#endif
|
|
|
|
void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
|
|
|
|
static inline bool blk_queue_may_bounce(struct request_queue *q)
|
|
{
|
|
return IS_ENABLED(CONFIG_BOUNCE) &&
|
|
q->limits.bounce == BLK_BOUNCE_HIGH &&
|
|
max_low_pfn >= max_pfn;
|
|
}
|
|
|
|
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
|
|
{
|
|
if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
|
|
__blk_queue_bounce(q, bio);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
|
|
extern int blk_iolatency_init(struct request_queue *q);
|
|
#else
|
|
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
|
|
#endif
|
|
|
|
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
void blk_queue_free_zone_bitmaps(struct request_queue *q);
|
|
void blk_queue_clear_zone_settings(struct request_queue *q);
|
|
#else
|
|
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
|
|
static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
|
|
#endif
|
|
|
|
int blk_alloc_ext_minor(void);
|
|
void blk_free_ext_minor(unsigned int minor);
|
|
#define ADDPART_FLAG_NONE 0
|
|
#define ADDPART_FLAG_RAID 1
|
|
#define ADDPART_FLAG_WHOLEDISK 2
|
|
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
|
|
sector_t length);
|
|
int bdev_del_partition(struct gendisk *disk, int partno);
|
|
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
|
|
sector_t length);
|
|
|
|
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
|
|
struct page *page, unsigned int len, unsigned int offset,
|
|
unsigned int max_sectors, bool *same_page);
|
|
|
|
static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu)
|
|
{
|
|
if (srcu)
|
|
return blk_requestq_srcu_cachep;
|
|
return blk_requestq_cachep;
|
|
}
|
|
struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu);
|
|
|
|
int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
|
|
|
|
int disk_alloc_events(struct gendisk *disk);
|
|
void disk_add_events(struct gendisk *disk);
|
|
void disk_del_events(struct gendisk *disk);
|
|
void disk_release_events(struct gendisk *disk);
|
|
extern struct device_attribute dev_attr_events;
|
|
extern struct device_attribute dev_attr_events_async;
|
|
extern struct device_attribute dev_attr_events_poll_msecs;
|
|
|
|
static inline void bio_clear_polled(struct bio *bio)
|
|
{
|
|
/* can't support alloc cache if we turn off polling */
|
|
bio_clear_flag(bio, BIO_PERCPU_CACHE);
|
|
bio->bi_opf &= ~REQ_POLLED;
|
|
}
|
|
|
|
long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
|
|
long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
|
|
|
|
extern const struct address_space_operations def_blk_aops;
|
|
|
|
int disk_register_independent_access_ranges(struct gendisk *disk,
|
|
struct blk_independent_access_ranges *new_iars);
|
|
void disk_unregister_independent_access_ranges(struct gendisk *disk);
|
|
|
|
#ifdef CONFIG_FAIL_MAKE_REQUEST
|
|
bool should_fail_request(struct block_device *part, unsigned int bytes);
|
|
#else /* CONFIG_FAIL_MAKE_REQUEST */
|
|
static inline bool should_fail_request(struct block_device *part,
|
|
unsigned int bytes)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
/*
|
|
* Optimized request reference counting. Ideally we'd make timeouts be more
|
|
* clever, as that's the only reason we need references at all... But until
|
|
* this happens, this is faster than using refcount_t. Also see:
|
|
*
|
|
* abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
|
|
*/
|
|
#define req_ref_zero_or_close_to_overflow(req) \
|
|
((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
|
|
|
|
static inline bool req_ref_inc_not_zero(struct request *req)
|
|
{
|
|
return atomic_inc_not_zero(&req->ref);
|
|
}
|
|
|
|
static inline bool req_ref_put_and_test(struct request *req)
|
|
{
|
|
WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
|
|
return atomic_dec_and_test(&req->ref);
|
|
}
|
|
|
|
static inline void req_ref_set(struct request *req, int value)
|
|
{
|
|
atomic_set(&req->ref, value);
|
|
}
|
|
|
|
static inline int req_ref_read(struct request *req)
|
|
{
|
|
return atomic_read(&req->ref);
|
|
}
|
|
|
|
#endif /* BLK_INTERNAL_H */
|