mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 14:41:39 +00:00
8385d756e1
ata_qc_complete_multiple() is called with a mask of the still active tags. mv_sata doesn't have this information directly and instead calculates the still active tags from the started tags (ap->qc_active) and the finished tags as (ap->qc_active ^ done_mask) Since28361c4036
the hw_tag and tag are no longer the same and the equation is no longer valid. In ata_exec_internal_sg() ap->qc_active is initialized as 1ULL << ATA_TAG_INTERNAL, but in hardware tag 0 is started and this will be in done_mask on completion. ap->qc_active ^ done_mask becomes 0x100000000 ^ 0x1 = 0x100000001 and thus tag 0 used as the internal tag will never be reported as completed. This is fixed by introducing ata_qc_get_active() which returns the active hardware tags and calling it where appropriate. This is tested on mv_sata, but sata_fsl and sata_nv suffer from the same problem. There is another case in sata_nv that most likely needs fixing as well, but this looks a little different, so I wasn't confident enough to change that. Fixes:28361c4036
("libata: add extra internal command") Cc: stable@vger.kernel.org Tested-by: Pali Rohár <pali.rohar@gmail.com> Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Add missing export of ata_qc_get_active(), as per Pali. Signed-off-by: Jens Axboe <axboe@kernel.dk>
4496 lines
122 KiB
C
4496 lines
122 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* sata_mv.c - Marvell SATA support
|
|
*
|
|
* Copyright 2008-2009: Marvell Corporation, all rights reserved.
|
|
* Copyright 2005: EMC Corporation, all rights reserved.
|
|
* Copyright 2005 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* Originally written by Brett Russ.
|
|
* Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
|
|
*
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
|
|
*/
|
|
|
|
/*
|
|
* sata_mv TODO list:
|
|
*
|
|
* --> Develop a low-power-consumption strategy, and implement it.
|
|
*
|
|
* --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
|
|
*
|
|
* --> [Experiment, Marvell value added] Is it possible to use target
|
|
* mode to cross-connect two Linux boxes with Marvell cards? If so,
|
|
* creating LibATA target mode support would be very interesting.
|
|
*
|
|
* Target mode, for those without docs, is the ability to directly
|
|
* connect two SATA ports.
|
|
*/
|
|
|
|
/*
|
|
* 80x1-B2 errata PCI#11:
|
|
*
|
|
* Users of the 6041/6081 Rev.B2 chips (current is C0)
|
|
* should be careful to insert those cards only onto PCI-X bus #0,
|
|
* and only in device slots 0..7, not higher. The chips may not
|
|
* work correctly otherwise (note: this is a pretty rare condition).
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/phy/phy.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/ata_platform.h>
|
|
#include <linux/mbus.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <linux/libata.h>
|
|
|
|
#define DRV_NAME "sata_mv"
|
|
#define DRV_VERSION "1.28"
|
|
|
|
/*
|
|
* module options
|
|
*/
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int msi;
|
|
module_param(msi, int, S_IRUGO);
|
|
MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
|
|
#endif
|
|
|
|
static int irq_coalescing_io_count;
|
|
module_param(irq_coalescing_io_count, int, S_IRUGO);
|
|
MODULE_PARM_DESC(irq_coalescing_io_count,
|
|
"IRQ coalescing I/O count threshold (0..255)");
|
|
|
|
static int irq_coalescing_usecs;
|
|
module_param(irq_coalescing_usecs, int, S_IRUGO);
|
|
MODULE_PARM_DESC(irq_coalescing_usecs,
|
|
"IRQ coalescing time threshold in usecs");
|
|
|
|
enum {
|
|
/* BAR's are enumerated in terms of pci_resource_start() terms */
|
|
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
|
|
MV_IO_BAR = 2, /* offset 0x18: IO space */
|
|
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
|
|
|
|
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
|
|
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
|
|
|
|
/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
|
|
COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
|
|
MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
|
|
MAX_COAL_IO_COUNT = 255, /* completed I/O count */
|
|
|
|
MV_PCI_REG_BASE = 0,
|
|
|
|
/*
|
|
* Per-chip ("all ports") interrupt coalescing feature.
|
|
* This is only for GEN_II / GEN_IIE hardware.
|
|
*
|
|
* Coalescing defers the interrupt until either the IO_THRESHOLD
|
|
* (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
|
|
*/
|
|
COAL_REG_BASE = 0x18000,
|
|
IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
|
|
ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
|
|
|
|
IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
|
|
IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
|
|
|
|
/*
|
|
* Registers for the (unused here) transaction coalescing feature:
|
|
*/
|
|
TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
|
|
TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
|
|
|
|
SATAHC0_REG_BASE = 0x20000,
|
|
FLASH_CTL = 0x1046c,
|
|
GPIO_PORT_CTL = 0x104f0,
|
|
RESET_CFG = 0x180d8,
|
|
|
|
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
|
|
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
|
|
|
|
MV_MAX_Q_DEPTH = 32,
|
|
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
|
|
|
|
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
|
|
* CRPB needs alignment on a 256B boundary. Size == 256B
|
|
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
|
|
*/
|
|
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
|
|
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
|
|
MV_MAX_SG_CT = 256,
|
|
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
|
|
|
|
/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
|
|
MV_PORT_HC_SHIFT = 2,
|
|
MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
|
|
/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
|
|
MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
|
|
|
|
/* Host Flags */
|
|
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
|
|
|
|
MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
|
|
|
|
MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
|
|
|
|
MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
|
|
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
|
|
|
|
MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
|
|
|
|
CRQB_FLAG_READ = (1 << 0),
|
|
CRQB_TAG_SHIFT = 1,
|
|
CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
|
|
CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
|
|
CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
|
|
CRQB_CMD_ADDR_SHIFT = 8,
|
|
CRQB_CMD_CS = (0x2 << 11),
|
|
CRQB_CMD_LAST = (1 << 15),
|
|
|
|
CRPB_FLAG_STATUS_SHIFT = 8,
|
|
CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
|
|
CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
|
|
|
|
EPRD_FLAG_END_OF_TBL = (1 << 31),
|
|
|
|
/* PCI interface registers */
|
|
|
|
MV_PCI_COMMAND = 0xc00,
|
|
MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
|
|
MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
|
|
|
|
PCI_MAIN_CMD_STS = 0xd30,
|
|
STOP_PCI_MASTER = (1 << 2),
|
|
PCI_MASTER_EMPTY = (1 << 3),
|
|
GLOB_SFT_RST = (1 << 4),
|
|
|
|
MV_PCI_MODE = 0xd00,
|
|
MV_PCI_MODE_MASK = 0x30,
|
|
|
|
MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
|
|
MV_PCI_DISC_TIMER = 0xd04,
|
|
MV_PCI_MSI_TRIGGER = 0xc38,
|
|
MV_PCI_SERR_MASK = 0xc28,
|
|
MV_PCI_XBAR_TMOUT = 0x1d04,
|
|
MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
|
|
MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
|
|
MV_PCI_ERR_ATTRIBUTE = 0x1d48,
|
|
MV_PCI_ERR_COMMAND = 0x1d50,
|
|
|
|
PCI_IRQ_CAUSE = 0x1d58,
|
|
PCI_IRQ_MASK = 0x1d5c,
|
|
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
|
|
|
|
PCIE_IRQ_CAUSE = 0x1900,
|
|
PCIE_IRQ_MASK = 0x1910,
|
|
PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
|
|
|
|
/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
|
|
PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
|
|
PCI_HC_MAIN_IRQ_MASK = 0x1d64,
|
|
SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
|
|
SOC_HC_MAIN_IRQ_MASK = 0x20024,
|
|
ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
|
|
DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
|
|
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
|
|
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
|
|
DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
|
|
DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
|
|
PCI_ERR = (1 << 18),
|
|
TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
|
|
TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
|
|
PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
|
|
PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
|
|
ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
|
|
GPIO_INT = (1 << 22),
|
|
SELF_INT = (1 << 23),
|
|
TWSI_INT = (1 << 24),
|
|
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
|
|
HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
|
|
HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
|
|
|
|
/* SATAHC registers */
|
|
HC_CFG = 0x00,
|
|
|
|
HC_IRQ_CAUSE = 0x14,
|
|
DMA_IRQ = (1 << 0), /* shift by port # */
|
|
HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
|
|
DEV_IRQ = (1 << 8), /* shift by port # */
|
|
|
|
/*
|
|
* Per-HC (Host-Controller) interrupt coalescing feature.
|
|
* This is present on all chip generations.
|
|
*
|
|
* Coalescing defers the interrupt until either the IO_THRESHOLD
|
|
* (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
|
|
*/
|
|
HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
|
|
HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
|
|
|
|
SOC_LED_CTRL = 0x2c,
|
|
SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
|
|
SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
|
|
/* with dev activity LED */
|
|
|
|
/* Shadow block registers */
|
|
SHD_BLK = 0x100,
|
|
SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
|
|
|
|
/* SATA registers */
|
|
SATA_STATUS = 0x300, /* ctrl, err regs follow status */
|
|
SATA_ACTIVE = 0x350,
|
|
FIS_IRQ_CAUSE = 0x364,
|
|
FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
|
|
|
|
LTMODE = 0x30c, /* requires read-after-write */
|
|
LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
|
|
|
|
PHY_MODE2 = 0x330,
|
|
PHY_MODE3 = 0x310,
|
|
|
|
PHY_MODE4 = 0x314, /* requires read-after-write */
|
|
PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
|
|
PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
|
|
PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
|
|
PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
|
|
|
|
SATA_IFCTL = 0x344,
|
|
SATA_TESTCTL = 0x348,
|
|
SATA_IFSTAT = 0x34c,
|
|
VENDOR_UNIQUE_FIS = 0x35c,
|
|
|
|
FISCFG = 0x360,
|
|
FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
|
|
FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
|
|
|
|
PHY_MODE9_GEN2 = 0x398,
|
|
PHY_MODE9_GEN1 = 0x39c,
|
|
PHYCFG_OFS = 0x3a0, /* only in 65n devices */
|
|
|
|
MV5_PHY_MODE = 0x74,
|
|
MV5_LTMODE = 0x30,
|
|
MV5_PHY_CTL = 0x0C,
|
|
SATA_IFCFG = 0x050,
|
|
LP_PHY_CTL = 0x058,
|
|
LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
|
|
LP_PHY_CTL_PIN_PU_RX = (1 << 1),
|
|
LP_PHY_CTL_PIN_PU_TX = (1 << 2),
|
|
LP_PHY_CTL_GEN_TX_3G = (1 << 5),
|
|
LP_PHY_CTL_GEN_RX_3G = (1 << 9),
|
|
|
|
MV_M2_PREAMP_MASK = 0x7e0,
|
|
|
|
/* Port registers */
|
|
EDMA_CFG = 0,
|
|
EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
|
|
EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
|
|
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
|
|
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
|
|
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
|
|
EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
|
|
EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
|
|
|
|
EDMA_ERR_IRQ_CAUSE = 0x8,
|
|
EDMA_ERR_IRQ_MASK = 0xc,
|
|
EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
|
|
EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
|
|
EDMA_ERR_DEV = (1 << 2), /* device error */
|
|
EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
|
|
EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
|
|
EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
|
|
EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
|
|
EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
|
|
EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
|
|
EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
|
|
EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
|
|
EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
|
|
EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
|
|
EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
|
|
|
|
EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
|
|
EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
|
|
EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
|
|
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
|
|
EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
|
|
|
|
EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
|
|
|
|
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
|
|
EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
|
|
EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
|
|
EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
|
|
EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
|
|
EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
|
|
|
|
EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
|
|
|
|
EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
|
|
EDMA_ERR_OVERRUN_5 = (1 << 5),
|
|
EDMA_ERR_UNDERRUN_5 = (1 << 6),
|
|
|
|
EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
|
|
EDMA_ERR_LNK_CTRL_RX_1 |
|
|
EDMA_ERR_LNK_CTRL_RX_3 |
|
|
EDMA_ERR_LNK_CTRL_TX,
|
|
|
|
EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
|
|
EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_DEV_DCON |
|
|
EDMA_ERR_DEV_CON |
|
|
EDMA_ERR_SERR |
|
|
EDMA_ERR_SELF_DIS |
|
|
EDMA_ERR_CRQB_PAR |
|
|
EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR |
|
|
EDMA_ERR_IORDY |
|
|
EDMA_ERR_LNK_CTRL_RX_2 |
|
|
EDMA_ERR_LNK_DATA_RX |
|
|
EDMA_ERR_LNK_DATA_TX |
|
|
EDMA_ERR_TRANS_PROTO,
|
|
|
|
EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
|
|
EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_DEV_DCON |
|
|
EDMA_ERR_DEV_CON |
|
|
EDMA_ERR_OVERRUN_5 |
|
|
EDMA_ERR_UNDERRUN_5 |
|
|
EDMA_ERR_SELF_DIS_5 |
|
|
EDMA_ERR_CRQB_PAR |
|
|
EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR |
|
|
EDMA_ERR_IORDY,
|
|
|
|
EDMA_REQ_Q_BASE_HI = 0x10,
|
|
EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
|
|
|
|
EDMA_REQ_Q_OUT_PTR = 0x18,
|
|
EDMA_REQ_Q_PTR_SHIFT = 5,
|
|
|
|
EDMA_RSP_Q_BASE_HI = 0x1c,
|
|
EDMA_RSP_Q_IN_PTR = 0x20,
|
|
EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
|
|
EDMA_RSP_Q_PTR_SHIFT = 3,
|
|
|
|
EDMA_CMD = 0x28, /* EDMA command register */
|
|
EDMA_EN = (1 << 0), /* enable EDMA */
|
|
EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
|
|
EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
|
|
|
|
EDMA_STATUS = 0x30, /* EDMA engine status */
|
|
EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
|
|
EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
|
|
|
|
EDMA_IORDY_TMOUT = 0x34,
|
|
EDMA_ARB_CFG = 0x38,
|
|
|
|
EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
|
|
EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
|
|
|
|
BMDMA_CMD = 0x224, /* bmdma command register */
|
|
BMDMA_STATUS = 0x228, /* bmdma status register */
|
|
BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
|
|
BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
|
|
|
|
/* Host private flags (hp_flags) */
|
|
MV_HP_FLAG_MSI = (1 << 0),
|
|
MV_HP_ERRATA_50XXB0 = (1 << 1),
|
|
MV_HP_ERRATA_50XXB2 = (1 << 2),
|
|
MV_HP_ERRATA_60X1B2 = (1 << 3),
|
|
MV_HP_ERRATA_60X1C0 = (1 << 4),
|
|
MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
|
|
MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
|
|
MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
|
|
MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
|
|
MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
|
|
MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
|
|
MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
|
|
MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
|
|
|
|
/* Port private flags (pp_flags) */
|
|
MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
|
|
MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
|
|
MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
|
|
MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
|
|
MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
|
|
};
|
|
|
|
#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
|
|
#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
|
|
#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
|
|
#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
|
|
#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
|
|
|
|
#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
|
|
#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
|
|
|
|
enum {
|
|
/* DMA boundary 0xffff is required by the s/g splitting
|
|
* we need on /length/ in mv_fill-sg().
|
|
*/
|
|
MV_DMA_BOUNDARY = 0xffffU,
|
|
|
|
/* mask of register bits containing lower 32 bits
|
|
* of EDMA request queue DMA address
|
|
*/
|
|
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
|
|
|
|
/* ditto, for response queue */
|
|
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
|
|
};
|
|
|
|
enum chip_type {
|
|
chip_504x,
|
|
chip_508x,
|
|
chip_5080,
|
|
chip_604x,
|
|
chip_608x,
|
|
chip_6042,
|
|
chip_7042,
|
|
chip_soc,
|
|
};
|
|
|
|
/* Command ReQuest Block: 32B */
|
|
struct mv_crqb {
|
|
__le32 sg_addr;
|
|
__le32 sg_addr_hi;
|
|
__le16 ctrl_flags;
|
|
__le16 ata_cmd[11];
|
|
};
|
|
|
|
struct mv_crqb_iie {
|
|
__le32 addr;
|
|
__le32 addr_hi;
|
|
__le32 flags;
|
|
__le32 len;
|
|
__le32 ata_cmd[4];
|
|
};
|
|
|
|
/* Command ResPonse Block: 8B */
|
|
struct mv_crpb {
|
|
__le16 id;
|
|
__le16 flags;
|
|
__le32 tmstmp;
|
|
};
|
|
|
|
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
|
|
struct mv_sg {
|
|
__le32 addr;
|
|
__le32 flags_size;
|
|
__le32 addr_hi;
|
|
__le32 reserved;
|
|
};
|
|
|
|
/*
|
|
* We keep a local cache of a few frequently accessed port
|
|
* registers here, to avoid having to read them (very slow)
|
|
* when switching between EDMA and non-EDMA modes.
