mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 05:32:00 +00:00
ae834901ec
In later patches, we're going to change how the inode's ctime field is used. Switch to using accessor functions instead of raw accesses of inode->i_ctime. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Message-Id: <20230705190309.579783-70-jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2280 lines
64 KiB
C
2280 lines
64 KiB
C
/*
|
|
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
|
|
*/
|
|
|
|
/*
|
|
* Written by Anatoly P. Pinchuk pap@namesys.botik.ru
|
|
* Programm System Institute
|
|
* Pereslavl-Zalessky Russia
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/string.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/bio.h>
|
|
#include "reiserfs.h"
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/quotaops.h>
|
|
|
|
/* Does the buffer contain a disk block which is in the tree. */
|
|
inline int B_IS_IN_TREE(const struct buffer_head *bh)
|
|
{
|
|
|
|
RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
|
|
"PAP-1010: block (%b) has too big level (%z)", bh, bh);
|
|
|
|
return (B_LEVEL(bh) != FREE_LEVEL);
|
|
}
|
|
|
|
/* to get item head in le form */
|
|
inline void copy_item_head(struct item_head *to,
|
|
const struct item_head *from)
|
|
{
|
|
memcpy(to, from, IH_SIZE);
|
|
}
|
|
|
|
/*
|
|
* k1 is pointer to on-disk structure which is stored in little-endian
|
|
* form. k2 is pointer to cpu variable. For key of items of the same
|
|
* object this returns 0.
|
|
* Returns: -1 if key1 < key2
|
|
* 0 if key1 == key2
|
|
* 1 if key1 > key2
|
|
*/
|
|
inline int comp_short_keys(const struct reiserfs_key *le_key,
|
|
const struct cpu_key *cpu_key)
|
|
{
|
|
__u32 n;
|
|
n = le32_to_cpu(le_key->k_dir_id);
|
|
if (n < cpu_key->on_disk_key.k_dir_id)
|
|
return -1;
|
|
if (n > cpu_key->on_disk_key.k_dir_id)
|
|
return 1;
|
|
n = le32_to_cpu(le_key->k_objectid);
|
|
if (n < cpu_key->on_disk_key.k_objectid)
|
|
return -1;
|
|
if (n > cpu_key->on_disk_key.k_objectid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* k1 is pointer to on-disk structure which is stored in little-endian
|
|
* form. k2 is pointer to cpu variable.
|
|
* Compare keys using all 4 key fields.
|
|
* Returns: -1 if key1 < key2 0
|
|
* if key1 = key2 1 if key1 > key2
|
|
*/
|
|
static inline int comp_keys(const struct reiserfs_key *le_key,
|
|
const struct cpu_key *cpu_key)
|
|
{
|
|
int retval;
|
|
|
|
retval = comp_short_keys(le_key, cpu_key);
|
|
if (retval)
|
|
return retval;
|
|
if (le_key_k_offset(le_key_version(le_key), le_key) <
|
|
cpu_key_k_offset(cpu_key))
|
|
return -1;
|
|
if (le_key_k_offset(le_key_version(le_key), le_key) >
|
|
cpu_key_k_offset(cpu_key))
|
|
return 1;
|
|
|
|
if (cpu_key->key_length == 3)
|
|
return 0;
|
|
|
|
/* this part is needed only when tail conversion is in progress */
|
|
if (le_key_k_type(le_key_version(le_key), le_key) <
|
|
cpu_key_k_type(cpu_key))
|
|
return -1;
|
|
|
|
if (le_key_k_type(le_key_version(le_key), le_key) >
|
|
cpu_key_k_type(cpu_key))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
inline int comp_short_le_keys(const struct reiserfs_key *key1,
|
|
const struct reiserfs_key *key2)
|
|
{
|
|
__u32 *k1_u32, *k2_u32;
|
|
int key_length = REISERFS_SHORT_KEY_LEN;
|
|
|
|
k1_u32 = (__u32 *) key1;
|
|
k2_u32 = (__u32 *) key2;
|
|
for (; key_length--; ++k1_u32, ++k2_u32) {
|
|
if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
|
|
return -1;
|
|
if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
|
|
{
|
|
int version;
|
|
to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
|
|
to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
|
|
|
|
/* find out version of the key */
|
|
version = le_key_version(from);
|
|
to->version = version;
|
|
to->on_disk_key.k_offset = le_key_k_offset(version, from);
|
|
to->on_disk_key.k_type = le_key_k_type(version, from);
|
|
}
|
|
|
|
/*
|
|
* this does not say which one is bigger, it only returns 1 if keys
|
|
* are not equal, 0 otherwise
|
|
*/
|
|
inline int comp_le_keys(const struct reiserfs_key *k1,
|
|
const struct reiserfs_key *k2)
|
|
{
|
|
return memcmp(k1, k2, sizeof(struct reiserfs_key));
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Binary search toolkit function *
|
|
* Search for an item in the array by the item key *
|
|
* Returns: 1 if found, 0 if not found; *
|
|
* *pos = number of the searched element if found, else the *
|
|
* number of the first element that is larger than key. *
|
|
**************************************************************************/
|
|
/*
|
|
* For those not familiar with binary search: lbound is the leftmost item
|
|
* that it could be, rbound the rightmost item that it could be. We examine
|
|
* the item halfway between lbound and rbound, and that tells us either
|
|
* that we can increase lbound, or decrease rbound, or that we have found it,
|
|
* or if lbound <= rbound that there are no possible items, and we have not
|
|
* found it. With each examination we cut the number of possible items it
|
|
* could be by one more than half rounded down, or we find it.