|
|
*/
|
|
struct mv_cached_regs {
|
|
u32 fiscfg;
|
|
u32 ltmode;
|
|
u32 haltcond;
|
|
u32 unknown_rsvd;
|
|
};
|
|
|
|
struct mv_port_priv {
|
|
struct mv_crqb *crqb;
|
|
dma_addr_t crqb_dma;
|
|
struct mv_crpb *crpb;
|
|
dma_addr_t crpb_dma;
|
|
struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
|
|
dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
|
|
|
|
unsigned int req_idx;
|
|
unsigned int resp_idx;
|
|
|
|
u32 pp_flags;
|
|
struct mv_cached_regs cached;
|
|
unsigned int delayed_eh_pmp_map;
|
|
};
|
|
|
|
struct mv_port_signal {
|
|
u32 amps;
|
|
u32 pre;
|
|
};
|
|
|
|
struct mv_host_priv {
|
|
u32 hp_flags;
|
|
unsigned int board_idx;
|
|
u32 main_irq_mask;
|
|
struct mv_port_signal signal[8];
|
|
const struct mv_hw_ops *ops;
|
|
int n_ports;
|
|
void __iomem *base;
|
|
void __iomem *main_irq_cause_addr;
|
|
void __iomem *main_irq_mask_addr;
|
|
u32 irq_cause_offset;
|
|
u32 irq_mask_offset;
|
|
u32 unmask_all_irqs;
|
|
|
|
/*
|
|
* Needed on some devices that require their clocks to be enabled.
|
|
* These are optional: if the platform device does not have any
|
|
* clocks, they won't be used. Also, if the underlying hardware
|
|
* does not support the common clock framework (CONFIG_HAVE_CLK=n),
|
|
* all the clock operations become no-ops (see clk.h).
|
|
*/
|
|
struct clk *clk;
|
|
struct clk **port_clks;
|
|
/*
|
|
* Some devices have a SATA PHY which can be enabled/disabled
|
|
* in order to save power. These are optional: if the platform
|
|
* devices does not have any phy, they won't be used.
|
|
*/
|
|
struct phy **port_phys;
|
|
/*
|
|
* These consistent DMA memory pools give us guaranteed
|
|
* alignment for hardware-accessed data structures,
|
|
* and less memory waste in accomplishing the alignment.
|
|
*/
|
|
struct dma_pool *crqb_pool;
|
|
struct dma_pool *crpb_pool;
|
|
struct dma_pool *sg_tbl_pool;
|
|
};
|
|
|
|
struct mv_hw_ops {
|
|
void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
|
|
};
|
|
|
|
static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
|
|
static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
|
|
static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
|
|
static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
|
|
static int mv_port_start(struct ata_port *ap);
|
|
static void mv_port_stop(struct ata_port *ap);
|
|
static int mv_qc_defer(struct ata_queued_cmd *qc);
|
|
static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
|
|
static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
|
|
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
|
|
static int mv_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline);
|
|
static void mv_eh_freeze(struct ata_port *ap);
|
|
static void mv_eh_thaw(struct ata_port *ap);
|
|
static void mv6_dev_config(struct ata_device *dev);
|
|
|
|
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
|
|
|
|
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio);
|
|
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int n_hc);
|
|
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio);
|
|
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
|
|
static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int port);
|
|
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
|
|
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port_no);
|
|
static int mv_stop_edma(struct ata_port *ap);
|
|
static int mv_stop_edma_engine(void __iomem *port_mmio);
|
|
static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
|
|
|
|
static void mv_pmp_select(struct ata_port *ap, int pmp);
|
|
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline);
|
|
static int mv_softreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline);
|
|
static void mv_pmp_error_handler(struct ata_port *ap);
|
|
static void mv_process_crpb_entries(struct ata_port *ap,
|
|
struct mv_port_priv *pp);
|
|
|
|
static void mv_sff_irq_clear(struct ata_port *ap);
|
|
static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
|
|
static void mv_bmdma_setup(struct ata_queued_cmd *qc);
|
|
static void mv_bmdma_start(struct ata_queued_cmd *qc);
|
|
static void mv_bmdma_stop(struct ata_queued_cmd *qc);
|
|
static u8 mv_bmdma_status(struct ata_port *ap);
|
|
static u8 mv_sff_check_status(struct ata_port *ap);
|
|
|
|
/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
|
|
* because we have to allow room for worst case splitting of
|
|
* PRDs for 64K boundaries in mv_fill_sg().
|
|
*/
|
|
#ifdef CONFIG_PCI
|
|
static struct scsi_host_template mv5_sht = {
|
|
ATA_BASE_SHT(DRV_NAME),
|
|
.sg_tablesize = MV_MAX_SG_CT / 2,
|
|
.dma_boundary = MV_DMA_BOUNDARY,
|
|
};
|
|
#endif
|
|
static struct scsi_host_template mv6_sht = {
|
|
ATA_NCQ_SHT(DRV_NAME),
|
|
.can_queue = MV_MAX_Q_DEPTH - 1,
|
|
.sg_tablesize = MV_MAX_SG_CT / 2,
|
|
.dma_boundary = MV_DMA_BOUNDARY,
|
|
};
|
|
|
|
static struct ata_port_operations mv5_ops = {
|
|
.inherits = &ata_sff_port_ops,
|
|
|
|
.lost_interrupt = ATA_OP_NULL,
|
|
|
|
.qc_defer = mv_qc_defer,
|
|
.qc_prep = mv_qc_prep,
|
|
.qc_issue = mv_qc_issue,
|
|
|
|
.freeze = mv_eh_freeze,
|
|
.thaw = mv_eh_thaw,
|
|
.hardreset = mv_hardreset,
|
|
|
|
.scr_read = mv5_scr_read,
|
|
.scr_write = mv5_scr_write,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
};
|
|
|
|
static struct ata_port_operations mv6_ops = {
|
|
.inherits = &ata_bmdma_port_ops,
|
|
|
|
.lost_interrupt = ATA_OP_NULL,
|
|
|
|
.qc_defer = mv_qc_defer,
|
|
.qc_prep = mv_qc_prep,
|
|
.qc_issue = mv_qc_issue,
|
|
|
|
.dev_config = mv6_dev_config,
|
|
|
|
.freeze = mv_eh_freeze,
|
|
.thaw = mv_eh_thaw,
|
|
.hardreset = mv_hardreset,
|
|
.softreset = mv_softreset,
|
|
.pmp_hardreset = mv_pmp_hardreset,
|
|
.pmp_softreset = mv_softreset,
|
|
.error_handler = mv_pmp_error_handler,
|
|
|
|
.scr_read = mv_scr_read,
|
|
.scr_write = mv_scr_write,
|
|
|
|
.sff_check_status = mv_sff_check_status,
|
|
.sff_irq_clear = mv_sff_irq_clear,
|
|
.check_atapi_dma = mv_check_atapi_dma,
|
|
.bmdma_setup = mv_bmdma_setup,
|
|
.bmdma_start = mv_bmdma_start,
|
|
.bmdma_stop = mv_bmdma_stop,
|
|
.bmdma_status = mv_bmdma_status,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
};
|
|
|
|
static struct ata_port_operations mv_iie_ops = {
|
|
.inherits = &mv6_ops,
|
|
.dev_config = ATA_OP_NULL,
|
|
.qc_prep = mv_qc_prep_iie,
|
|
};
|
|
|
|
static const struct ata_port_info mv_port_info[] = {
|
|
{ /* chip_504x */
|
|
.flags = MV_GEN_I_FLAGS,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_508x */
|
|
.flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_5080 */
|
|
.flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_604x */
|
|
.flags = MV_GEN_II_FLAGS,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv6_ops,
|
|
},
|
|
{ /* chip_608x */
|
|
.flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv6_ops,
|
|
},
|
|
{ /* chip_6042 */
|
|
.flags = MV_GEN_IIE_FLAGS,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
{ /* chip_7042 */
|
|
.flags = MV_GEN_IIE_FLAGS,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
{ /* chip_soc */
|
|
.flags = MV_GEN_IIE_FLAGS,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
};
|
|
|
|
static const struct pci_device_id mv_pci_tbl[] = {
|
|
{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
|
|
{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
|
|
{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
|
|
{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
|
|
/* RocketRAID 1720/174x have different identifiers */
|
|
{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
|
|
{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
|
|
{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
|
|
|
|
{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
|
|
{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
|
|
|
|
{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
|
|
|
|
/* Adaptec 1430SA */
|
|
{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
|
|
|
|
/* Marvell 7042 support */
|
|
{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
|
|
|
|
/* Highpoint RocketRAID PCIe series */
|
|
{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
|
|
{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
|
|
|
|
{ } /* terminate list */
|
|
};
|
|
|
|
static const struct mv_hw_ops mv5xxx_ops = {
|
|
.phy_errata = mv5_phy_errata,
|
|
.enable_leds = mv5_enable_leds,
|
|
.read_preamp = mv5_read_preamp,
|
|
.reset_hc = mv5_reset_hc,
|
|
.reset_flash = mv5_reset_flash,
|
|
.reset_bus = mv5_reset_bus,
|
|
};
|
|
|
|
static const struct mv_hw_ops mv6xxx_ops = {
|
|
.phy_errata = mv6_phy_errata,
|
|
.enable_leds = mv6_enable_leds,
|
|
.read_preamp = mv6_read_preamp,
|
|
.reset_hc = mv6_reset_hc,
|
|
.reset_flash = mv6_reset_flash,
|
|
.reset_bus = mv_reset_pci_bus,
|
|
};
|
|
|
|
static const struct mv_hw_ops mv_soc_ops = {
|
|
.phy_errata = mv6_phy_errata,
|
|
.enable_leds = mv_soc_enable_leds,
|
|
.read_preamp = mv_soc_read_preamp,
|
|
.reset_hc = mv_soc_reset_hc,
|
|
.reset_flash = mv_soc_reset_flash,
|
|
.reset_bus = mv_soc_reset_bus,
|
|
};
|
|
|
|
static const struct mv_hw_ops mv_soc_65n_ops = {
|
|
.phy_errata = mv_soc_65n_phy_errata,
|
|
.enable_leds = mv_soc_enable_leds,
|
|
.reset_hc = mv_soc_reset_hc,
|
|
.reset_flash = mv_soc_reset_flash,
|
|
.reset_bus = mv_soc_reset_bus,
|
|
};
|
|
|
|
/*
|
|
* Functions
|
|
*/
|
|
|
|
static inline void writelfl(unsigned long data, void __iomem *addr)
|
|
{
|
|
writel(data, addr);
|
|
(void) readl(addr); /* flush to avoid PCI posted write */
|
|
}
|
|
|
|
static inline unsigned int mv_hc_from_port(unsigned int port)
|
|
{
|
|
return port >> MV_PORT_HC_SHIFT;
|
|
}
|
|
|
|
static inline unsigned int mv_hardport_from_port(unsigned int port)
|
|
{
|
|
return port & MV_PORT_MASK;
|
|
}
|
|
|
|
/*
|
|
* Consolidate some rather tricky bit shift calculations.
|
|
* This is hot-path stuff, so not a function.
|
|
* Simple code, with two return values, so macro rather than inline.
|
|
*
|
|
* port is the sole input, in range 0..7.
|
|
* shift is one output, for use with main_irq_cause / main_irq_mask registers.
|
|
* hardport is the other output, in range 0..3.
|
|
*
|
|
* Note that port and hardport may be the same variable in some cases.
|
|
*/
|
|
#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
|
|
{ \
|
|
shift = mv_hc_from_port(port) * HC_SHIFT; \
|
|
hardport = mv_hardport_from_port(port); \
|
|
shift += hardport * 2; \
|
|
}
|
|
|
|
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
|
|
{
|
|
return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
|
|
}
|
|
|
|
static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
|
|
unsigned int port)
|
|
{
|
|
return mv_hc_base(base, mv_hc_from_port(port));
|
|
}
|
|
|
|
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
|
|
{
|
|
return mv_hc_base_from_port(base, port) +
|
|
MV_SATAHC_ARBTR_REG_SZ +
|
|
(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
|
|
}
|
|
|
|
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
|
|
unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
|
|
|
|
return hc_mmio + ofs;
|
|
}
|
|
|
|
static inline void __iomem *mv_host_base(struct ata_host *host)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
return hpriv->base;
|
|
}
|
|
|
|
static inline void __iomem *mv_ap_base(struct ata_port *ap)
|
|
{
|
|
return mv_port_base(mv_host_base(ap->host), ap->port_no);
|
|
}
|
|
|
|
static inline int mv_get_hc_count(unsigned long port_flags)
|
|
{
|
|
return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
|
|
}
|
|
|
|
/**
|
|
* mv_save_cached_regs - (re-)initialize cached port registers
|
|
* @ap: the port whose registers we are caching
|
|
*
|
|
* Initialize the local cache of port registers,
|
|
* so that reading them over and over again can
|
|
* be avoided on the hotter paths of this driver.
|
|
* This saves a few microseconds each time we switch
|
|
* to/from EDMA mode to perform (eg.) a drive cache flush.
|
|
*/
|
|
static void mv_save_cached_regs(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
pp->cached.fiscfg = readl(port_mmio + FISCFG);
|
|
pp->cached.ltmode = readl(port_mmio + LTMODE);
|
|
pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
|
|
pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
|
|
}
|
|
|
|
/**
|
|
* mv_write_cached_reg - write to a cached port register
|
|
* @addr: hardware address of the register
|
|
* @old: pointer to cached value of the register
|
|
* @new: new value for the register
|
|
*
|
|
* Write a new value to a cached register,
|
|
* but only if the value is different from before.
|
|
*/
|
|
static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
|
|
{
|
|
if (new != *old) {
|
|
unsigned long laddr;
|
|
*old = new;
|
|
/*
|
|
* Workaround for 88SX60x1-B2 FEr SATA#13:
|
|
* Read-after-write is needed to prevent generating 64-bit
|
|
* write cycles on the PCI bus for SATA interface registers
|
|
* at offsets ending in 0x4 or 0xc.
|
|
*
|
|
* Looks like a lot of fuss, but it avoids an unnecessary
|
|
* +1 usec read-after-write delay for unaffected registers.
|
|
*/
|
|
laddr = (unsigned long)addr & 0xffff;
|
|
if (laddr >= 0x300 && laddr <= 0x33c) {
|
|
laddr &= 0x000f;
|
|
if (laddr == 0x4 || laddr == 0xc) {
|
|
writelfl(new, addr); /* read after write */
|
|
return;
|
|
}
|
|
}
|
|
writel(new, addr); /* unaffected by the errata */
|
|
}
|
|
}
|
|
|
|
static void mv_set_edma_ptrs(void __iomem *port_mmio,
|
|
struct mv_host_priv *hpriv,
|
|
struct mv_port_priv *pp)
|
|
{
|
|
u32 index;
|
|
|
|
/*
|
|
* initialize request queue
|
|
*/
|
|
pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
|
|
index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
|
|
|
|
WARN_ON(pp->crqb_dma & 0x3ff);
|
|
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
|
|
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
|
|
port_mmio + EDMA_REQ_Q_IN_PTR);
|
|
writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
|
|
|
|
/*
|
|
* initialize response queue
|
|
*/
|
|
pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
|
|
index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
|
|
|
|
WARN_ON(pp->crpb_dma & 0xff);
|
|
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
|
|
writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
|
|
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
|
|
port_mmio + EDMA_RSP_Q_OUT_PTR);
|
|
}
|
|
|
|
static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
|
|
{
|
|
/*
|
|
* When writing to the main_irq_mask in hardware,
|
|
* we must ensure exclusivity between the interrupt coalescing bits
|
|
* and the corresponding individual port DONE_IRQ bits.
|
|
*
|
|
* Note that this register is really an "IRQ enable" register,
|
|
* not an "IRQ mask" register as Marvell's naming might suggest.
|
|
*/
|
|
if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
|
|
mask &= ~DONE_IRQ_0_3;
|
|
if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
|
|
mask &= ~DONE_IRQ_4_7;
|
|
writelfl(mask, hpriv->main_irq_mask_addr);
|
|
}
|
|
|
|
static void mv_set_main_irq_mask(struct ata_host *host,
|
|
u32 disable_bits, u32 enable_bits)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u32 old_mask, new_mask;
|
|
|
|
old_mask = hpriv->main_irq_mask;
|
|
new_mask = (old_mask & ~disable_bits) | enable_bits;
|
|
if (new_mask != old_mask) {
|
|
hpriv->main_irq_mask = new_mask;
|
|
mv_write_main_irq_mask(new_mask, hpriv);
|
|
}
|
|
}
|
|
|
|
static void mv_enable_port_irqs(struct ata_port *ap,
|
|
unsigned int port_bits)
|
|
{
|
|
unsigned int shift, hardport, port = ap->port_no;
|
|
u32 disable_bits, enable_bits;
|
|
|
|
MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
|
|
|
|
disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
|
|
enable_bits = port_bits << shift;
|
|
mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
|
|
}
|
|
|
|
static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
|
|
void __iomem *port_mmio,
|
|
unsigned int port_irqs)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
int hardport = mv_hardport_from_port(ap->port_no);
|
|
void __iomem *hc_mmio = mv_hc_base_from_port(
|
|
mv_host_base(ap->host), ap->port_no);
|
|
u32 hc_irq_cause;
|
|
|
|
/* clear EDMA event indicators, if any */
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
|
|
|
|
/* clear pending irq events */
|
|
hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
|
|
writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
|
|
|
|
/* clear FIS IRQ Cause */
|
|
if (IS_GEN_IIE(hpriv))
|
|
writelfl(0, port_mmio + FIS_IRQ_CAUSE);
|
|
|
|
mv_enable_port_irqs(ap, port_irqs);
|
|
}
|
|
|
|
static void mv_set_irq_coalescing(struct ata_host *host,
|
|
unsigned int count, unsigned int usecs)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base, *hc_mmio;
|
|
u32 coal_enable = 0;
|
|
unsigned long flags;
|
|
unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
|
|
const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
|
|
ALL_PORTS_COAL_DONE;
|
|
|
|
/* Disable IRQ coalescing if either threshold is zero */
|
|
if (!usecs || !count) {
|
|
clks = count = 0;
|
|
} else {
|
|
/* Respect maximum limits of the hardware */
|
|
clks = usecs * COAL_CLOCKS_PER_USEC;
|
|
if (clks > MAX_COAL_TIME_THRESHOLD)
|
|
clks = MAX_COAL_TIME_THRESHOLD;
|
|
if (count > MAX_COAL_IO_COUNT)
|
|
count = MAX_COAL_IO_COUNT;
|
|
}
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
mv_set_main_irq_mask(host, coal_disable, 0);
|
|
|
|
if (is_dual_hc && !IS_GEN_I(hpriv)) {
|
|
/*
|
|
* GEN_II/GEN_IIE with dual host controllers:
|
|
* one set of global thresholds for the entire chip.
|
|
*/
|
|
writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
|
|
writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
|
|
/* clear leftover coal IRQ bit */
|
|
writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
|
|
if (count)
|
|
coal_enable = ALL_PORTS_COAL_DONE;
|
|
clks = count = 0; /* force clearing of regular regs below */
|
|
}
|
|
|
|
/*
|
|
* All chips: independent thresholds for each HC on the chip.
|
|
*/
|
|
hc_mmio = mv_hc_base_from_port(mmio, 0);
|
|
writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
|
|
writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
|
|
writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
|
|
if (count)
|
|
coal_enable |= PORTS_0_3_COAL_DONE;
|
|
if (is_dual_hc) {
|
|
hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
|
|
writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
|
|
writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
|
|
writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
|
|
if (count)
|
|
coal_enable |= PORTS_4_7_COAL_DONE;
|
|
}
|
|
|
|
mv_set_main_irq_mask(host, 0, coal_enable);
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* mv_start_edma - Enable eDMA engine
|
|
* @base: port base address
|
|
* @pp: port private data
|
|
*
|
|
* Verify the local cache of the eDMA state is accurate with a
|
|
* WARN_ON.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
|
|
struct mv_port_priv *pp, u8 protocol)
|
|
{
|
|
int want_ncq = (protocol == ATA_PROT_NCQ);
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
|
|
int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
|
|
if (want_ncq != using_ncq)
|
|
mv_stop_edma(ap);
|
|
}
|
|
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
|
|
mv_edma_cfg(ap, want_ncq, 1);
|
|
|
|
mv_set_edma_ptrs(port_mmio, hpriv, pp);
|
|
mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
|
|
|
|
writelfl(EDMA_EN, port_mmio + EDMA_CMD);
|
|
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
|
|
}
|
|
}
|
|
|
|
static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
|
|
const int per_loop = 5, timeout = (15 * 1000 / per_loop);
|
|
int i;
|
|
|
|
/*
|
|
* Wait for the EDMA engine to finish transactions in progress.
|
|
* No idea what a good "timeout" value might be, but measurements
|
|
* indicate that it often requires hundreds of microseconds
|
|
* with two drives in-use. So we use the 15msec value above
|
|
* as a rough guess at what even more drives might require.
|
|
*/
|
|
for (i = 0; i < timeout; ++i) {
|
|
u32 edma_stat = readl(port_mmio + EDMA_STATUS);
|
|
if ((edma_stat & empty_idle) == empty_idle)
|
|
break;
|
|
udelay(per_loop);
|
|
}
|
|
/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
|
|
}
|
|
|
|
/**
|
|
* mv_stop_edma_engine - Disable eDMA engine
|
|
* @port_mmio: io base address
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_stop_edma_engine(void __iomem *port_mmio)
|
|
{
|
|
int i;
|
|
|
|
/* Disable eDMA. The disable bit auto clears. */
|
|
writelfl(EDMA_DS, port_mmio + EDMA_CMD);
|
|
|
|
/* Wait for the chip to confirm eDMA is off. */
|
|
for (i = 10000; i > 0; i--) {
|
|
u32 reg = readl(port_mmio + EDMA_CMD);
|
|
if (!(reg & EDMA_EN))
|
|
return 0;
|
|
udelay(10);
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
static int mv_stop_edma(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
int err = 0;
|
|
|
|
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
|
|
return 0;
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
mv_wait_for_edma_empty_idle(ap);
|
|
if (mv_stop_edma_engine(port_mmio)) {
|
|
ata_port_err(ap, "Unable to stop eDMA\n");
|
|
err = -EIO;
|
|
}
|
|
mv_edma_cfg(ap, 0, 0);
|
|
return err;
|
|
}
|
|
|
|
#ifdef ATA_DEBUG
|
|
static void mv_dump_mem(void __iomem *start, unsigned bytes)
|
|
{
|
|
int b, w;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%p: ", start + b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
printk("%08x ", readl(start + b));
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
|
|
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
int b, w;
|
|
u32 dw;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%02x: ", b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
(void) pci_read_config_dword(pdev, b, &dw);
|
|
printk("%08x ", dw);
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
|
|
struct pci_dev *pdev)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
void __iomem *hc_base = mv_hc_base(mmio_base,
|
|
port >> MV_PORT_HC_SHIFT);
|
|
void __iomem *port_base;
|
|
int start_port, num_ports, p, start_hc, num_hcs, hc;
|
|
|
|
if (0 > port) {
|
|
start_hc = start_port = 0;
|
|
num_ports = 8; /* shld be benign for 4 port devs */
|
|
num_hcs = 2;
|
|
} else {
|
|
start_hc = port >> MV_PORT_HC_SHIFT;
|
|
start_port = port;
|
|
num_ports = num_hcs = 1;
|
|
}
|
|
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
|
|
num_ports > 1 ? num_ports - 1 : start_port);
|
|
|
|
if (NULL != pdev) {
|
|
DPRINTK("PCI config space regs:\n");
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
}
|
|
DPRINTK("PCI regs:\n");
|
|
mv_dump_mem(mmio_base+0xc00, 0x3c);
|
|
mv_dump_mem(mmio_base+0xd00, 0x34);
|
|
mv_dump_mem(mmio_base+0xf00, 0x4);
|
|
mv_dump_mem(mmio_base+0x1d00, 0x6c);
|
|
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
|
|
hc_base = mv_hc_base(mmio_base, hc);
|
|
DPRINTK("HC regs (HC %i):\n", hc);
|
|
mv_dump_mem(hc_base, 0x1c);
|
|
}
|
|
for (p = start_port; p < start_port + num_ports; p++) {
|
|
port_base = mv_port_base(mmio_base, p);
|
|
DPRINTK("EDMA regs (port %i):\n", p);
|
|
mv_dump_mem(port_base, 0x54);
|
|
DPRINTK("SATA regs (port %i):\n", p);
|
|
mv_dump_mem(port_base+0x300, 0x60);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs;
|
|
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
case SCR_CONTROL:
|
|
case SCR_ERROR:
|
|
ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
|
|
break;
|
|
case SCR_ACTIVE:
|
|
ofs = SATA_ACTIVE; /* active is not with the others */
|
|
break;
|
|
default:
|
|
ofs = 0xffffffffU;
|
|
break;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
*val = readl(mv_ap_base(link->ap) + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
void __iomem *addr = mv_ap_base(link->ap) + ofs;
|
|
struct mv_host_priv *hpriv = link->ap->host->private_data;
|
|
if (sc_reg_in == SCR_CONTROL) {
|
|
/*
|
|
* Workaround for 88SX60x1 FEr SATA#26:
|
|
*
|
|
* COMRESETs have to take care not to accidentally
|
|
* put the drive to sleep when writing SCR_CONTROL.
|
|
* Setting bits 12..15 prevents this problem.
|
|
*
|
|
* So if we see an outbound COMMRESET, set those bits.
|
|
* Ditto for the followup write that clears the reset.
|
|
*
|
|
* The proprietary driver does this for
|
|
* all chip versions, and so do we.
|
|
*/
|
|
if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
|
|
val |= 0xf000;
|
|
|
|
if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
|
|
void __iomem *lp_phy_addr =
|
|
mv_ap_base(link->ap) + LP_PHY_CTL;
|
|
/*
|
|
* Set PHY speed according to SControl speed.
|
|
*/
|
|
u32 lp_phy_val =
|
|
LP_PHY_CTL_PIN_PU_PLL |
|
|
LP_PHY_CTL_PIN_PU_RX |
|
|
LP_PHY_CTL_PIN_PU_TX;
|
|
|
|
if ((val & 0xf0) != 0x10)
|
|
lp_phy_val |=
|
|
LP_PHY_CTL_GEN_TX_3G |
|
|
LP_PHY_CTL_GEN_RX_3G;
|
|
|
|
writelfl(lp_phy_val, lp_phy_addr);
|
|
}
|
|
}
|
|
writelfl(val, addr);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void mv6_dev_config(struct ata_device *adev)
|
|
{
|
|
/*
|
|
* Deal with Gen-II ("mv6") hardware quirks/restrictions:
|
|
*
|
|
* Gen-II does not support NCQ over a port multiplier
|
|
* (no FIS-based switching).
|
|
*/
|
|
if (adev->flags & ATA_DFLAG_NCQ) {
|
|
if (sata_pmp_attached(adev->link->ap)) {
|
|
adev->flags &= ~ATA_DFLAG_NCQ;
|
|
ata_dev_info(adev,
|
|
"NCQ disabled for command-based switching\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mv_qc_defer(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_link *link = qc->dev->link;
|
|
struct ata_port *ap = link->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
/*
|
|
* Don't allow new commands if we're in a delayed EH state
|
|
* for NCQ and/or FIS-based switching.
|
|
*/
|
|
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
|
|
return ATA_DEFER_PORT;
|
|
|
|
/* PIO commands need exclusive link: no other commands [DMA or PIO]
|
|
* can run concurrently.
|
|
* set excl_link when we want to send a PIO command in DMA mode
|
|
* or a non-NCQ command in NCQ mode.
|
|
* When we receive a command from that link, and there are no
|
|
* outstanding commands, mark a flag to clear excl_link and let
|
|
* the command go through.
|
|
*/
|
|
if (unlikely(ap->excl_link)) {
|
|
if (link == ap->excl_link) {
|
|
if (ap->nr_active_links)
|
|
return ATA_DEFER_PORT;
|
|
qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
|
|
return 0;
|
|
} else
|
|
return ATA_DEFER_PORT;
|
|
}
|
|
|
|
/*
|
|
* If the port is completely idle, then allow the new qc.
|
|
*/
|
|
if (ap->nr_active_links == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* The port is operating in host queuing mode (EDMA) with NCQ
|
|
* enabled, allow multiple NCQ commands. EDMA also allows
|
|
* queueing multiple DMA commands but libata core currently
|
|
* doesn't allow it.
|
|
*/
|
|
if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
|
|
(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
|
|
if (ata_is_ncq(qc->tf.protocol))
|
|
return 0;
|
|
else {
|
|
ap->excl_link = link;
|
|
return ATA_DEFER_PORT;
|
|
}
|
|
}
|
|
|
|
return ATA_DEFER_PORT;
|
|
}
|
|
|
|
static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
void __iomem *port_mmio;
|
|
|
|
u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
|
|
u32 ltmode, *old_ltmode = &pp->cached.ltmode;
|
|
u32 haltcond, *old_haltcond = &pp->cached.haltcond;
|
|
|
|
ltmode = *old_ltmode & ~LTMODE_BIT8;
|
|
haltcond = *old_haltcond | EDMA_ERR_DEV;
|
|
|
|
if (want_fbs) {
|
|
fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
|
|
ltmode = *old_ltmode | LTMODE_BIT8;
|
|
if (want_ncq)
|
|
haltcond &= ~EDMA_ERR_DEV;
|
|
else
|
|
fiscfg |= FISCFG_WAIT_DEV_ERR;
|
|
} else {
|
|
fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
|
|
}
|
|
|
|
port_mmio = mv_ap_base(ap);
|
|
mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
|
|
mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
|
|
mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
|
|
}
|
|
|
|
static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
u32 old, new;
|
|
|
|
/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
|
|
old = readl(hpriv->base + GPIO_PORT_CTL);
|
|
if (want_ncq)
|
|
new = old | (1 << 22);
|
|
else
|
|
new = old & ~(1 << 22);
|
|
if (new != old)
|
|
writel(new, hpriv->base + GPIO_PORT_CTL);
|
|
}
|
|
|
|
/**
|
|
* mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
|
|
* @ap: Port being initialized
|
|
*
|
|
* There are two DMA modes on these chips: basic DMA, and EDMA.
|
|
*
|
|
* Bit-0 of the "EDMA RESERVED" register enables/disables use
|
|
* of basic DMA on the GEN_IIE versions of the chips.
|
|
*
|
|
* This bit survives EDMA resets, and must be set for basic DMA
|
|
* to function, and should be cleared when EDMA is active.
|
|
*/
|
|
static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 new, *old = &pp->cached.unknown_rsvd;
|
|
|
|
if (enable_bmdma)
|
|
new = *old | 1;
|
|
else
|
|
new = *old & ~1;
|
|
mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
|
|
}
|
|
|
|
/*
|
|
* SOC chips have an issue whereby the HDD LEDs don't always blink
|
|
* during I/O when NCQ is enabled. Enabling a special "LED blink" mode
|
|
* of the SOC takes care of it, generating a steady blink rate when
|
|
* any drive on the chip is active.
|
|
*
|
|
* Unfortunately, the blink mode is a global hardware setting for the SOC,
|
|
* so we must use it whenever at least one port on the SOC has NCQ enabled.
|
|
*
|
|
* We turn "LED blink" off when NCQ is not in use anywhere, because the normal
|
|
* LED operation works then, and provides better (more accurate) feedback.
|
|
*
|
|
* Note that this code assumes that an SOC never has more than one HC onboard.