|
|
*/
|
|
static inline int bin_search(const void *key, /* Key to search for. */
|
|
const void *base, /* First item in the array. */
|
|
int num, /* Number of items in the array. */
|
|
/*
|
|
* Item size in the array. searched. Lest the
|
|
* reader be confused, note that this is crafted
|
|
* as a general function, and when it is applied
|
|
* specifically to the array of item headers in a
|
|
* node, width is actually the item header size
|
|
* not the item size.
|
|
*/
|
|
int width,
|
|
int *pos /* Number of the searched for element. */
|
|
)
|
|
{
|
|
int rbound, lbound, j;
|
|
|
|
for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
|
|
lbound <= rbound; j = (rbound + lbound) / 2)
|
|
switch (comp_keys
|
|
((struct reiserfs_key *)((char *)base + j * width),
|
|
(struct cpu_key *)key)) {
|
|
case -1:
|
|
lbound = j + 1;
|
|
continue;
|
|
case 1:
|
|
rbound = j - 1;
|
|
continue;
|
|
case 0:
|
|
*pos = j;
|
|
return ITEM_FOUND; /* Key found in the array. */
|
|
}
|
|
|
|
/*
|
|
* bin_search did not find given key, it returns position of key,
|
|
* that is minimal and greater than the given one.
|
|
*/
|
|
*pos = lbound;
|
|
return ITEM_NOT_FOUND;
|
|
}
|
|
|
|
|
|
/* Minimal possible key. It is never in the tree. */
|
|
const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
|
|
|
|
/* Maximal possible key. It is never in the tree. */
|
|
static const struct reiserfs_key MAX_KEY = {
|
|
cpu_to_le32(0xffffffff),
|
|
cpu_to_le32(0xffffffff),
|
|
{{cpu_to_le32(0xffffffff),
|
|
cpu_to_le32(0xffffffff)},}
|
|
};
|
|
|
|
/*
|
|
* Get delimiting key of the buffer by looking for it in the buffers in the
|
|
* path, starting from the bottom of the path, and going upwards. We must
|
|
* check the path's validity at each step. If the key is not in the path,
|
|
* there is no delimiting key in the tree (buffer is first or last buffer
|
|
* in tree), and in this case we return a special key, either MIN_KEY or
|
|
* MAX_KEY.
|
|
*/
|
|
static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
|
|
const struct super_block *sb)
|
|
{
|
|
int position, path_offset = chk_path->path_length;
|
|
struct buffer_head *parent;
|
|
|
|
RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
|
|
"PAP-5010: invalid offset in the path");
|
|
|
|
/* While not higher in path than first element. */
|
|
while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
|
|
|
|
RFALSE(!buffer_uptodate
|
|
(PATH_OFFSET_PBUFFER(chk_path, path_offset)),
|
|
"PAP-5020: parent is not uptodate");
|
|
|
|
/* Parent at the path is not in the tree now. */
|
|
if (!B_IS_IN_TREE
|
|
(parent =
|
|
PATH_OFFSET_PBUFFER(chk_path, path_offset)))
|
|
return &MAX_KEY;
|
|
/* Check whether position in the parent is correct. */
|
|
if ((position =
|
|
PATH_OFFSET_POSITION(chk_path,
|
|
path_offset)) >
|
|
B_NR_ITEMS(parent))
|
|
return &MAX_KEY;
|
|
/* Check whether parent at the path really points to the child. */
|
|
if (B_N_CHILD_NUM(parent, position) !=
|
|
PATH_OFFSET_PBUFFER(chk_path,
|
|
path_offset + 1)->b_blocknr)
|
|
return &MAX_KEY;
|
|
/*
|
|
* Return delimiting key if position in the parent
|
|
* is not equal to zero.
|
|
*/
|
|
if (position)
|
|
return internal_key(parent, position - 1);
|
|
}
|
|
/* Return MIN_KEY if we are in the root of the buffer tree. */
|
|
if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
|
|
b_blocknr == SB_ROOT_BLOCK(sb))
|
|
return &MIN_KEY;
|
|
return &MAX_KEY;
|
|
}
|
|
|
|
/* Get delimiting key of the buffer at the path and its right neighbor. */
|
|
inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
|
|
const struct super_block *sb)
|
|
{
|
|
int position, path_offset = chk_path->path_length;
|
|
struct buffer_head *parent;
|
|
|
|
RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
|
|
"PAP-5030: invalid offset in the path");
|
|
|
|
while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
|
|
|
|
RFALSE(!buffer_uptodate
|
|
(PATH_OFFSET_PBUFFER(chk_path, path_offset)),
|
|
"PAP-5040: parent is not uptodate");
|
|
|
|
/* Parent at the path is not in the tree now. */
|
|
if (!B_IS_IN_TREE
|
|
(parent =
|
|
PATH_OFFSET_PBUFFER(chk_path, path_offset)))
|
|
return &MIN_KEY;
|
|
/* Check whether position in the parent is correct. */
|
|
if ((position =
|
|
PATH_OFFSET_POSITION(chk_path,
|
|
path_offset)) >
|
|
B_NR_ITEMS(parent))
|
|
return &MIN_KEY;
|
|
/*
|
|
* Check whether parent at the path really points
|
|
* to the child.
|
|
*/
|
|
if (B_N_CHILD_NUM(parent, position) !=
|
|
PATH_OFFSET_PBUFFER(chk_path,
|
|
path_offset + 1)->b_blocknr)
|
|
return &MIN_KEY;
|
|
|
|
/*
|
|
* Return delimiting key if position in the parent
|
|
* is not the last one.
|
|
*/
|
|
if (position != B_NR_ITEMS(parent))
|
|
return internal_key(parent, position);
|
|
}
|
|
|
|
/* Return MAX_KEY if we are in the root of the buffer tree. */
|
|
if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
|
|
b_blocknr == SB_ROOT_BLOCK(sb))
|
|
return &MAX_KEY;
|
|
return &MIN_KEY;
|
|
}
|
|
|
|
/*
|
|
* Check whether a key is contained in the tree rooted from a buffer at a path.
|
|
* This works by looking at the left and right delimiting keys for the buffer
|
|
* in the last path_element in the path. These delimiting keys are stored
|
|
* at least one level above that buffer in the tree. If the buffer is the
|
|
* first or last node in the tree order then one of the delimiting keys may
|
|
* be absent, and in this case get_lkey and get_rkey return a special key
|
|
* which is MIN_KEY or MAX_KEY.
|
|
*/
|
|
static inline int key_in_buffer(
|
|
/* Path which should be checked. */
|
|
struct treepath *chk_path,
|
|
/* Key which should be checked. */
|
|
const struct cpu_key *key,
|
|
struct super_block *sb
|
|
)
|
|
{
|
|
|
|
RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
|
|
|| chk_path->path_length > MAX_HEIGHT,
|
|
"PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
|
|
key, chk_path->path_length);
|
|
RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
|
|
"PAP-5060: device must not be NODEV");
|
|
|
|
if (comp_keys(get_lkey(chk_path, sb), key) == 1)
|
|
/* left delimiting key is bigger, that the key we look for */
|
|
return 0;
|
|
/* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
|
|
if (comp_keys(get_rkey(chk_path, sb), key) != 1)
|
|
/* key must be less than right delimitiing key */
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int reiserfs_check_path(struct treepath *p)
|
|
{
|
|
RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"path not properly relsed");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Drop the reference to each buffer in a path and restore
|
|
* dirty bits clean when preparing the buffer for the log.
|
|
* This version should only be called from fix_nodes()
|
|
*/
|
|
void pathrelse_and_restore(struct super_block *sb,
|
|
struct treepath *search_path)
|
|
{
|
|
int path_offset = search_path->path_length;
|
|
|
|
RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"clm-4000: invalid path offset");
|
|
|
|
while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
|
|
struct buffer_head *bh;
|
|
bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
|
|
reiserfs_restore_prepared_buffer(sb, bh);
|
|
brelse(bh);
|
|
}
|
|
search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
|
|
}
|
|
|
|
/* Drop the reference to each buffer in a path */
|
|
void pathrelse(struct treepath *search_path)
|
|
{
|
|
int path_offset = search_path->path_length;
|
|
|
|
RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
|
|
"PAP-5090: invalid path offset");
|
|
|
|
while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
|
|
brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
|
|
|
|
search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
|
|
}
|
|
|
|
static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
|
|
{
|
|
struct reiserfs_de_head *deh;
|
|
int i;
|
|
|
|
deh = B_I_DEH(bh, ih);
|
|
for (i = 0; i < ih_entry_count(ih); i++) {
|
|
if (deh_location(&deh[i]) > ih_item_len(ih)) {
|
|
reiserfs_warning(NULL, "reiserfs-5094",
|
|
"directory entry location seems wrong %h",
|
|
&deh[i]);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
|
|
{
|
|
struct block_head *blkh;
|
|
struct item_head *ih;
|
|
int used_space;
|
|
int prev_location;
|
|
int i;
|
|
int nr;
|
|
|
|
blkh = (struct block_head *)buf;
|
|
if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
|
|
reiserfs_warning(NULL, "reiserfs-5080",
|
|
"this should be caught earlier");
|
|
return 0;
|
|
}
|
|
|
|
nr = blkh_nr_item(blkh);
|
|
if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
|
|
/* item number is too big or too small */
|
|
reiserfs_warning(NULL, "reiserfs-5081",
|
|
"nr_item seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
|
|
used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
|
|
|
|
/* free space does not match to calculated amount of use space */
|
|
if (used_space != blocksize - blkh_free_space(blkh)) {
|
|
reiserfs_warning(NULL, "reiserfs-5082",
|
|
"free space seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
/*
|
|
* FIXME: it is_leaf will hit performance too much - we may have
|
|
* return 1 here
|
|
*/
|
|
|
|
/* check tables of item heads */
|
|
ih = (struct item_head *)(buf + BLKH_SIZE);
|
|
prev_location = blocksize;
|
|
for (i = 0; i < nr; i++, ih++) {
|
|
if (le_ih_k_type(ih) == TYPE_ANY) {
|
|
reiserfs_warning(NULL, "reiserfs-5083",
|
|
"wrong item type for item %h",
|
|
ih);
|
|
return 0;
|
|
}
|
|
if (ih_location(ih) >= blocksize
|
|
|| ih_location(ih) < IH_SIZE * nr) {
|
|