|
|
*/
|
|
static void mv_soc_led_blink_enable(struct ata_port *ap)
|
|
{
|
|
struct ata_host *host = ap->host;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *hc_mmio;
|
|
u32 led_ctrl;
|
|
|
|
if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
|
|
return;
|
|
hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
|
|
hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
|
|
led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
|
|
writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
|
|
}
|
|
|
|
static void mv_soc_led_blink_disable(struct ata_port *ap)
|
|
{
|
|
struct ata_host *host = ap->host;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *hc_mmio;
|
|
u32 led_ctrl;
|
|
unsigned int port;
|
|
|
|
if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
|
|
return;
|
|
|
|
/* disable led-blink only if no ports are using NCQ */
|
|
for (port = 0; port < hpriv->n_ports; port++) {
|
|
struct ata_port *this_ap = host->ports[port];
|
|
struct mv_port_priv *pp = this_ap->private_data;
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
|
|
return;
|
|
}
|
|
|
|
hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
|
|
hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
|
|
led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
|
|
writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
|
|
}
|
|
|
|
static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
|
|
{
|
|
u32 cfg;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
|
|
/* set up non-NCQ EDMA configuration */
|
|
cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
|
|
pp->pp_flags &=
|
|
~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
cfg |= (1 << 8); /* enab config burst size mask */
|
|
|
|
else if (IS_GEN_II(hpriv)) {
|
|
cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
|
|
mv_60x1_errata_sata25(ap, want_ncq);
|
|
|
|
} else if (IS_GEN_IIE(hpriv)) {
|
|
int want_fbs = sata_pmp_attached(ap);
|
|
/*
|
|
* Possible future enhancement:
|
|
*
|
|
* The chip can use FBS with non-NCQ, if we allow it,
|
|
* But first we need to have the error handling in place
|
|
* for this mode (datasheet section 7.3.15.4.2.3).
|
|
* So disallow non-NCQ FBS for now.
|
|
*/
|
|
want_fbs &= want_ncq;
|
|
|
|
mv_config_fbs(ap, want_ncq, want_fbs);
|
|
|
|
if (want_fbs) {
|
|
pp->pp_flags |= MV_PP_FLAG_FBS_EN;
|
|
cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
|
|
}
|
|
|
|
cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
|
|
if (want_edma) {
|
|
cfg |= (1 << 22); /* enab 4-entry host queue cache */
|
|
if (!IS_SOC(hpriv))
|
|
cfg |= (1 << 18); /* enab early completion */
|
|
}
|
|
if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
|
|
cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
|
|
mv_bmdma_enable_iie(ap, !want_edma);
|
|
|
|
if (IS_SOC(hpriv)) {
|
|
if (want_ncq)
|
|
mv_soc_led_blink_enable(ap);
|
|
else
|
|
mv_soc_led_blink_disable(ap);
|
|
}
|
|
}
|
|
|
|
if (want_ncq) {
|
|
cfg |= EDMA_CFG_NCQ;
|
|
pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
|
|
}
|
|
|
|
writelfl(cfg, port_mmio + EDMA_CFG);
|
|
}
|
|
|
|
static void mv_port_free_dma_mem(struct ata_port *ap)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
int tag;
|
|
|
|
if (pp->crqb) {
|
|
dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
|
|
pp->crqb = NULL;
|
|
}
|
|
if (pp->crpb) {
|
|
dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
|
|
pp->crpb = NULL;
|
|
}
|
|
/*
|
|
* For GEN_I, there's no NCQ, so we have only a single sg_tbl.
|
|
* For later hardware, we have one unique sg_tbl per NCQ tag.
|
|
*/
|
|
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
|
|
if (pp->sg_tbl[tag]) {
|
|
if (tag == 0 || !IS_GEN_I(hpriv))
|
|
dma_pool_free(hpriv->sg_tbl_pool,
|
|
pp->sg_tbl[tag],
|
|
pp->sg_tbl_dma[tag]);
|
|
pp->sg_tbl[tag] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_port_start - Port specific init/start routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Allocate and point to DMA memory, init port private memory,
|
|
* zero indices.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_port_start(struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host->dev;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp;
|
|
unsigned long flags;
|
|
int tag;
|
|
|
|
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
|
|
if (!pp)
|
|
return -ENOMEM;
|
|
ap->private_data = pp;
|
|
|
|
pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
|
|
if (!pp->crqb)
|
|
return -ENOMEM;
|
|
|
|
pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
|
|
if (!pp->crpb)
|
|
goto out_port_free_dma_mem;
|
|
|
|
/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
|
|
if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
|
|
ap->flags |= ATA_FLAG_AN;
|
|
/*
|
|
* For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
|
|
* For later hardware, we need one unique sg_tbl per NCQ tag.
|
|
*/
|
|
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
|
|
if (tag == 0 || !IS_GEN_I(hpriv)) {
|
|
pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
|
|
GFP_KERNEL, &pp->sg_tbl_dma[tag]);
|
|
if (!pp->sg_tbl[tag])
|
|
goto out_port_free_dma_mem;
|
|
} else {
|
|
pp->sg_tbl[tag] = pp->sg_tbl[0];
|
|
pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
mv_save_cached_regs(ap);
|
|
mv_edma_cfg(ap, 0, 0);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
return 0;
|
|
|
|
out_port_free_dma_mem:
|
|
mv_port_free_dma_mem(ap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* mv_port_stop - Port specific cleanup/stop routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Stop DMA, cleanup port memory.
|
|
*
|
|
* LOCKING:
|
|
* This routine uses the host lock to protect the DMA stop.
|
|
*/
|
|
static void mv_port_stop(struct ata_port *ap)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
mv_stop_edma(ap);
|
|
mv_enable_port_irqs(ap, 0);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
mv_port_free_dma_mem(ap);
|
|
}
|
|
|
|
/**
|
|
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
|
|
* @qc: queued command whose SG list to source from
|
|
*
|
|
* Populate the SG list and mark the last entry.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct mv_port_priv *pp = qc->ap->private_data;
|
|
struct scatterlist *sg;
|
|
struct mv_sg *mv_sg, *last_sg = NULL;
|
|
unsigned int si;
|
|
|
|
mv_sg = pp->sg_tbl[qc->hw_tag];
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
dma_addr_t addr = sg_dma_address(sg);
|
|
u32 sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
u32 offset = addr & 0xffff;
|
|
u32 len = sg_len;
|
|
|
|
if (offset + len > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
|
|
mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
|
|
mv_sg->flags_size = cpu_to_le32(len & 0xffff);
|
|
mv_sg->reserved = 0;
|
|
|
|
sg_len -= len;
|
|
addr += len;
|
|
|
|
last_sg = mv_sg;
|
|
mv_sg++;
|
|
}
|
|
}
|
|
|
|
if (likely(last_sg))
|
|
last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
|
|
mb(); /* ensure data structure is visible to the chipset */
|
|
}
|
|
|
|
static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
|
|
{
|
|
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
|
|
(last ? CRQB_CMD_LAST : 0);
|
|
*cmdw = cpu_to_le16(tmp);
|
|
}
|
|
|
|
/**
|
|
* mv_sff_irq_clear - Clear hardware interrupt after DMA.
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* We need this only for ATAPI bmdma transactions,
|
|
* as otherwise we experience spurious interrupts
|
|
* after libata-sff handles the bmdma interrupts.
|
|
*/
|
|
static void mv_sff_irq_clear(struct ata_port *ap)
|
|
{
|
|
mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
|
|
}
|
|
|
|
/**
|
|
* mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
|
|
* @qc: queued command to check for chipset/DMA compatibility.
|
|
*
|
|
* The bmdma engines cannot handle speculative data sizes
|
|
* (bytecount under/over flow). So only allow DMA for
|
|
* data transfer commands with known data sizes.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
|
|
{
|
|
struct scsi_cmnd *scmd = qc->scsicmd;
|
|
|
|
if (scmd) {
|
|
switch (scmd->cmnd[0]) {
|
|
case READ_6:
|
|
case READ_10:
|
|
case READ_12:
|
|
case WRITE_6:
|
|
case WRITE_10:
|
|
case WRITE_12:
|
|
case GPCMD_READ_CD:
|
|
case GPCMD_SEND_DVD_STRUCTURE:
|
|
case GPCMD_SEND_CUE_SHEET:
|
|
return 0; /* DMA is safe */
|
|
}
|
|
}
|
|
return -EOPNOTSUPP; /* use PIO instead */
|
|
}
|
|
|
|
/**
|
|
* mv_bmdma_setup - Set up BMDMA transaction
|
|
* @qc: queued command to prepare DMA for.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_bmdma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
mv_fill_sg(qc);
|
|
|
|
/* clear all DMA cmd bits */
|
|
writel(0, port_mmio + BMDMA_CMD);
|
|
|
|
/* load PRD table addr. */
|
|
writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
|
|
port_mmio + BMDMA_PRD_HIGH);
|
|
writelfl(pp->sg_tbl_dma[qc->hw_tag],
|
|
port_mmio + BMDMA_PRD_LOW);
|
|
|
|
/* issue r/w command */
|
|
ap->ops->sff_exec_command(ap, &qc->tf);
|
|
}
|
|
|
|
/**
|
|
* mv_bmdma_start - Start a BMDMA transaction
|
|
* @qc: queued command to start DMA on.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_bmdma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
|
|
|
|
/* start host DMA transaction */
|
|
writelfl(cmd, port_mmio + BMDMA_CMD);
|
|
}
|
|
|
|
/**
|
|
* mv_bmdma_stop - Stop BMDMA transfer
|
|
* @qc: queued command to stop DMA on.
|
|
*
|
|
* Clears the ATA_DMA_START flag in the bmdma control register
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_bmdma_stop_ap(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 cmd;
|
|
|
|
/* clear start/stop bit */
|
|
cmd = readl(port_mmio + BMDMA_CMD);
|
|
if (cmd & ATA_DMA_START) {
|
|
cmd &= ~ATA_DMA_START;
|
|
writelfl(cmd, port_mmio + BMDMA_CMD);
|
|
|
|
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
|
|
ata_sff_dma_pause(ap);
|
|
}
|
|
}
|
|
|
|
static void mv_bmdma_stop(struct ata_queued_cmd *qc)
|
|
{
|
|
mv_bmdma_stop_ap(qc->ap);
|
|
}
|
|
|
|
/**
|
|
* mv_bmdma_status - Read BMDMA status
|
|
* @ap: port for which to retrieve DMA status.
|
|
*
|
|
* Read and return equivalent of the sff BMDMA status register.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 mv_bmdma_status(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 reg, status;
|
|
|
|
/*
|
|
* Other bits are valid only if ATA_DMA_ACTIVE==0,
|
|
* and the ATA_DMA_INTR bit doesn't exist.
|
|
*/
|
|
reg = readl(port_mmio + BMDMA_STATUS);
|
|
if (reg & ATA_DMA_ACTIVE)
|
|
status = ATA_DMA_ACTIVE;
|
|
else if (reg & ATA_DMA_ERR)
|
|
status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
|
|
else {
|
|
/*
|
|
* Just because DMA_ACTIVE is 0 (DMA completed),
|
|
* this does _not_ mean the device is "done".
|
|
* So we should not yet be signalling ATA_DMA_INTR
|
|
* in some cases. Eg. DSM/TRIM, and perhaps others.
|
|
*/
|
|
mv_bmdma_stop_ap(ap);
|
|
if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
|
|
status = 0;
|
|
else
|
|
status = ATA_DMA_INTR;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_taskfile *tf = &qc->tf;
|
|
/*
|
|
* Workaround for 88SX60x1 FEr SATA#24.
|
|
*
|
|
* Chip may corrupt WRITEs if multi_count >= 4kB.
|
|
* Note that READs are unaffected.
|
|
*
|
|
* It's not clear if this errata really means "4K bytes",
|
|
* or if it always happens for multi_count > 7
|
|
* regardless of device sector_size.
|
|
*
|
|
* So, for safety, any write with multi_count > 7
|
|
* gets converted here into a regular PIO write instead:
|
|
*/
|
|
if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
|
|
if (qc->dev->multi_count > 7) {
|
|
switch (tf->command) {
|
|
case ATA_CMD_WRITE_MULTI:
|
|
tf->command = ATA_CMD_PIO_WRITE;
|
|
break;
|
|
case ATA_CMD_WRITE_MULTI_FUA_EXT:
|
|
tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
|
|
/* fall through */
|
|
case ATA_CMD_WRITE_MULTI_EXT:
|
|
tf->command = ATA_CMD_PIO_WRITE_EXT;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_qc_prep - Host specific command preparation.
|
|
* @qc: queued command to prepare
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it handles prep of the CRQB
|
|
* (command request block), does some sanity checking, and calls
|
|
* the SG load routine.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
__le16 *cw;
|
|
struct ata_taskfile *tf = &qc->tf;
|
|
u16 flags = 0;
|
|
unsigned in_index;
|
|
|
|
switch (tf->protocol) {
|
|
case ATA_PROT_DMA:
|
|
if (tf->command == ATA_CMD_DSM)
|
|
return AC_ERR_OK;
|
|
/* fall-thru */
|
|
case ATA_PROT_NCQ:
|
|
break; /* continue below */
|
|
case ATA_PROT_PIO:
|
|
mv_rw_multi_errata_sata24(qc);
|
|
return AC_ERR_OK;
|
|
default:
|
|
return AC_ERR_OK;
|
|
}
|
|
|
|
/* Fill in command request block
|
|
*/
|
|
if (!(tf->flags & ATA_TFLAG_WRITE))
|
|
flags |= CRQB_FLAG_READ;
|
|
WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
|
|
flags |= qc->hw_tag << CRQB_TAG_SHIFT;
|
|
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
|
|
|
|
/* get current queue index from software */
|
|
in_index = pp->req_idx;
|
|
|
|
pp->crqb[in_index].sg_addr =
|
|
cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
|
|
pp->crqb[in_index].sg_addr_hi =
|
|
cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
|
|
pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
|
|
|
|
cw = &pp->crqb[in_index].ata_cmd[0];
|
|
|
|
/* Sadly, the CRQB cannot accommodate all registers--there are
|
|
* only 11 bytes...so we must pick and choose required
|
|
* registers based on the command. So, we drop feature and
|
|
* hob_feature for [RW] DMA commands, but they are needed for
|
|
* NCQ. NCQ will drop hob_nsect, which is not needed there
|
|
* (nsect is used only for the tag; feat/hob_feat hold true nsect).
|
|
*/
|
|
switch (tf->command) {
|
|
case ATA_CMD_READ:
|
|
case ATA_CMD_READ_EXT:
|
|
case ATA_CMD_WRITE:
|
|
case ATA_CMD_WRITE_EXT:
|
|
case ATA_CMD_WRITE_FUA_EXT:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
|
|
break;
|
|
case ATA_CMD_FPDMA_READ:
|
|
case ATA_CMD_FPDMA_WRITE:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
|
|
break;
|
|
default:
|
|
/* The only other commands EDMA supports in non-queued and
|
|
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
|
|
* of which are defined/used by Linux. If we get here, this
|
|
* driver needs work.
|
|
*/
|
|
ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
|
|
tf->command);
|
|
return AC_ERR_INVALID;
|
|
}
|
|
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
|
|
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return AC_ERR_OK;
|
|
mv_fill_sg(qc);
|
|
|
|
return AC_ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* mv_qc_prep_iie - Host specific command preparation.
|
|
* @qc: queued command to prepare
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it handles prep of the CRQB
|
|
* (command request block), does some sanity checking, and calls
|
|
* the SG load routine.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_crqb_iie *crqb;
|
|
struct ata_taskfile *tf = &qc->tf;
|
|
unsigned in_index;
|
|
u32 flags = 0;
|
|
|
|
if ((tf->protocol != ATA_PROT_DMA) &&
|
|
(tf->protocol != ATA_PROT_NCQ))
|
|
return AC_ERR_OK;
|
|
if (tf->command == ATA_CMD_DSM)
|
|
return AC_ERR_OK; /* use bmdma for this */
|
|
|
|
/* Fill in Gen IIE command request block */
|
|
if (!(tf->flags & ATA_TFLAG_WRITE))
|
|
flags |= CRQB_FLAG_READ;
|
|
|
|
WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
|
|
flags |= qc->hw_tag << CRQB_TAG_SHIFT;
|
|
flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
|
|
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
|
|
|
|
/* get current queue index from software */
|
|
in_index = pp->req_idx;
|
|
|
|
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
|
|
crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
|
|
crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
|
|
crqb->flags = cpu_to_le32(flags);
|
|
|
|
crqb->ata_cmd[0] = cpu_to_le32(
|
|
(tf->command << 16) |
|
|
(tf->feature << 24)
|
|
);
|
|
crqb->ata_cmd[1] = cpu_to_le32(
|
|
(tf->lbal << 0) |
|
|
(tf->lbam << 8) |
|
|
(tf->lbah << 16) |
|
|
(tf->device << 24)
|
|
);
|
|
crqb->ata_cmd[2] = cpu_to_le32(
|
|
(tf->hob_lbal << 0) |
|
|
(tf->hob_lbam << 8) |
|
|
(tf->hob_lbah << 16) |
|
|
(tf->hob_feature << 24)
|
|
);
|
|
crqb->ata_cmd[3] = cpu_to_le32(
|
|
(tf->nsect << 0) |
|
|
(tf->hob_nsect << 8)
|
|
);
|
|
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return AC_ERR_OK;
|
|
mv_fill_sg(qc);
|
|
|
|
return AC_ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* mv_sff_check_status - fetch device status, if valid
|
|
* @ap: ATA port to fetch status from
|
|
*
|
|
* When using command issue via mv_qc_issue_fis(),
|
|
* the initial ATA_BUSY state does not show up in the
|
|
* ATA status (shadow) register. This can confuse libata!