reiserfs_warning(NULL, "reiserfs-5084",
|
|
"item location seems wrong: %h",
|
|
ih);
|
|
return 0;
|
|
}
|
|
if (ih_item_len(ih) < 1
|
|
|| ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
|
|
reiserfs_warning(NULL, "reiserfs-5085",
|
|
"item length seems wrong: %h",
|
|
ih);
|
|
return 0;
|
|
}
|
|
if (prev_location - ih_location(ih) != ih_item_len(ih)) {
|
|
reiserfs_warning(NULL, "reiserfs-5086",
|
|
"item location seems wrong "
|
|
"(second one): %h", ih);
|
|
return 0;
|
|
}
|
|
if (is_direntry_le_ih(ih)) {
|
|
if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
|
|
reiserfs_warning(NULL, "reiserfs-5093",
|
|
"item entry count seems wrong %h",
|
|
ih);
|
|
return 0;
|
|
}
|
|
return has_valid_deh_location(bh, ih);
|
|
}
|
|
prev_location = ih_location(ih);
|
|
}
|
|
|
|
/* one may imagine many more checks */
|
|
return 1;
|
|
}
|
|
|
|
/* returns 1 if buf looks like an internal node, 0 otherwise */
|
|
static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
|
|
{
|
|
struct block_head *blkh;
|
|
int nr;
|
|
int used_space;
|
|
|
|
blkh = (struct block_head *)buf;
|
|
nr = blkh_level(blkh);
|
|
if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
|
|
/* this level is not possible for internal nodes */
|
|
reiserfs_warning(NULL, "reiserfs-5087",
|
|
"this should be caught earlier");
|
|
return 0;
|
|
}
|
|
|
|
nr = blkh_nr_item(blkh);
|
|
/* for internal which is not root we might check min number of keys */
|
|
if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
|
|
reiserfs_warning(NULL, "reiserfs-5088",
|
|
"number of key seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
|
|
used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
|
|
if (used_space != blocksize - blkh_free_space(blkh)) {
|
|
reiserfs_warning(NULL, "reiserfs-5089",
|
|
"free space seems wrong: %z", bh);
|
|
return 0;
|
|
}
|
|
|
|
/* one may imagine many more checks */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* make sure that bh contains formatted node of reiserfs tree of
|
|
* 'level'-th level
|
|
*/
|
|
static int is_tree_node(struct buffer_head *bh, int level)
|
|
{
|
|
if (B_LEVEL(bh) != level) {
|
|
reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
|
|
"not match to the expected one %d",
|
|
B_LEVEL(bh), level);
|
|
return 0;
|
|
}
|
|
if (level == DISK_LEAF_NODE_LEVEL)
|
|
return is_leaf(bh->b_data, bh->b_size, bh);
|
|
|
|
return is_internal(bh->b_data, bh->b_size, bh);
|
|
}
|
|
|
|
#define SEARCH_BY_KEY_READA 16
|
|
|
|
/*
|
|
* The function is NOT SCHEDULE-SAFE!
|
|
* It might unlock the write lock if we needed to wait for a block
|
|
* to be read. Note that in this case it won't recover the lock to avoid
|
|
* high contention resulting from too much lock requests, especially
|
|
* the caller (search_by_key) will perform other schedule-unsafe
|
|
* operations just after calling this function.
|
|
*
|
|
* @return depth of lock to be restored after read completes
|
|
*/
|
|
static int search_by_key_reada(struct super_block *s,
|
|
struct buffer_head **bh,
|
|
b_blocknr_t *b, int num)
|
|
{
|
|
int i, j;
|
|
int depth = -1;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
bh[i] = sb_getblk(s, b[i]);
|
|
}
|
|
/*
|
|
* We are going to read some blocks on which we
|
|
* have a reference. It's safe, though we might be
|
|
* reading blocks concurrently changed if we release
|
|
* the lock. But it's still fine because we check later
|
|
* if the tree changed
|
|
*/
|
|
for (j = 0; j < i; j++) {
|
|
/*
|
|
* note, this needs attention if we are getting rid of the BKL
|
|
* you have to make sure the prepared bit isn't set on this
|
|
* buffer
|
|
*/
|
|
if (!buffer_uptodate(bh[j])) {
|
|
if (depth == -1)
|
|
depth = reiserfs_write_unlock_nested(s);
|
|
bh_readahead(bh[j], REQ_RAHEAD);
|
|
}
|
|
brelse(bh[j]);
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
/*
|
|
* This function fills up the path from the root to the leaf as it
|
|
* descends the tree looking for the key. It uses reiserfs_bread to
|
|
* try to find buffers in the cache given their block number. If it
|
|
* does not find them in the cache it reads them from disk. For each
|
|
* node search_by_key finds using reiserfs_bread it then uses
|
|
* bin_search to look through that node. bin_search will find the
|
|
* position of the block_number of the next node if it is looking
|
|
* through an internal node. If it is looking through a leaf node
|
|
* bin_search will find the position of the item which has key either
|
|
* equal to given key, or which is the maximal key less than the given
|
|
* key. search_by_key returns a path that must be checked for the
|
|
* correctness of the top of the path but need not be checked for the
|
|
* correctness of the bottom of the path
|
|
*/
|
|
/*
|
|
* search_by_key - search for key (and item) in stree
|
|
* @sb: superblock
|
|
* @key: pointer to key to search for
|
|
* @search_path: Allocated and initialized struct treepath; Returned filled
|
|
* on success.
|
|
* @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
|
|
* stop at leaf level.
|
|
*
|
|
* The function is NOT SCHEDULE-SAFE!
|
|
*/
|
|
int search_by_key(struct super_block *sb, const struct cpu_key *key,
|
|
struct treepath *search_path, int stop_level)
|
|
{
|
|
b_blocknr_t block_number;
|
|
int expected_level;
|
|
struct buffer_head *bh;
|
|
struct path_element *last_element;
|
|
int node_level, retval;
|
|
int fs_gen;
|
|
struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
|
|
b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
|
|
int reada_count = 0;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
int repeat_counter = 0;
|
|
#endif
|
|
|
|
PROC_INFO_INC(sb, search_by_key);
|
|
|
|
/*
|
|
* As we add each node to a path we increase its count. This means
|
|
* that we must be careful to release all nodes in a path before we
|
|
* either discard the path struct or re-use the path struct, as we
|
|
* do here.
|
|
*/
|
|
|
|
pathrelse(search_path);
|
|
|
|
/*
|
|
* With each iteration of this loop we search through the items in the
|
|
* current node, and calculate the next current node(next path element)
|
|
* for the next iteration of this loop..
|
|
*/
|
|
block_number = SB_ROOT_BLOCK(sb);
|
|
expected_level = -1;
|
|
while (1) {
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if (!(++repeat_counter % 50000))
|
|
reiserfs_warning(sb, "PAP-5100",
|
|
"%s: there were %d iterations of "
|
|
"while loop looking for key %K",
|
|
current->comm, repeat_counter,
|
|
key);
|
|
#endif
|
|
|
|
/* prep path to have another element added to it. */
|
|
last_element =
|
|
PATH_OFFSET_PELEMENT(search_path,
|
|
++search_path->path_length);
|
|
fs_gen = get_generation(sb);
|
|
|
|
/*
|
|
* Read the next tree node, and set the last element
|
|
* in the path to have a pointer to it.
|
|
*/
|
|
if ((bh = last_element->pe_buffer =
|
|
sb_getblk(sb, block_number))) {
|
|
|
|
/*
|
|
* We'll need to drop the lock if we encounter any
|
|
* buffers that need to be read. If all of them are
|
|
* already up to date, we don't need to drop the lock.
|
|
*/
|
|
int depth = -1;
|
|
|
|
if (!buffer_uptodate(bh) && reada_count > 1)
|
|
depth = search_by_key_reada(sb, reada_bh,
|
|
reada_blocks, reada_count);
|
|
|
|
if (!buffer_uptodate(bh) && depth == -1)
|
|
depth = reiserfs_write_unlock_nested(sb);
|
|
|
|
bh_read_nowait(bh, 0);
|
|
wait_on_buffer(bh);
|
|
|
|
if (depth != -1)
|
|
reiserfs_write_lock_nested(sb, depth);
|
|
if (!buffer_uptodate(bh))
|
|
goto io_error;
|
|
} else {
|
|
io_error:
|
|
search_path->path_length--;
|
|
pathrelse(search_path);
|
|
return IO_ERROR;
|
|
}
|
|
reada_count = 0;
|
|
if (expected_level == -1)
|
|
expected_level = SB_TREE_HEIGHT(sb);
|
|
expected_level--;
|
|
|
|
/*
|
|
* It is possible that schedule occurred. We must check
|
|
* whether the key to search is still in the tree rooted
|
|
* from the current buffer. If not then repeat search
|
|
* from the root.
|
|
*/
|
|
if (fs_changed(fs_gen, sb) &&
|
|
(!B_IS_IN_TREE(bh) ||
|
|
B_LEVEL(bh) != expected_level ||
|
|
!key_in_buffer(search_path, key, sb))) {
|
|
PROC_INFO_INC(sb, search_by_key_fs_changed);
|
|
PROC_INFO_INC(sb, search_by_key_restarted);
|
|
PROC_INFO_INC(sb,
|
|
sbk_restarted[expected_level - 1]);
|
|
pathrelse(search_path);
|
|
|
|
/*
|
|
* Get the root block number so that we can
|
|
* repeat the search starting from the root.
|
|
*/
|
|
block_number = SB_ROOT_BLOCK(sb);
|
|
expected_level = -1;
|
|
|
|
/* repeat search from the root */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* only check that the key is in the buffer if key is not
|
|
* equal to the MAX_KEY. Latter case is only possible in
|
|
* "finish_unfinished()" processing during mount.
|
|
*/
|
|
RFALSE(comp_keys(&MAX_KEY, key) &&
|
|
!key_in_buffer(search_path, key, sb),
|
|
"PAP-5130: key is not in the buffer");
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if (REISERFS_SB(sb)->cur_tb) {
|
|
print_cur_tb("5140");
|
|
reiserfs_panic(sb, "PAP-5140",
|
|
"schedule occurred in do_balance!");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* make sure, that the node contents look like a node of
|
|
* certain level
|
|
*/
|
|
if (!is_tree_node(bh, expected_level)) {
|
|
reiserfs_error(sb, "vs-5150",
|
|
"invalid format found in block %ld. "
|
|
"Fsck?", bh->b_blocknr);
|
|
pathrelse(search_path);
|
|
return IO_ERROR;
|
|
}
|
|
|
|
/* ok, we have acquired next formatted node in the tree */
|
|
node_level = B_LEVEL(bh);
|
|
|
|
PROC_INFO_BH_STAT(sb, bh, node_level - 1);
|
|
|
|
RFALSE(node_level < stop_level,
|
|
"vs-5152: tree level (%d) is less than stop level (%d)",
|
|
node_level, stop_level);
|
|
|
|
retval = bin_search(key, item_head(bh, 0),
|
|
B_NR_ITEMS(bh),
|
|
(node_level ==
|
|
DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
|
|
KEY_SIZE,
|
|
&last_element->pe_position);
|
|
if (node_level == stop_level) {
|
|
return retval;
|
|
}
|
|
|
|
/* we are not in the stop level */
|
|
/*
|
|
* item has been found, so we choose the pointer which
|
|
* is to the right of the found one
|
|
*/
|
|
if (retval == ITEM_FOUND)
|
|
last_element->pe_position++;
|
|
|
|
/*
|
|
* if item was not found we choose the position which is to
|
|
* the left of the found item. This requires no code,
|
|
* bin_search did it already.