|
|
*
|
|
* So we have a hook here to fake ATA_BUSY for that situation,
|
|
* until the first time a BUSY, DRQ, or ERR bit is seen.
|
|
*
|
|
* The rest of the time, it simply returns the ATA status register.
|
|
*/
|
|
static u8 mv_sff_check_status(struct ata_port *ap)
|
|
{
|
|
u8 stat = ioread8(ap->ioaddr.status_addr);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
|
|
if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
|
|
pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
|
|
else
|
|
stat = ATA_BUSY;
|
|
}
|
|
return stat;
|
|
}
|
|
|
|
/**
|
|
* mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
|
|
* @fis: fis to be sent
|
|
* @nwords: number of 32-bit words in the fis
|
|
*/
|
|
static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 ifctl, old_ifctl, ifstat;
|
|
int i, timeout = 200, final_word = nwords - 1;
|
|
|
|
/* Initiate FIS transmission mode */
|
|
old_ifctl = readl(port_mmio + SATA_IFCTL);
|
|
ifctl = 0x100 | (old_ifctl & 0xf);
|
|
writelfl(ifctl, port_mmio + SATA_IFCTL);
|
|
|
|
/* Send all words of the FIS except for the final word */
|
|
for (i = 0; i < final_word; ++i)
|
|
writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
|
|
|
|
/* Flag end-of-transmission, and then send the final word */
|
|
writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
|
|
writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
|
|
|
|
/*
|
|
* Wait for FIS transmission to complete.
|
|
* This typically takes just a single iteration.
|
|
*/
|
|
do {
|
|
ifstat = readl(port_mmio + SATA_IFSTAT);
|
|
} while (!(ifstat & 0x1000) && --timeout);
|
|
|
|
/* Restore original port configuration */
|
|
writelfl(old_ifctl, port_mmio + SATA_IFCTL);
|
|
|
|
/* See if it worked */
|
|
if ((ifstat & 0x3000) != 0x1000) {
|
|
ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
|
|
__func__, ifstat);
|
|
return AC_ERR_OTHER;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_qc_issue_fis - Issue a command directly as a FIS
|
|
* @qc: queued command to start
|
|
*
|
|
* Note that the ATA shadow registers are not updated
|
|
* after command issue, so the device will appear "READY"
|
|
* if polled, even while it is BUSY processing the command.
|
|
*
|
|
* So we use a status hook to fake ATA_BUSY until the drive changes state.
|
|
*
|
|
* Note: we don't get updated shadow regs on *completion*
|
|
* of non-data commands. So avoid sending them via this function,
|
|
* as they will appear to have completed immediately.
|
|
*
|
|
* GEN_IIE has special registers that we could get the result tf from,
|
|
* but earlier chipsets do not. For now, we ignore those registers.
|
|
*/
|
|
static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct ata_link *link = qc->dev->link;
|
|
u32 fis[5];
|
|
int err = 0;
|
|
|
|
ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
|
|
err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
|
|
if (err)
|
|
return err;
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATAPI_PROT_PIO:
|
|
pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
|
|
/* fall through */
|
|
case ATAPI_PROT_NODATA:
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
break;
|
|
case ATA_PROT_PIO:
|
|
pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE)
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
else
|
|
ap->hsm_task_state = HSM_ST;
|
|
break;
|
|
default:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
}
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_sff_queue_pio_task(link, 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_qc_issue - Initiate a command to the host
|
|
* @qc: queued command to start
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it sanity checks our local
|
|
* caches of the request producer/consumer indices then enables
|
|
* DMA and bumps the request producer index.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
static int limit_warnings = 10;
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 in_index;
|
|
unsigned int port_irqs;
|
|
|
|
pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_DMA:
|
|
if (qc->tf.command == ATA_CMD_DSM) {
|
|
if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
|
|
return AC_ERR_OTHER;
|
|
break; /* use bmdma for this */
|
|
}
|
|
/* fall thru */
|
|
case ATA_PROT_NCQ:
|
|
mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
|
|
pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
|
|
in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
|
|
|
|
/* Write the request in pointer to kick the EDMA to life */
|
|
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
|
|
port_mmio + EDMA_REQ_Q_IN_PTR);
|
|
return 0;
|
|
|
|
case ATA_PROT_PIO:
|
|
/*
|
|
* Errata SATA#16, SATA#24: warn if multiple DRQs expected.
|
|
*
|
|
* Someday, we might implement special polling workarounds
|
|
* for these, but it all seems rather unnecessary since we
|
|
* normally use only DMA for commands which transfer more
|
|
* than a single block of data.
|
|
*
|
|
* Much of the time, this could just work regardless.
|
|
* So for now, just log the incident, and allow the attempt.
|
|
*/
|
|
if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
|
|
--limit_warnings;
|
|
ata_link_warn(qc->dev->link, DRV_NAME
|
|
": attempting PIO w/multiple DRQ: "
|
|
"this may fail due to h/w errata\n");
|
|
}
|
|
/* fall through */
|
|
case ATA_PROT_NODATA:
|
|
case ATAPI_PROT_PIO:
|
|
case ATAPI_PROT_NODATA:
|
|
if (ap->flags & ATA_FLAG_PIO_POLLING)
|
|
qc->tf.flags |= ATA_TFLAG_POLLING;
|
|
break;
|
|
}
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
port_irqs = ERR_IRQ; /* mask device interrupt when polling */
|
|
else
|
|
port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
|
|
|
|
/*
|
|
* We're about to send a non-EDMA capable command to the
|
|
* port. Turn off EDMA so there won't be problems accessing
|
|
* shadow block, etc registers.
|
|
*/
|
|
mv_stop_edma(ap);
|
|
mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
|
|
mv_pmp_select(ap, qc->dev->link->pmp);
|
|
|
|
if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
/*
|
|
* Workaround for 88SX60x1 FEr SATA#25 (part 2).
|
|
*
|
|
* After any NCQ error, the READ_LOG_EXT command
|
|
* from libata-eh *must* use mv_qc_issue_fis().
|
|
* Otherwise it might fail, due to chip errata.
|
|
*
|
|
* Rather than special-case it, we'll just *always*
|
|
* use this method here for READ_LOG_EXT, making for
|
|
* easier testing.
|
|
*/
|
|
if (IS_GEN_II(hpriv))
|
|
return mv_qc_issue_fis(qc);
|
|
}
|
|
return ata_bmdma_qc_issue(qc);
|
|
}
|
|
|
|
static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct ata_queued_cmd *qc;
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
|
|
return NULL;
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
return qc;
|
|
return NULL;
|
|
}
|
|
|
|
static void mv_pmp_error_handler(struct ata_port *ap)
|
|
{
|
|
unsigned int pmp, pmp_map;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
|
|
/*
|
|
* Perform NCQ error analysis on failed PMPs
|
|
* before we freeze the port entirely.
|
|
*
|
|
* The failed PMPs are marked earlier by mv_pmp_eh_prep().
|
|
*/
|
|
pmp_map = pp->delayed_eh_pmp_map;
|
|
pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
|
|
for (pmp = 0; pmp_map != 0; pmp++) {
|
|
unsigned int this_pmp = (1 << pmp);
|
|
if (pmp_map & this_pmp) {
|
|
struct ata_link *link = &ap->pmp_link[pmp];
|
|
pmp_map &= ~this_pmp;
|
|
ata_eh_analyze_ncq_error(link);
|
|
}
|
|
}
|
|
ata_port_freeze(ap);
|
|
}
|
|
sata_pmp_error_handler(ap);
|
|
}
|
|
|
|
static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
|
|
return readl(port_mmio + SATA_TESTCTL) >> 16;
|
|
}
|
|
|
|
static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
|
|
{
|
|
unsigned int pmp;
|
|
|
|
/*
|
|
* Initialize EH info for PMPs which saw device errors
|
|
*/
|
|
for (pmp = 0; pmp_map != 0; pmp++) {
|
|
unsigned int this_pmp = (1 << pmp);
|
|
if (pmp_map & this_pmp) {
|
|
struct ata_link *link = &ap->pmp_link[pmp];
|
|
struct ata_eh_info *ehi = &link->eh_info;
|
|
|
|
pmp_map &= ~this_pmp;
|
|
ata_ehi_clear_desc(ehi);
|
|
ata_ehi_push_desc(ehi, "dev err");
|
|
ehi->err_mask |= AC_ERR_DEV;
|
|
ehi->action |= ATA_EH_RESET;
|
|
ata_link_abort(link);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mv_req_q_empty(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 in_ptr, out_ptr;
|
|
|
|
in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
|
|
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
|
|
out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
|
|
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
|
|
return (in_ptr == out_ptr); /* 1 == queue_is_empty */
|
|
}
|
|
|
|
static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
int failed_links;
|
|
unsigned int old_map, new_map;
|
|
|
|
/*
|
|
* Device error during FBS+NCQ operation:
|
|
*
|
|
* Set a port flag to prevent further I/O being enqueued.
|
|
* Leave the EDMA running to drain outstanding commands from this port.
|
|
* Perform the post-mortem/EH only when all responses are complete.
|
|
* Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
|
|
*/
|
|
if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
|
|
pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
|
|
pp->delayed_eh_pmp_map = 0;
|
|
}
|
|
old_map = pp->delayed_eh_pmp_map;
|
|
new_map = old_map | mv_get_err_pmp_map(ap);
|
|
|
|
if (old_map != new_map) {
|
|
pp->delayed_eh_pmp_map = new_map;
|
|
mv_pmp_eh_prep(ap, new_map & ~old_map);
|
|
}
|
|
failed_links = hweight16(new_map);
|
|
|
|
ata_port_info(ap,
|
|
"%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
|
|
__func__, pp->delayed_eh_pmp_map,
|
|
ap->qc_active, failed_links,
|
|
ap->nr_active_links);
|
|
|
|
if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
|
|
mv_process_crpb_entries(ap, pp);
|
|
mv_stop_edma(ap);
|
|
mv_eh_freeze(ap);
|
|
ata_port_info(ap, "%s: done\n", __func__);
|
|
return 1; /* handled */
|
|
}
|
|
ata_port_info(ap, "%s: waiting\n", __func__);
|
|
return 1; /* handled */
|
|
}
|
|
|
|
static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
|
|
{
|
|
/*
|
|
* Possible future enhancement:
|
|
*
|
|
* FBS+non-NCQ operation is not yet implemented.
|
|
* See related notes in mv_edma_cfg().
|
|
*
|
|
* Device error during FBS+non-NCQ operation:
|
|
*
|
|
* We need to snapshot the shadow registers for each failed command.
|
|
* Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
|
|
*/
|
|
return 0; /* not handled */
|
|
}
|
|
|
|
static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
|
|
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
|
|
return 0; /* EDMA was not active: not handled */
|
|
if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
|
|
return 0; /* FBS was not active: not handled */
|
|
|
|
if (!(edma_err_cause & EDMA_ERR_DEV))
|
|
return 0; /* non DEV error: not handled */
|
|
edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
|
|
if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
|
|
return 0; /* other problems: not handled */
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
|
|
/*
|
|
* EDMA should NOT have self-disabled for this case.
|
|
* If it did, then something is wrong elsewhere,
|
|
* and we cannot handle it here.
|
|
*/
|
|
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
|
|
ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
|
|
__func__, edma_err_cause, pp->pp_flags);
|
|
return 0; /* not handled */
|
|
}
|
|
return mv_handle_fbs_ncq_dev_err(ap);
|
|
} else {
|
|
/*
|
|
* EDMA should have self-disabled for this case.
|
|
* If it did not, then something is wrong elsewhere,
|
|
* and we cannot handle it here.
|
|
*/
|
|
if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
|
|
ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
|
|
__func__, edma_err_cause, pp->pp_flags);
|
|
return 0; /* not handled */
|
|
}
|
|
return mv_handle_fbs_non_ncq_dev_err(ap);
|
|
}
|
|
return 0; /* not handled */
|
|
}
|
|
|
|
static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
|
|
{
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
char *when = "idle";
|
|
|
|
ata_ehi_clear_desc(ehi);
|
|
if (edma_was_enabled) {
|
|
when = "EDMA enabled";
|
|
} else {
|
|
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
|
|
when = "polling";
|
|
}
|
|
ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
|
|
ehi->err_mask |= AC_ERR_OTHER;
|
|
ehi->action |= ATA_EH_RESET;
|
|
ata_port_freeze(ap);
|
|
}
|
|
|
|
/**
|
|
* mv_err_intr - Handle error interrupts on the port
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Most cases require a full reset of the chip's state machine,
|
|
* which also performs a COMRESET.
|
|
* Also, if the port disabled DMA, update our cached copy to match.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_err_intr(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 edma_err_cause, eh_freeze_mask, serr = 0;
|
|
u32 fis_cause = 0;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
unsigned int action = 0, err_mask = 0;
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
struct ata_queued_cmd *qc;
|
|
int abort = 0;
|
|
|
|
/*
|
|
* Read and clear the SError and err_cause bits.
|
|
* For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
|
|
* the FIS_IRQ_CAUSE register before clearing edma_err_cause.
|
|
*/
|
|
sata_scr_read(&ap->link, SCR_ERROR, &serr);
|
|
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
|
|
|
|
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
|
|
if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
|
|
fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
|
|
writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
|
|
}
|
|
writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
|
|
|
|
if (edma_err_cause & EDMA_ERR_DEV) {
|
|
/*
|
|
* Device errors during FIS-based switching operation
|
|
* require special handling.
|
|
*/
|
|
if (mv_handle_dev_err(ap, edma_err_cause))
|
|
return;
|
|
}
|
|
|
|
qc = mv_get_active_qc(ap);
|
|
ata_ehi_clear_desc(ehi);
|
|
ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
|
|
edma_err_cause, pp->pp_flags);
|
|
|
|
if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
|
|
ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
|
|
if (fis_cause & FIS_IRQ_CAUSE_AN) {
|
|
u32 ec = edma_err_cause &
|
|
~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
|
|
sata_async_notification(ap);
|
|
if (!ec)
|
|
return; /* Just an AN; no need for the nukes */
|
|
ata_ehi_push_desc(ehi, "SDB notify");
|
|
}
|
|
}
|
|
/*
|
|
* All generations share these EDMA error cause bits:
|
|
*/
|
|
if (edma_err_cause & EDMA_ERR_DEV) {
|
|
err_mask |= AC_ERR_DEV;
|
|
action |= ATA_EH_RESET;
|
|
ata_ehi_push_desc(ehi, "dev error");
|
|
}
|
|
if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR)) {
|
|
err_mask |= AC_ERR_ATA_BUS;
|
|
action |= ATA_EH_RESET;
|
|
ata_ehi_push_desc(ehi, "parity error");
|
|
}
|
|
if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
|
|
ata_ehi_hotplugged(ehi);
|
|
ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
|
|
"dev disconnect" : "dev connect");
|
|
action |= ATA_EH_RESET;
|
|
}
|
|
|
|
/*
|
|
* Gen-I has a different SELF_DIS bit,
|
|
* different FREEZE bits, and no SERR bit:
|
|
*/
|
|
if (IS_GEN_I(hpriv)) {
|
|
eh_freeze_mask = EDMA_EH_FREEZE_5;
|
|
if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
ata_ehi_push_desc(ehi, "EDMA self-disable");
|
|
}
|
|
} else {
|
|
eh_freeze_mask = EDMA_EH_FREEZE;
|
|
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
ata_ehi_push_desc(ehi, "EDMA self-disable");
|
|
}
|
|
if (edma_err_cause & EDMA_ERR_SERR) {
|
|
ata_ehi_push_desc(ehi, "SError=%08x", serr);
|
|
err_mask |= AC_ERR_ATA_BUS;
|
|
action |= ATA_EH_RESET;
|
|
}
|
|
}
|
|
|
|
if (!err_mask) {
|
|
err_mask = AC_ERR_OTHER;
|
|
action |= ATA_EH_RESET;
|
|
}
|
|
|
|
ehi->serror |= serr;
|
|
ehi->action |= action;
|
|
|
|
if (qc)
|
|
qc->err_mask |= err_mask;
|
|
else
|
|
ehi->err_mask |= err_mask;
|
|
|
|
if (err_mask == AC_ERR_DEV) {
|
|
/*
|
|
* Cannot do ata_port_freeze() here,
|
|
* because it would kill PIO access,
|
|
* which is needed for further diagnosis.