|
|
*/
|
|
|
|
/*
|
|
* So we have chosen a position in the current node which is
|
|
* an internal node. Now we calculate child block number by
|
|
* position in the node.
|
|
*/
|
|
block_number =
|
|
B_N_CHILD_NUM(bh, last_element->pe_position);
|
|
|
|
/*
|
|
* if we are going to read leaf nodes, try for read
|
|
* ahead as well
|
|
*/
|
|
if ((search_path->reada & PATH_READA) &&
|
|
node_level == DISK_LEAF_NODE_LEVEL + 1) {
|
|
int pos = last_element->pe_position;
|
|
int limit = B_NR_ITEMS(bh);
|
|
struct reiserfs_key *le_key;
|
|
|
|
if (search_path->reada & PATH_READA_BACK)
|
|
limit = 0;
|
|
while (reada_count < SEARCH_BY_KEY_READA) {
|
|
if (pos == limit)
|
|
break;
|
|
reada_blocks[reada_count++] =
|
|
B_N_CHILD_NUM(bh, pos);
|
|
if (search_path->reada & PATH_READA_BACK)
|
|
pos--;
|
|
else
|
|
pos++;
|
|
|
|
/*
|
|
* check to make sure we're in the same object
|
|
*/
|
|
le_key = internal_key(bh, pos);
|
|
if (le32_to_cpu(le_key->k_objectid) !=
|
|
key->on_disk_key.k_objectid) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Form the path to an item and position in this item which contains
|
|
* file byte defined by key. If there is no such item
|
|
* corresponding to the key, we point the path to the item with
|
|
* maximal key less than key, and *pos_in_item is set to one
|
|
* past the last entry/byte in the item. If searching for entry in a
|
|
* directory item, and it is not found, *pos_in_item is set to one
|
|
* entry more than the entry with maximal key which is less than the
|
|
* sought key.
|
|
*
|
|
* Note that if there is no entry in this same node which is one more,
|
|
* then we point to an imaginary entry. for direct items, the
|
|
* position is in units of bytes, for indirect items the position is
|
|
* in units of blocknr entries, for directory items the position is in
|
|
* units of directory entries.
|
|
*/
|
|
/* The function is NOT SCHEDULE-SAFE! */
|
|
int search_for_position_by_key(struct super_block *sb,
|
|
/* Key to search (cpu variable) */
|
|
const struct cpu_key *p_cpu_key,
|
|
/* Filled up by this function. */
|
|
struct treepath *search_path)
|
|
{
|
|
struct item_head *p_le_ih; /* pointer to on-disk structure */
|
|
int blk_size;
|
|
loff_t item_offset, offset;
|
|
struct reiserfs_dir_entry de;
|
|
int retval;
|
|
|
|
/* If searching for directory entry. */
|
|
if (is_direntry_cpu_key(p_cpu_key))
|
|
return search_by_entry_key(sb, p_cpu_key, search_path,
|
|
&de);
|
|
|
|
/* If not searching for directory entry. */
|
|
|
|
/* If item is found. */
|
|
retval = search_item(sb, p_cpu_key, search_path);
|
|
if (retval == IO_ERROR)
|
|
return retval;
|
|
if (retval == ITEM_FOUND) {
|
|
|
|
RFALSE(!ih_item_len
|
|
(item_head
|
|
(PATH_PLAST_BUFFER(search_path),
|
|
PATH_LAST_POSITION(search_path))),
|
|
"PAP-5165: item length equals zero");
|
|
|
|
pos_in_item(search_path) = 0;
|
|
return POSITION_FOUND;
|
|
}
|
|
|
|
RFALSE(!PATH_LAST_POSITION(search_path),
|
|
"PAP-5170: position equals zero");
|
|
|
|
/* Item is not found. Set path to the previous item. */
|
|
p_le_ih =
|
|
item_head(PATH_PLAST_BUFFER(search_path),
|
|
--PATH_LAST_POSITION(search_path));
|
|
blk_size = sb->s_blocksize;
|
|
|
|
if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
|
|
return FILE_NOT_FOUND;
|
|
|
|
/* FIXME: quite ugly this far */
|
|
|
|
item_offset = le_ih_k_offset(p_le_ih);
|
|
offset = cpu_key_k_offset(p_cpu_key);
|
|
|
|
/* Needed byte is contained in the item pointed to by the path. */
|
|
if (item_offset <= offset &&
|
|
item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
|
|
pos_in_item(search_path) = offset - item_offset;
|
|
if (is_indirect_le_ih(p_le_ih)) {
|
|
pos_in_item(search_path) /= blk_size;
|
|
}
|
|
return POSITION_FOUND;
|
|
}
|
|
|
|
/*
|
|
* Needed byte is not contained in the item pointed to by the
|
|
* path. Set pos_in_item out of the item.