|
|
*/
|
|
mv_eh_freeze(ap);
|
|
abort = 1;
|
|
} else if (edma_err_cause & eh_freeze_mask) {
|
|
/*
|
|
* Note to self: ata_port_freeze() calls ata_port_abort()
|
|
*/
|
|
ata_port_freeze(ap);
|
|
} else {
|
|
abort = 1;
|
|
}
|
|
|
|
if (abort) {
|
|
if (qc)
|
|
ata_link_abort(qc->dev->link);
|
|
else
|
|
ata_port_abort(ap);
|
|
}
|
|
}
|
|
|
|
static bool mv_process_crpb_response(struct ata_port *ap,
|
|
struct mv_crpb *response, unsigned int tag, int ncq_enabled)
|
|
{
|
|
u8 ata_status;
|
|
u16 edma_status = le16_to_cpu(response->flags);
|
|
|
|
/*
|
|
* edma_status from a response queue entry:
|
|
* LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
|
|
* MSB is saved ATA status from command completion.
|
|
*/
|
|
if (!ncq_enabled) {
|
|
u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
|
|
if (err_cause) {
|
|
/*
|
|
* Error will be seen/handled by
|
|
* mv_err_intr(). So do nothing at all here.
|
|
*/
|
|
return false;
|
|
}
|
|
}
|
|
ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
|
|
if (!ac_err_mask(ata_status))
|
|
return true;
|
|
/* else: leave it for mv_err_intr() */
|
|
return false;
|
|
}
|
|
|
|
static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
u32 in_index;
|
|
bool work_done = false;
|
|
u32 done_mask = 0;
|
|
int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
|
|
|
|
/* Get the hardware queue position index */
|
|
in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
|
|
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
|
|
|
|
/* Process new responses from since the last time we looked */
|
|
while (in_index != pp->resp_idx) {
|
|
unsigned int tag;
|
|
struct mv_crpb *response = &pp->crpb[pp->resp_idx];
|
|
|
|
pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
|
|
|
|
if (IS_GEN_I(hpriv)) {
|
|
/* 50xx: no NCQ, only one command active at a time */
|
|
tag = ap->link.active_tag;
|
|
} else {
|
|
/* Gen II/IIE: get command tag from CRPB entry */
|
|
tag = le16_to_cpu(response->id) & 0x1f;
|
|
}
|
|
if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
|
|
done_mask |= 1 << tag;
|
|
work_done = true;
|
|
}
|
|
|
|
if (work_done) {
|
|
ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
|
|
|
|
/* Update the software queue position index in hardware */
|
|
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
|
|
(pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
|
|
port_mmio + EDMA_RSP_Q_OUT_PTR);
|
|
}
|
|
}
|
|
|
|
static void mv_port_intr(struct ata_port *ap, u32 port_cause)
|
|
{
|
|
struct mv_port_priv *pp;
|
|
int edma_was_enabled;
|
|
|
|
/*
|
|
* Grab a snapshot of the EDMA_EN flag setting,
|
|
* so that we have a consistent view for this port,
|
|
* even if something we call of our routines changes it.
|
|
*/
|
|
pp = ap->private_data;
|
|
edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
|
|
/*
|
|
* Process completed CRPB response(s) before other events.
|
|
*/
|
|
if (edma_was_enabled && (port_cause & DONE_IRQ)) {
|
|
mv_process_crpb_entries(ap, pp);
|
|
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
|
|
mv_handle_fbs_ncq_dev_err(ap);
|
|
}
|
|
/*
|
|
* Handle chip-reported errors, or continue on to handle PIO.
|
|
*/
|
|
if (unlikely(port_cause & ERR_IRQ)) {
|
|
mv_err_intr(ap);
|
|
} else if (!edma_was_enabled) {
|
|
struct ata_queued_cmd *qc = mv_get_active_qc(ap);
|
|
if (qc)
|
|
ata_bmdma_port_intr(ap, qc);
|
|
else
|
|
mv_unexpected_intr(ap, edma_was_enabled);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_host_intr - Handle all interrupts on the given host controller
|
|
* @host: host specific structure
|
|
* @main_irq_cause: Main interrupt cause register for the chip.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base, *hc_mmio;
|
|
unsigned int handled = 0, port;
|
|
|
|
/* If asserted, clear the "all ports" IRQ coalescing bit */
|
|
if (main_irq_cause & ALL_PORTS_COAL_DONE)
|
|
writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
|
|
|
|
for (port = 0; port < hpriv->n_ports; port++) {
|
|
struct ata_port *ap = host->ports[port];
|
|
unsigned int p, shift, hardport, port_cause;
|
|
|
|
MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
|
|
/*
|
|
* Each hc within the host has its own hc_irq_cause register,
|
|
* where the interrupting ports bits get ack'd.
|
|
*/
|
|
if (hardport == 0) { /* first port on this hc ? */
|
|
u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
|
|
u32 port_mask, ack_irqs;
|
|
/*
|
|
* Skip this entire hc if nothing pending for any ports
|
|
*/
|
|
if (!hc_cause) {
|
|
port += MV_PORTS_PER_HC - 1;
|
|
continue;
|
|
}
|
|
/*
|
|
* We don't need/want to read the hc_irq_cause register,
|
|
* because doing so hurts performance, and
|
|
* main_irq_cause already gives us everything we need.
|
|
*
|
|
* But we do have to *write* to the hc_irq_cause to ack
|
|
* the ports that we are handling this time through.
|
|
*
|
|
* This requires that we create a bitmap for those
|
|
* ports which interrupted us, and use that bitmap
|
|
* to ack (only) those ports via hc_irq_cause.
|
|
*/
|
|
ack_irqs = 0;
|
|
if (hc_cause & PORTS_0_3_COAL_DONE)
|
|
ack_irqs = HC_COAL_IRQ;
|
|
for (p = 0; p < MV_PORTS_PER_HC; ++p) {
|
|
if ((port + p) >= hpriv->n_ports)
|
|
break;
|
|
port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
|
|
if (hc_cause & port_mask)
|
|
ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
|
|
}
|
|
hc_mmio = mv_hc_base_from_port(mmio, port);
|
|
writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
|
|
handled = 1;
|
|
}
|
|
/*
|
|
* Handle interrupts signalled for this port:
|
|
*/
|
|
port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
|
|
if (port_cause)
|
|
mv_port_intr(ap, port_cause);
|
|
}
|
|
return handled;
|
|
}
|
|
|
|
static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
struct ata_port *ap;
|
|
struct ata_queued_cmd *qc;
|
|
struct ata_eh_info *ehi;
|
|
unsigned int i, err_mask, printed = 0;
|
|
u32 err_cause;
|
|
|
|
err_cause = readl(mmio + hpriv->irq_cause_offset);
|
|
|
|
dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
|
|
|
|
DPRINTK("All regs @ PCI error\n");
|
|
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
|
|
|
|
writelfl(0, mmio + hpriv->irq_cause_offset);
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
ap = host->ports[i];
|
|
if (!ata_link_offline(&ap->link)) {
|
|
ehi = &ap->link.eh_info;
|
|
ata_ehi_clear_desc(ehi);
|
|
if (!printed++)
|
|
ata_ehi_push_desc(ehi,
|
|
"PCI err cause 0x%08x", err_cause);
|
|
err_mask = AC_ERR_HOST_BUS;
|
|
ehi->action = ATA_EH_RESET;
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc)
|
|
qc->err_mask |= err_mask;
|
|
else
|
|
ehi->err_mask |= err_mask;
|
|
|
|
ata_port_freeze(ap);
|
|
}
|
|
}
|
|
return 1; /* handled */
|
|
}
|
|
|
|
/**
|
|
* mv_interrupt - Main interrupt event handler
|
|
* @irq: unused
|
|
* @dev_instance: private data; in this case the host structure
|
|
*
|
|
* Read the read only register to determine if any host
|
|
* controllers have pending interrupts. If so, call lower level
|
|
* routine to handle. Also check for PCI errors which are only
|
|
* reported here.
|
|
*
|
|
* LOCKING:
|
|
* This routine holds the host lock while processing pending
|
|
* interrupts.
|
|
*/
|
|
static irqreturn_t mv_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
unsigned int handled = 0;
|
|
int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
|
|
u32 main_irq_cause, pending_irqs;
|
|
|
|
spin_lock(&host->lock);
|
|
|
|
/* for MSI: block new interrupts while in here */
|
|
if (using_msi)
|
|
mv_write_main_irq_mask(0, hpriv);
|
|
|
|
main_irq_cause = readl(hpriv->main_irq_cause_addr);
|
|
pending_irqs = main_irq_cause & hpriv->main_irq_mask;
|
|
/*
|
|
* Deal with cases where we either have nothing pending, or have read
|
|
* a bogus register value which can indicate HW removal or PCI fault.
|
|
*/
|
|
if (pending_irqs && main_irq_cause != 0xffffffffU) {
|
|
if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
|
|
handled = mv_pci_error(host, hpriv->base);
|
|
else
|
|
handled = mv_host_intr(host, pending_irqs);
|
|
}
|
|
|
|
/* for MSI: unmask; interrupt cause bits will retrigger now */
|
|
if (using_msi)
|
|
mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
|
|
|
|
spin_unlock(&host->lock);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs;
|
|
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
case SCR_ERROR:
|
|
case SCR_CONTROL:
|
|
ofs = sc_reg_in * sizeof(u32);
|
|
break;
|
|
default:
|
|
ofs = 0xffffffffU;
|
|
break;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
|
|
{
|
|
struct mv_host_priv *hpriv = link->ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
|
|
unsigned int ofs = mv5_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
*val = readl(addr + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
|
|
{
|
|
struct mv_host_priv *hpriv = link->ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
|
|
unsigned int ofs = mv5_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
writelfl(val, addr + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
int early_5080;
|
|
|
|
early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
|
|
|
|
if (!early_5080) {
|
|
u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
tmp |= (1 << 0);
|
|
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
}
|
|
|
|
mv_reset_pci_bus(host, mmio);
|
|
}
|
|
|
|
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
writel(0x0fcfffff, mmio + FLASH_CTL);
|
|
}
|
|
|
|
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
|
|
u32 tmp;
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_MODE);
|
|
|
|
hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
|
|
hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
u32 tmp;
|
|
|
|
writel(0, mmio + GPIO_PORT_CTL);
|
|
|
|
/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
|
|
|
|
tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
tmp |= ~(1 << 0);
|
|
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
}
|
|
|
|
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *phy_mmio = mv5_phy_base(mmio, port);
|
|
const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
|
|
u32 tmp;
|
|
int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
|
|
|
|
if (fix_apm_sq) {
|
|
tmp = readl(phy_mmio + MV5_LTMODE);
|
|
tmp |= (1 << 19);
|
|
writel(tmp, phy_mmio + MV5_LTMODE);
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_CTL);
|
|
tmp &= ~0x3;
|
|
tmp |= 0x1;
|
|
writel(tmp, phy_mmio + MV5_PHY_CTL);
|
|
}
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_MODE);
|
|
tmp &= ~mask;
|
|
tmp |= hpriv->signal[port].pre;
|
|
tmp |= hpriv->signal[port].amps;
|
|
writel(tmp, phy_mmio + MV5_PHY_MODE);
|
|
}
|
|
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, port_mmio + (reg))
|
|
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
mv_reset_channel(hpriv, mmio, port);
|
|
|
|
ZERO(0x028); /* command */
|
|
writel(0x11f, port_mmio + EDMA_CFG);
|
|
ZERO(0x004); /* timer */
|
|
ZERO(0x008); /* irq err cause */
|
|
ZERO(0x00c); /* irq err mask */
|
|
ZERO(0x010); /* rq bah */
|
|
ZERO(0x014); /* rq inp */
|
|
ZERO(0x018); /* rq outp */
|
|
ZERO(0x01c); /* respq bah */
|
|
ZERO(0x024); /* respq outp */
|
|
ZERO(0x020); /* respq inp */
|
|
ZERO(0x02c); /* test control */
|
|
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
|
|
}
|
|
#undef ZERO
|
|
|
|
#define ZERO(reg) writel(0, hc_mmio + (reg))
|
|
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int hc)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
u32 tmp;
|
|
|
|
ZERO(0x00c);
|
|
ZERO(0x010);
|
|
ZERO(0x014);
|
|
ZERO(0x018);
|
|
|
|
tmp = readl(hc_mmio + 0x20);
|
|
tmp &= 0x1c1c1c1c;
|
|
tmp |= 0x03030303;
|
|
writel(tmp, hc_mmio + 0x20);
|
|
}
|
|
#undef ZERO
|
|
|
|
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc)
|
|
{
|
|
unsigned int hc, port;
|
|
|
|
for (hc = 0; hc < n_hc; hc++) {
|
|
for (port = 0; port < MV_PORTS_PER_HC; port++)
|
|
mv5_reset_hc_port(hpriv, mmio,
|
|
(hc * MV_PORTS_PER_HC) + port);
|
|
|
|
mv5_reset_one_hc(hpriv, mmio, hc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, mmio + (reg))
|
|
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u32 tmp;
|
|
|
|
tmp = readl(mmio + MV_PCI_MODE);
|
|
tmp &= 0xff00ffff;
|
|
writel(tmp, mmio + MV_PCI_MODE);
|
|
|
|
ZERO(MV_PCI_DISC_TIMER);
|
|
ZERO(MV_PCI_MSI_TRIGGER);
|
|
writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
|
|
ZERO(MV_PCI_SERR_MASK);
|
|
ZERO(hpriv->irq_cause_offset);
|
|
ZERO(hpriv->irq_mask_offset);
|
|
ZERO(MV_PCI_ERR_LOW_ADDRESS);
|
|
ZERO(MV_PCI_ERR_HIGH_ADDRESS);
|
|
ZERO(MV_PCI_ERR_ATTRIBUTE);
|
|
ZERO(MV_PCI_ERR_COMMAND);
|
|
}
|
|
#undef ZERO
|
|
|
|
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
u32 tmp;
|
|
|
|
mv5_reset_flash(hpriv, mmio);
|
|
|
|
tmp = readl(mmio + GPIO_PORT_CTL);
|
|
tmp &= 0x3;
|
|
tmp |= (1 << 5) | (1 << 6);
|
|
writel(tmp, mmio + GPIO_PORT_CTL);
|
|
}
|
|
|
|
/**
|
|
* mv6_reset_hc - Perform the 6xxx global soft reset
|
|
* @mmio: base address of the HBA
|
|
*
|
|
* This routine only applies to 6xxx parts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc)
|
|
{
|
|
void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
|
|
int i, rc = 0;
|
|
u32 t;
|
|
|
|
/* Following procedure defined in PCI "main command and status
|
|
* register" table.
|
|
*/
|
|
t = readl(reg);
|
|
writel(t | STOP_PCI_MASTER, reg);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
udelay(1);
|
|
t = readl(reg);
|
|
if (PCI_MASTER_EMPTY & t)
|
|
break;
|
|
}
|
|
if (!(PCI_MASTER_EMPTY & t)) {
|
|
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* set reset */
|
|
i = 5;
|
|
do {
|
|
writel(t | GLOB_SFT_RST, reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (!(GLOB_SFT_RST & t)) {
|
|
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
|
|
i = 5;
|
|
do {
|
|
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while ((GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (GLOB_SFT_RST & t) {
|
|
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
|
|
rc = 1;
|
|
}
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *port_mmio;
|
|
u32 tmp;
|
|
|
|
tmp = readl(mmio + RESET_CFG);
|
|
if ((tmp & (1 << 0)) == 0) {
|
|
hpriv->signal[idx].amps = 0x7 << 8;
|
|
hpriv->signal[idx].pre = 0x1 << 5;
|
|
return;
|
|
}
|
|
|
|
port_mmio = mv_port_base(mmio, idx);
|
|
tmp = readl(port_mmio + PHY_MODE2);
|
|
|
|
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
|
|
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
writel(0x00000060, mmio + GPIO_PORT_CTL);
|
|
}
|
|
|
|
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
u32 hp_flags = hpriv->hp_flags;
|
|
int fix_phy_mode2 =
|
|
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
|
|
int fix_phy_mode4 =
|
|
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
|
|
u32 m2, m3;
|
|
|
|
if (fix_phy_mode2) {
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
m2 &= ~(1 << 16);
|
|
m2 |= (1 << 31);
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
|
|
udelay(200);
|
|
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
m2 &= ~((1 << 16) | (1 << 31));
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
|
|
udelay(200);
|
|
}
|
|
|
|
/*
|
|
* Gen-II/IIe PHY_MODE3 errata RM#2:
|
|
* Achieves better receiver noise performance than the h/w default:
|
|
*/
|
|
m3 = readl(port_mmio + PHY_MODE3);
|
|
m3 = (m3 & 0x1f) | (0x5555601 << 5);
|
|
|
|
/* Guideline 88F5182 (GL# SATA-S11) */
|
|
if (IS_SOC(hpriv))
|
|
m3 &= ~0x1c;
|
|
|
|
if (fix_phy_mode4) {
|
|
u32 m4 = readl(port_mmio + PHY_MODE4);
|
|
/*
|
|
* Enforce reserved-bit restrictions on GenIIe devices only.
|
|
* For earlier chipsets, force only the internal config field
|
|
* (workaround for errata FEr SATA#10 part 1).
|
|
*/
|
|
if (IS_GEN_IIE(hpriv))
|
|
m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
|
|
else
|
|
m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
|
|
writel(m4, port_mmio + PHY_MODE4);
|
|
}
|
|
/*
|
|
* Workaround for 60x1-B2 errata SATA#13:
|
|
* Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
|
|
* so we must always rewrite PHY_MODE3 after PHY_MODE4.
|
|
* Or ensure we use writelfl() when writing PHY_MODE4.
|
|
*/
|
|
writel(m3, port_mmio + PHY_MODE3);
|
|
|
|
/* Revert values of pre-emphasis and signal amps to the saved ones */
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
|
|
m2 &= ~MV_M2_PREAMP_MASK;
|
|
m2 |= hpriv->signal[port].amps;
|
|
m2 |= hpriv->signal[port].pre;
|
|
m2 &= ~(1 << 16);
|
|
|
|
/* according to mvSata 3.6.1, some IIE values are fixed */
|
|
if (IS_GEN_IIE(hpriv)) {
|
|
m2 &= ~0xC30FF01F;
|
|
m2 |= 0x0000900F;
|
|
}
|
|
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
}
|
|
|
|
/* TODO: use the generic LED interface to configure the SATA Presence */
|
|
/* & Acitivy LEDs on the board */
|
|
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *port_mmio;
|
|
u32 tmp;
|
|
|
|
port_mmio = mv_port_base(mmio, idx);
|
|
tmp = readl(port_mmio + PHY_MODE2);
|
|
|
|
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
|
|
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, port_mmio + (reg))
|
|
static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
mv_reset_channel(hpriv, mmio, port);
|
|
|
|
ZERO(0x028); /* command */
|
|
writel(0x101f, port_mmio + EDMA_CFG);
|
|
ZERO(0x004); /* timer */
|
|
ZERO(0x008); /* irq err cause */
|
|
ZERO(0x00c); /* irq err mask */
|
|
ZERO(0x010); /* rq bah */
|
|
ZERO(0x014); /* rq inp */
|
|
ZERO(0x018); /* rq outp */
|
|
ZERO(0x01c); /* respq bah */
|
|
ZERO(0x024); /* respq outp */
|
|
ZERO(0x020); /* respq inp */
|
|
ZERO(0x02c); /* test control */
|
|
writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
|
|
}
|
|
|
|
#undef ZERO
|
|
|
|
#define ZERO(reg) writel(0, hc_mmio + (reg))
|
|
static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, 0);
|
|
|
|
ZERO(0x00c);
|
|
ZERO(0x010);
|
|
ZERO(0x014);
|
|
|
|
}
|
|
|
|
#undef ZERO
|
|
|
|
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int n_hc)
|
|
{
|
|
unsigned int port;
|
|
|
|
for (port = 0; port < hpriv->n_ports; port++)
|
|
mv_soc_reset_hc_port(hpriv, mmio, port);
|
|
|
|
mv_soc_reset_one_hc(hpriv, mmio);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
u32 reg;
|
|
|
|
reg = readl(port_mmio + PHY_MODE3);
|
|
reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
|
|
reg |= (0x1 << 27);
|
|
reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
|
|
reg |= (0x1 << 29);
|
|
writel(reg, port_mmio + PHY_MODE3);
|
|
|
|
reg = readl(port_mmio + PHY_MODE4);
|
|
reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
|
|
reg |= (0x1 << 16);
|
|
writel(reg, port_mmio + PHY_MODE4);
|
|
|
|
reg = readl(port_mmio + PHY_MODE9_GEN2);
|
|
reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
|
|
reg |= 0x8;
|
|
reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
|
|
writel(reg, port_mmio + PHY_MODE9_GEN2);
|
|
|
|
reg = readl(port_mmio + PHY_MODE9_GEN1);
|
|
reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
|
|
reg |= 0x8;
|
|
reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
|
|
writel(reg, port_mmio + PHY_MODE9_GEN1);
|
|
}
|
|
|
|
/**
|
|
* soc_is_65 - check if the soc is 65 nano device
|
|
*
|
|
* Detect the type of the SoC, this is done by reading the PHYCFG_OFS
|
|
* register, this register should contain non-zero value and it exists only
|
|
* in the 65 nano devices, when reading it from older devices we get 0.
|
|
*/
|
|
static bool soc_is_65n(struct mv_host_priv *hpriv)
|
|
{
|
|
void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
|
|
|
|
if (readl(port0_mmio + PHYCFG_OFS))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
|
|
{
|
|
u32 ifcfg = readl(port_mmio + SATA_IFCFG);
|
|
|
|
ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
|
|
if (want_gen2i)
|
|
ifcfg |= (1 << 7); /* enable gen2i speed */
|
|
writelfl(ifcfg, port_mmio + SATA_IFCFG);
|
|
}
|
|
|
|
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port_no)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port_no);
|
|
|
|
/*
|
|
* The datasheet warns against setting EDMA_RESET when EDMA is active
|
|
* (but doesn't say what the problem might be). So we first try
|
|
* to disable the EDMA engine before doing the EDMA_RESET operation.
|
|
*/
|
|
mv_stop_edma_engine(port_mmio);
|
|
writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
|
|
|
|
if (!IS_GEN_I(hpriv)) {
|
|
/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
|
|
mv_setup_ifcfg(port_mmio, 1);
|
|
}
|
|
/*
|
|
* Strobing EDMA_RESET here causes a hard reset of the SATA transport,
|
|
* link, and physical layers. It resets all SATA interface registers
|
|
* (except for SATA_IFCFG), and issues a COMRESET to the dev.
|
|
*/
|
|
writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
|
|
udelay(25); /* allow reset propagation */
|
|
writelfl(0, port_mmio + EDMA_CMD);
|
|
|
|
hpriv->ops->phy_errata(hpriv, mmio, port_no);
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
usleep_range(500, 1000);
|
|
}
|
|
|
|
static void mv_pmp_select(struct ata_port *ap, int pmp)
|
|
{
|
|
if (sata_pmp_supported(ap)) {
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 reg = readl(port_mmio + SATA_IFCTL);
|
|
int old = reg & 0xf;
|
|
|
|
if (old != pmp) {
|
|
reg = (reg & ~0xf) | pmp;
|
|
writelfl(reg, port_mmio + SATA_IFCTL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
mv_pmp_select(link->ap, sata_srst_pmp(link));
|
|
return sata_std_hardreset(link, class, deadline);
|
|
}
|
|
|
|
static int mv_softreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
mv_pmp_select(link->ap, sata_srst_pmp(link));
|
|
return ata_sff_softreset(link, class, deadline);
|
|
}
|
|
|
|
static int mv_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
int rc, attempts = 0, extra = 0;
|
|
u32 sstatus;
|
|
bool online;
|
|
|
|
mv_reset_channel(hpriv, mmio, ap->port_no);
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
pp->pp_flags &=
|
|
~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
|
|
|
|
/* Workaround for errata FEr SATA#10 (part 2) */
|
|
do {
|
|
const unsigned long *timing =
|
|
sata_ehc_deb_timing(&link->eh_context);
|
|
|
|
rc = sata_link_hardreset(link, timing, deadline + extra,
|
|
&online, NULL);
|
|
rc = online ? -EAGAIN : rc;
|
|
if (rc)
|
|
return rc;
|
|
sata_scr_read(link, SCR_STATUS, &sstatus);
|
|
if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
|
|
/* Force 1.5gb/s link speed and try again */
|
|
mv_setup_ifcfg(mv_ap_base(ap), 0);
|
|
if (time_after(jiffies + HZ, deadline))
|
|
extra = HZ; /* only extend it once, max */
|
|
}
|
|
} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
|
|
mv_save_cached_regs(ap);
|
|
mv_edma_cfg(ap, 0, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void mv_eh_freeze(struct ata_port *ap)
|
|
{
|
|
mv_stop_edma(ap);
|
|
mv_enable_port_irqs(ap, 0);
|
|
}
|
|
|
|
static void mv_eh_thaw(struct ata_port *ap)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
unsigned int port = ap->port_no;
|
|
unsigned int hardport = mv_hardport_from_port(port);
|
|
void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 hc_irq_cause;
|
|
|
|
/* clear EDMA errors on this port */
|
|
writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
|
|
|
|
/* clear pending irq events */
|
|
hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
|
|
writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
|
|
|
|
mv_enable_port_irqs(ap, ERR_IRQ);
|
|
}
|
|
|
|
/**
|
|
* mv_port_init - Perform some early initialization on a single port.
|
|
* @port: libata data structure storing shadow register addresses
|
|
* @port_mmio: base address of the port
|
|
*
|
|
* Initialize shadow register mmio addresses, clear outstanding
|
|
* interrupts on the port, and unmask interrupts for the future
|
|
* start of the port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
|
|
{
|
|
void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
|
|
|
|
/* PIO related setup
|
|
*/
|
|
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
|
|
port->error_addr =
|
|
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
|
|
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
|
|
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
|
|
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
|
|
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
|
|
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
|
|
port->status_addr =
|
|
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
|
|
/* special case: control/altstatus doesn't have ATA_REG_ address */
|
|
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
|
|
|
|
/* Clear any currently outstanding port interrupt conditions */
|
|
serr = port_mmio + mv_scr_offset(SCR_ERROR);
|
|
writelfl(readl(serr), serr);
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
|
|
|
|
/* unmask all non-transient EDMA error interrupts */
|
|
writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
|
|
|
|
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
|
|
readl(port_mmio + EDMA_CFG),
|
|
readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
|
|
readl(port_mmio + EDMA_ERR_IRQ_MASK));
|
|
}
|
|
|
|
static unsigned int mv_in_pcix_mode(struct ata_host *host)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
u32 reg;
|
|
|
|
if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
|
|
return 0; /* not PCI-X capable */
|
|
reg = readl(mmio + MV_PCI_MODE);
|
|
if ((reg & MV_PCI_MODE_MASK) == 0)
|
|
return 0; /* conventional PCI mode */
|
|
return 1; /* chip is in PCI-X mode */
|
|
}
|
|
|
|
static int mv_pci_cut_through_okay(struct ata_host *host)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
u32 reg;
|
|
|
|
if (!mv_in_pcix_mode(host)) {
|
|
reg = readl(mmio + MV_PCI_COMMAND);
|
|
if (reg & MV_PCI_COMMAND_MRDTRIG)
|
|
return 0; /* not okay */
|
|
}
|
|
return 1; /* okay */
|
|
}
|
|
|
|
static void mv_60x1b2_errata_pci7(struct ata_host *host)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
|
|
/* workaround for 60x1-B2 errata PCI#7 */
|
|
if (mv_in_pcix_mode(host)) {
|
|
u32 reg = readl(mmio + MV_PCI_COMMAND);
|
|
writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
|
|
}
|
|
}
|
|
|
|
static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u32 hp_flags = hpriv->hp_flags;
|
|
|
|
switch (board_idx) {
|
|
case chip_5080:
|
|
hpriv->ops = &mv5xxx_ops;
|
|
hp_flags |= MV_HP_GEN_I;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x1:
|
|
hp_flags |= MV_HP_ERRATA_50XXB0;
|
|
break;
|
|
case 0x3:
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev,
|
|
"Applying 50XXB2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_504x:
|
|
case chip_508x:
|
|
hpriv->ops = &mv5xxx_ops;
|
|
hp_flags |= MV_HP_GEN_I;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x0:
|
|
hp_flags |= MV_HP_ERRATA_50XXB0;
|
|
break;
|
|
case 0x3:
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev,
|
|
"Applying B2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_604x:
|
|
case chip_608x:
|
|
hpriv->ops = &mv6xxx_ops;
|
|
hp_flags |= MV_HP_GEN_II;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x7:
|
|
mv_60x1b2_errata_pci7(host);
|
|
hp_flags |= MV_HP_ERRATA_60X1B2;
|
|
break;
|
|
case 0x9:
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev,
|
|
"Applying B2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_60X1B2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_7042:
|
|
hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
|
|
if (pdev->vendor == PCI_VENDOR_ID_TTI &&
|
|
(pdev->device == 0x2300 || pdev->device == 0x2310))
|
|
{
|
|
/*
|
|
* Highpoint RocketRAID PCIe 23xx series cards:
|
|
*
|
|
* Unconfigured drives are treated as "Legacy"
|
|
* by the BIOS, and it overwrites sector 8 with
|
|
* a "Lgcy" metadata block prior to Linux boot.
|
|
*
|
|
* Configured drives (RAID or JBOD) leave sector 8
|
|
* alone, but instead overwrite a high numbered
|
|
* sector for the RAID metadata. This sector can
|
|
* be determined exactly, by truncating the physical
|
|
* drive capacity to a nice even GB value.
|
|
*
|
|
* RAID metadata is at: (dev->n_sectors & ~0xfffff)
|
|
*
|
|
* Warn the user, lest they think we're just buggy.
|
|
*/
|
|
printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
|
|
" BIOS CORRUPTS DATA on all attached drives,"
|
|
" regardless of if/how they are configured."
|
|
" BEWARE!\n");
|
|
printk(KERN_WARNING DRV_NAME ": For data safety, do not"
|
|
" use sectors 8-9 on \"Legacy\" drives,"
|
|
" and avoid the final two gigabytes on"
|
|
" all RocketRAID BIOS initialized drives.\n");
|
|
}
|
|
/* fall through */
|
|
case chip_6042:
|
|
hpriv->ops = &mv6xxx_ops;
|
|
hp_flags |= MV_HP_GEN_IIE;
|
|
if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
|
|
hp_flags |= MV_HP_CUT_THROUGH;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x2: /* Rev.B0: the first/only public release */
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev,
|
|
"Applying 60X1C0 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
}
|
|
break;
|
|
case chip_soc:
|
|
if (soc_is_65n(hpriv))
|
|
hpriv->ops = &mv_soc_65n_ops;
|
|
else
|
|
hpriv->ops = &mv_soc_ops;
|
|
hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
|
|
MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
|
|
default:
|
|
dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
|
|
return 1;
|
|
}
|
|
|
|
hpriv->hp_flags = hp_flags;
|
|
if (hp_flags & MV_HP_PCIE) {
|
|
hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
|
|
hpriv->irq_mask_offset = PCIE_IRQ_MASK;
|
|
hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
|
|
} else {
|
|
hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
|
|
hpriv->irq_mask_offset = PCI_IRQ_MASK;
|
|
hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_init_host - Perform some early initialization of the host.