|
|
*/
|
|
if (is_indirect_le_ih(p_le_ih))
|
|
pos_in_item(search_path) =
|
|
ih_item_len(p_le_ih) / UNFM_P_SIZE;
|
|
else
|
|
pos_in_item(search_path) = ih_item_len(p_le_ih);
|
|
|
|
return POSITION_NOT_FOUND;
|
|
}
|
|
|
|
/* Compare given item and item pointed to by the path. */
|
|
int comp_items(const struct item_head *stored_ih, const struct treepath *path)
|
|
{
|
|
struct buffer_head *bh = PATH_PLAST_BUFFER(path);
|
|
struct item_head *ih;
|
|
|
|
/* Last buffer at the path is not in the tree. */
|
|
if (!B_IS_IN_TREE(bh))
|
|
return 1;
|
|
|
|
/* Last path position is invalid. */
|
|
if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
|
|
return 1;
|
|
|
|
/* we need only to know, whether it is the same item */
|
|
ih = tp_item_head(path);
|
|
return memcmp(stored_ih, ih, IH_SIZE);
|
|
}
|
|
|
|
/* prepare for delete or cut of direct item */
|
|
static inline int prepare_for_direct_item(struct treepath *path,
|
|
struct item_head *le_ih,
|
|
struct inode *inode,
|
|
loff_t new_file_length, int *cut_size)
|
|
{
|
|
loff_t round_len;
|
|
|
|
if (new_file_length == max_reiserfs_offset(inode)) {
|
|
/* item has to be deleted */
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE;
|
|
}
|
|
/* new file gets truncated */
|
|
if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
|
|
round_len = ROUND_UP(new_file_length);
|
|
/* this was new_file_length < le_ih ... */
|
|
if (round_len < le_ih_k_offset(le_ih)) {
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE; /* Delete this item. */
|
|
}
|
|
/* Calculate first position and size for cutting from item. */
|
|
pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
|
|
*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
|
|
|
|
return M_CUT; /* Cut from this item. */
|
|
}
|
|
|
|
/* old file: items may have any length */
|
|
|
|
if (new_file_length < le_ih_k_offset(le_ih)) {
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE; /* Delete this item. */
|
|
}
|
|
|
|
/* Calculate first position and size for cutting from item. */
|
|
*cut_size = -(ih_item_len(le_ih) -
|
|
(pos_in_item(path) =
|
|
new_file_length + 1 - le_ih_k_offset(le_ih)));
|
|
return M_CUT; /* Cut from this item. */
|
|
}
|
|
|
|
static inline int prepare_for_direntry_item(struct treepath *path,
|
|
struct item_head *le_ih,
|
|
struct inode *inode,
|
|
loff_t new_file_length,
|
|
int *cut_size)
|
|
{
|
|
if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
|
|
new_file_length == max_reiserfs_offset(inode)) {
|
|
RFALSE(ih_entry_count(le_ih) != 2,
|
|
"PAP-5220: incorrect empty directory item (%h)", le_ih);
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
/* Delete the directory item containing "." and ".." entry. */
|
|
return M_DELETE;
|
|
}
|
|
|
|
if (ih_entry_count(le_ih) == 1) {
|
|
/*
|
|
* Delete the directory item such as there is one record only
|
|
* in this item
|
|
*/
|
|
*cut_size = -(IH_SIZE + ih_item_len(le_ih));
|
|
return M_DELETE;
|
|
}
|
|
|
|
/* Cut one record from the directory item. */
|
|
*cut_size =
|
|
-(DEH_SIZE +
|
|
entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
|
|
return M_CUT;
|
|
}
|
|
|
|
#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
|
|
|
|
/*
|
|
* If the path points to a directory or direct item, calculate mode
|
|
* and the size cut, for balance.
|
|
* If the path points to an indirect item, remove some number of its
|
|
* unformatted nodes.
|
|
* In case of file truncate calculate whether this item must be
|
|
* deleted/truncated or last unformatted node of this item will be
|
|
* converted to a direct item.
|
|
* This function returns a determination of what balance mode the
|
|
* calling function should employ.
|
|
*/
|
|
static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode,
|
|
struct treepath *path,
|
|
const struct cpu_key *item_key,
|
|
/*
|
|
* Number of unformatted nodes
|
|
* which were removed from end
|
|
* of the file.
|
|
*/
|
|
int *removed,
|
|
int *cut_size,
|
|
/* MAX_KEY_OFFSET in case of delete. */
|
|
unsigned long long new_file_length
|
|
)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct item_head *p_le_ih = tp_item_head(path);
|
|
struct buffer_head *bh = PATH_PLAST_BUFFER(path);
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
/* Stat_data item. */
|
|
if (is_statdata_le_ih(p_le_ih)) {
|
|
|
|
RFALSE(new_file_length != max_reiserfs_offset(inode),
|
|
"PAP-5210: mode must be M_DELETE");
|
|
|
|
*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
|
|
return M_DELETE;
|
|
}
|
|
|
|
/* Directory item. */
|
|
if (is_direntry_le_ih(p_le_ih))
|
|
return prepare_for_direntry_item(path, p_le_ih, inode,
|
|
new_file_length,
|
|
cut_size);
|
|
|
|
/* Direct item. */
|
|
if (is_direct_le_ih(p_le_ih))
|
|
return prepare_for_direct_item(path, p_le_ih, inode,
|
|
new_file_length, cut_size);
|
|
|
|
/* Case of an indirect item. */
|
|
{
|
|
int blk_size = sb->s_blocksize;
|
|
struct item_head s_ih;
|
|
int need_re_search;
|
|
int delete = 0;
|
|
int result = M_CUT;
|
|
int pos = 0;
|
|
|
|
if ( new_file_length == max_reiserfs_offset (inode) ) {
|
|
/*
|
|
* prepare_for_delete_or_cut() is called by
|
|
* reiserfs_delete_item()
|
|
*/
|
|
new_file_length = 0;
|
|
delete = 1;
|
|
}
|
|
|
|
do {
|
|
need_re_search = 0;
|
|
*cut_size = 0;
|
|
bh = PATH_PLAST_BUFFER(path);
|
|
copy_item_head(&s_ih, tp_item_head(path));
|
|
pos = I_UNFM_NUM(&s_ih);
|
|
|
|
while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
|
|
__le32 *unfm;
|
|
__u32 block;
|
|
|
|
/*
|
|
* Each unformatted block deletion may involve
|
|
* one additional bitmap block into the transaction,
|
|
* thereby the initial journal space reservation
|
|
* might not be enough.