|
|
* @host: ATA host to initialize
|
|
*
|
|
* If possible, do an early global reset of the host. Then do
|
|
* our port init and clear/unmask all/relevant host interrupts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_init_host(struct ata_host *host)
|
|
{
|
|
int rc = 0, n_hc, port, hc;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
|
|
rc = mv_chip_id(host, hpriv->board_idx);
|
|
if (rc)
|
|
goto done;
|
|
|
|
if (IS_SOC(hpriv)) {
|
|
hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
|
|
hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
|
|
} else {
|
|
hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
|
|
hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
|
|
}
|
|
|
|
/* initialize shadow irq mask with register's value */
|
|
hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
|
|
|
|
/* global interrupt mask: 0 == mask everything */
|
|
mv_set_main_irq_mask(host, ~0, 0);
|
|
|
|
n_hc = mv_get_hc_count(host->ports[0]->flags);
|
|
|
|
for (port = 0; port < host->n_ports; port++)
|
|
if (hpriv->ops->read_preamp)
|
|
hpriv->ops->read_preamp(hpriv, port, mmio);
|
|
|
|
rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
|
|
if (rc)
|
|
goto done;
|
|
|
|
hpriv->ops->reset_flash(hpriv, mmio);
|
|
hpriv->ops->reset_bus(host, mmio);
|
|
hpriv->ops->enable_leds(hpriv, mmio);
|
|
|
|
for (port = 0; port < host->n_ports; port++) {
|
|
struct ata_port *ap = host->ports[port];
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
mv_port_init(&ap->ioaddr, port_mmio);
|
|
}
|
|
|
|
for (hc = 0; hc < n_hc; hc++) {
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
|
|
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
|
|
"(before clear)=0x%08x\n", hc,
|
|
readl(hc_mmio + HC_CFG),
|
|
readl(hc_mmio + HC_IRQ_CAUSE));
|
|
|
|
/* Clear any currently outstanding hc interrupt conditions */
|
|
writelfl(0, hc_mmio + HC_IRQ_CAUSE);
|
|
}
|
|
|
|
if (!IS_SOC(hpriv)) {
|
|
/* Clear any currently outstanding host interrupt conditions */
|
|
writelfl(0, mmio + hpriv->irq_cause_offset);
|
|
|
|
/* and unmask interrupt generation for host regs */
|
|
writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
|
|
}
|
|
|
|
/*
|
|
* enable only global host interrupts for now.
|
|
* The per-port interrupts get done later as ports are set up.
|
|
*/
|
|
mv_set_main_irq_mask(host, 0, PCI_ERR);
|
|
mv_set_irq_coalescing(host, irq_coalescing_io_count,
|
|
irq_coalescing_usecs);
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
|
|
{
|
|
hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
|
|
MV_CRQB_Q_SZ, 0);
|
|
if (!hpriv->crqb_pool)
|
|
return -ENOMEM;
|
|
|
|
hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
|
|
MV_CRPB_Q_SZ, 0);
|
|
if (!hpriv->crpb_pool)
|
|
return -ENOMEM;
|
|
|
|
hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
|
|
MV_SG_TBL_SZ, 0);
|
|
if (!hpriv->sg_tbl_pool)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
|
|
const struct mbus_dram_target_info *dram)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
writel(0, hpriv->base + WINDOW_CTRL(i));
|
|
writel(0, hpriv->base + WINDOW_BASE(i));
|
|
}
|
|
|
|
for (i = 0; i < dram->num_cs; i++) {
|
|
const struct mbus_dram_window *cs = dram->cs + i;
|
|
|
|
writel(((cs->size - 1) & 0xffff0000) |
|
|
(cs->mbus_attr << 8) |
|
|
(dram->mbus_dram_target_id << 4) | 1,
|
|
hpriv->base + WINDOW_CTRL(i));
|
|
writel(cs->base, hpriv->base + WINDOW_BASE(i));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_platform_probe - handle a positive probe of an soc Marvell
|
|
* host
|
|
* @pdev: platform device found
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_platform_probe(struct platform_device *pdev)
|
|
{
|
|
const struct mv_sata_platform_data *mv_platform_data;
|
|
const struct mbus_dram_target_info *dram;
|
|
const struct ata_port_info *ppi[] =
|
|
{ &mv_port_info[chip_soc], NULL };
|
|
struct ata_host *host;
|
|
struct mv_host_priv *hpriv;
|
|
struct resource *res;
|
|
int n_ports = 0, irq = 0;
|
|
int rc;
|
|
int port;
|
|
|
|
ata_print_version_once(&pdev->dev, DRV_VERSION);
|
|
|
|
/*
|
|
* Simple resource validation ..
|
|
*/
|
|
if (unlikely(pdev->num_resources != 2)) {
|
|
dev_err(&pdev->dev, "invalid number of resources\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Get the register base first
|
|
*/
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (res == NULL)
|
|
return -EINVAL;
|
|
|
|
/* allocate host */
|
|
if (pdev->dev.of_node) {
|
|
rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
|
|
&n_ports);
|
|
if (rc) {
|
|
dev_err(&pdev->dev,
|
|
"error parsing nr-ports property: %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (n_ports <= 0) {
|
|
dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
|
|
n_ports);
|
|
return -EINVAL;
|
|
}
|
|
|
|
irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
|
|
} else {
|
|
mv_platform_data = dev_get_platdata(&pdev->dev);
|
|
n_ports = mv_platform_data->n_ports;
|
|
irq = platform_get_irq(pdev, 0);
|
|
}
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
|
|
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
|
|
|
|
if (!host || !hpriv)
|
|
return -ENOMEM;
|
|
hpriv->port_clks = devm_kcalloc(&pdev->dev,
|
|
n_ports, sizeof(struct clk *),
|
|
GFP_KERNEL);
|
|
if (!hpriv->port_clks)
|
|
return -ENOMEM;
|
|
hpriv->port_phys = devm_kcalloc(&pdev->dev,
|
|
n_ports, sizeof(struct phy *),
|
|
GFP_KERNEL);
|
|
if (!hpriv->port_phys)
|
|
return -ENOMEM;
|
|
host->private_data = hpriv;
|
|
hpriv->board_idx = chip_soc;
|
|
|
|
host->iomap = NULL;
|
|
hpriv->base = devm_ioremap(&pdev->dev, res->start,
|
|
resource_size(res));
|
|
if (!hpriv->base)
|
|
return -ENOMEM;
|
|
|
|
hpriv->base -= SATAHC0_REG_BASE;
|
|
|
|
hpriv->clk = clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(hpriv->clk))
|
|
dev_notice(&pdev->dev, "cannot get optional clkdev\n");
|
|
else
|
|
clk_prepare_enable(hpriv->clk);
|
|
|
|
for (port = 0; port < n_ports; port++) {
|
|
char port_number[16];
|
|
sprintf(port_number, "%d", port);
|
|
hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
|
|
if (!IS_ERR(hpriv->port_clks[port]))
|
|
clk_prepare_enable(hpriv->port_clks[port]);
|
|
|
|
sprintf(port_number, "port%d", port);
|
|
hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
|
|
port_number);
|
|
if (IS_ERR(hpriv->port_phys[port])) {
|
|
rc = PTR_ERR(hpriv->port_phys[port]);
|
|
hpriv->port_phys[port] = NULL;
|
|
if (rc != -EPROBE_DEFER)
|
|
dev_warn(&pdev->dev, "error getting phy %d", rc);
|
|
|
|
/* Cleanup only the initialized ports */
|
|
hpriv->n_ports = port;
|
|
goto err;
|
|
} else
|
|
phy_power_on(hpriv->port_phys[port]);
|
|
}
|
|
|
|
/* All the ports have been initialized */
|
|
hpriv->n_ports = n_ports;
|
|
|
|
/*
|
|
* (Re-)program MBUS remapping windows if we are asked to.
|
|
*/
|
|
dram = mv_mbus_dram_info();
|
|
if (dram)
|
|
mv_conf_mbus_windows(hpriv, dram);
|
|
|
|
rc = mv_create_dma_pools(hpriv, &pdev->dev);
|
|
if (rc)
|
|
goto err;
|
|
|
|
/*
|
|
* To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
|
|
* updated in the LP_PHY_CTL register.
|
|
*/
|
|
if (pdev->dev.of_node &&
|
|
of_device_is_compatible(pdev->dev.of_node,
|
|
"marvell,armada-370-sata"))
|
|
hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
|
|
|
|
/* initialize adapter */
|
|
rc = mv_init_host(host);
|
|
if (rc)
|
|
goto err;
|
|
|
|
dev_info(&pdev->dev, "slots %u ports %d\n",
|
|
(unsigned)MV_MAX_Q_DEPTH, host->n_ports);
|
|
|
|
rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
|
|
if (!rc)
|
|
return 0;
|
|
|
|
err:
|
|
if (!IS_ERR(hpriv->clk)) {
|
|
clk_disable_unprepare(hpriv->clk);
|
|
clk_put(hpriv->clk);
|
|
}
|
|
for (port = 0; port < hpriv->n_ports; port++) {
|
|
if (!IS_ERR(hpriv->port_clks[port])) {
|
|
clk_disable_unprepare(hpriv->port_clks[port]);
|
|
clk_put(hpriv->port_clks[port]);
|
|
}
|
|
phy_power_off(hpriv->port_phys[port]);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* mv_platform_remove - unplug a platform interface
|
|
* @pdev: platform device
|
|
*
|
|
* A platform bus SATA device has been unplugged. Perform the needed
|
|
* cleanup. Also called on module unload for any active devices.
|
|
*/
|
|
static int mv_platform_remove(struct platform_device *pdev)
|
|
{
|
|
struct ata_host *host = platform_get_drvdata(pdev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
int port;
|
|
ata_host_detach(host);
|
|
|
|
if (!IS_ERR(hpriv->clk)) {
|
|
clk_disable_unprepare(hpriv->clk);
|
|
clk_put(hpriv->clk);
|
|
}
|
|
for (port = 0; port < host->n_ports; port++) {
|
|
if (!IS_ERR(hpriv->port_clks[port])) {
|
|
clk_disable_unprepare(hpriv->port_clks[port]);
|
|
clk_put(hpriv->port_clks[port]);
|
|
}
|
|
phy_power_off(hpriv->port_phys[port]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
struct ata_host *host = platform_get_drvdata(pdev);
|
|
if (host)
|
|
return ata_host_suspend(host, state);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int mv_platform_resume(struct platform_device *pdev)
|
|
{
|
|
struct ata_host *host = platform_get_drvdata(pdev);
|
|
const struct mbus_dram_target_info *dram;
|
|
int ret;
|
|
|
|
if (host) {
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
|
|
/*
|
|
* (Re-)program MBUS remapping windows if we are asked to.
|
|
*/
|
|
dram = mv_mbus_dram_info();
|
|
if (dram)
|
|
mv_conf_mbus_windows(hpriv, dram);
|
|
|
|
/* initialize adapter */
|
|
ret = mv_init_host(host);
|
|
if (ret) {
|
|
printk(KERN_ERR DRV_NAME ": Error during HW init\n");
|
|
return ret;
|
|
}
|
|
ata_host_resume(host);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define mv_platform_suspend NULL
|
|
#define mv_platform_resume NULL
|
|
#endif
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id mv_sata_dt_ids[] = {
|
|
{ .compatible = "marvell,armada-370-sata", },
|
|
{ .compatible = "marvell,orion-sata", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
|
|
#endif
|
|
|
|
static struct platform_driver mv_platform_driver = {
|
|
.probe = mv_platform_probe,
|
|
.remove = mv_platform_remove,
|
|
.suspend = mv_platform_suspend,
|
|
.resume = mv_platform_resume,
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.of_match_table = of_match_ptr(mv_sata_dt_ids),
|
|
},
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int mv_pci_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent);
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int mv_pci_device_resume(struct pci_dev *pdev);
|
|
#endif
|
|
|
|
|
|
static struct pci_driver mv_pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = mv_pci_tbl,
|
|
.probe = mv_pci_init_one,
|
|
.remove = ata_pci_remove_one,
|
|
#ifdef CONFIG_PM_SLEEP
|
|
.suspend = ata_pci_device_suspend,
|
|
.resume = mv_pci_device_resume,
|
|
#endif
|
|
|
|
};
|
|
|
|
/**
|
|
* mv_print_info - Dump key info to kernel log for perusal.
|
|
* @host: ATA host to print info about
|
|
*
|
|
* FIXME: complete this.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_print_info(struct ata_host *host)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u8 scc;
|
|
const char *scc_s, *gen;
|
|
|
|
/* Use this to determine the HW stepping of the chip so we know
|
|
* what errata to workaround
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
|
|
if (scc == 0)
|
|
scc_s = "SCSI";
|
|
else if (scc == 0x01)
|
|
scc_s = "RAID";
|
|
else
|
|
scc_s = "?";
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
gen = "I";
|
|
else if (IS_GEN_II(hpriv))
|
|
gen = "II";
|
|
else if (IS_GEN_IIE(hpriv))
|
|
gen = "IIE";
|
|
else
|
|
gen = "?";
|
|
|
|
dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
|
|
gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
|
|
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
|
|
}
|
|
|
|
/**
|
|
* mv_pci_init_one - handle a positive probe of a PCI Marvell host
|
|
* @pdev: PCI device found
|
|
* @ent: PCI device ID entry for the matched host
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_pci_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
unsigned int board_idx = (unsigned int)ent->driver_data;
|
|
const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
|
|
struct ata_host *host;
|
|
struct mv_host_priv *hpriv;
|
|
int n_ports, port, rc;
|
|
|
|
ata_print_version_once(&pdev->dev, DRV_VERSION);
|
|
|
|
/* allocate host */
|
|
n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
|
|
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
|
|
if (!host || !hpriv)
|
|
return -ENOMEM;
|
|
host->private_data = hpriv;
|
|
hpriv->n_ports = n_ports;
|
|
hpriv->board_idx = board_idx;
|
|
|
|
/* acquire resources */
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
|
|
if (rc == -EBUSY)
|
|
pcim_pin_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
host->iomap = pcim_iomap_table(pdev);
|
|
hpriv->base = host->iomap[MV_PRIMARY_BAR];
|
|
|
|
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "DMA enable failed\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = mv_create_dma_pools(hpriv, &pdev->dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (port = 0; port < host->n_ports; port++) {
|
|
struct ata_port *ap = host->ports[port];
|
|
void __iomem *port_mmio = mv_port_base(hpriv->base, port);
|
|
unsigned int offset = port_mmio - hpriv->base;
|
|
|
|
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
|
|
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
|
|
}
|
|
|
|
/* initialize adapter */
|
|
rc = mv_init_host(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Enable message-switched interrupts, if requested */
|
|
if (msi && pci_enable_msi(pdev) == 0)
|
|
hpriv->hp_flags |= MV_HP_FLAG_MSI;
|
|
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
mv_print_info(host);
|
|
|
|
pci_set_master(pdev);
|
|
pci_try_set_mwi(pdev);
|
|
return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
|
|
IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int mv_pci_device_resume(struct pci_dev *pdev)
|
|
{
|
|
struct ata_host *host = pci_get_drvdata(pdev);
|
|
int rc;
|
|
|
|
rc = ata_pci_device_do_resume(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* initialize adapter */
|
|
rc = mv_init_host(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ata_host_resume(host);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static int __init mv_init(void)
|
|
{
|
|
int rc = -ENODEV;
|
|
#ifdef CONFIG_PCI
|
|
rc = pci_register_driver(&mv_pci_driver);
|
|
if (rc < 0)
|
|
return rc;
|
|
#endif
|
|
rc = platform_driver_register(&mv_platform_driver);
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (rc < 0)
|
|
pci_unregister_driver(&mv_pci_driver);
|
|
#endif
|
|
return rc;
|
|
}
|
|
|
|
static void __exit mv_exit(void)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
pci_unregister_driver(&mv_pci_driver);
|
|
#endif
|
|
platform_driver_unregister(&mv_platform_driver);
|
|
}
|
|
|
|
MODULE_AUTHOR("Brett Russ");
|
|
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_ALIAS("platform:" DRV_NAME);
|
|
|
|
module_init(mv_init);
|
|
module_exit(mv_exit);
|