|
|
*/
|
|
if (!delete && (*cut_size) != 0 &&
|
|
reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
|
|
break;
|
|
|
|
unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
|
|
block = get_block_num(unfm, 0);
|
|
|
|
if (block != 0) {
|
|
reiserfs_prepare_for_journal(sb, bh, 1);
|
|
put_block_num(unfm, 0, 0);
|
|
journal_mark_dirty(th, bh);
|
|
reiserfs_free_block(th, inode, block, 1);
|
|
}
|
|
|
|
reiserfs_cond_resched(sb);
|
|
|
|
if (item_moved (&s_ih, path)) {
|
|
need_re_search = 1;
|
|
break;
|
|
}
|
|
|
|
pos --;
|
|
(*removed)++;
|
|
(*cut_size) -= UNFM_P_SIZE;
|
|
|
|
if (pos == 0) {
|
|
(*cut_size) -= IH_SIZE;
|
|
result = M_DELETE;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* a trick. If the buffer has been logged, this will
|
|
* do nothing. If we've broken the loop without logging
|
|
* it, it will restore the buffer
|
|
*/
|
|
reiserfs_restore_prepared_buffer(sb, bh);
|
|
} while (need_re_search &&
|
|
search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
|
|
pos_in_item(path) = pos * UNFM_P_SIZE;
|
|
|
|
if (*cut_size == 0) {
|
|
/*
|
|
* Nothing was cut. maybe convert last unformatted node to the
|
|
* direct item?
|
|
*/
|
|
result = M_CONVERT;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* Calculate number of bytes which will be deleted or cut during balance */
|
|
static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
|
|
{
|
|
int del_size;
|
|
struct item_head *p_le_ih = tp_item_head(tb->tb_path);
|
|
|
|
if (is_statdata_le_ih(p_le_ih))
|
|
return 0;
|
|
|
|
del_size =
|
|
(mode ==
|
|
M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
|
|
if (is_direntry_le_ih(p_le_ih)) {
|
|
/*
|
|
* return EMPTY_DIR_SIZE; We delete emty directories only.
|
|
* we can't use EMPTY_DIR_SIZE, as old format dirs have a
|
|
* different empty size. ick. FIXME, is this right?
|
|
*/
|
|
return del_size;
|
|
}
|
|
|
|
if (is_indirect_le_ih(p_le_ih))
|
|
del_size = (del_size / UNFM_P_SIZE) *
|
|
(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
|
|
return del_size;
|
|
}
|
|
|
|
static void init_tb_struct(struct reiserfs_transaction_handle *th,
|
|
struct tree_balance *tb,
|
|
struct super_block *sb,
|
|
struct treepath *path, int size)
|
|
{
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
memset(tb, '\0', sizeof(struct tree_balance));
|
|
tb->transaction_handle = th;
|
|
tb->tb_sb = sb;
|
|
tb->tb_path = path;
|
|
PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
|
|
PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
|
|
tb->insert_size[0] = size;
|
|
}
|
|
|
|
void padd_item(char *item, int total_length, int length)
|
|
{
|
|
int i;
|
|
|
|
for (i = total_length; i > length;)
|
|
item[--i] = 0;
|
|
}
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
char key2type(struct reiserfs_key *ih)
|
|
{
|
|
if (is_direntry_le_key(2, ih))
|
|
return 'd';
|
|
if (is_direct_le_key(2, ih))
|
|
return 'D';
|
|
if (is_indirect_le_key(2, ih))
|
|
return 'i';
|
|
if (is_statdata_le_key(2, ih))
|
|
return 's';
|
|
return 'u';
|
|
}
|
|
|
|
char head2type(struct item_head *ih)
|
|
{
|
|
if (is_direntry_le_ih(ih))
|
|
return 'd';
|
|
if (is_direct_le_ih(ih))
|
|
return 'D';
|
|
if (is_indirect_le_ih(ih))
|
|
return 'i';
|
|
if (is_statdata_le_ih(ih))
|
|
return 's';
|
|
return 'u';
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Delete object item.
|
|
* th - active transaction handle
|
|
* path - path to the deleted item
|
|
* item_key - key to search for the deleted item
|
|
* indode - used for updating i_blocks and quotas
|
|
* un_bh - NULL or unformatted node pointer
|
|
*/
|
|
int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
|
|
struct treepath *path, const struct cpu_key *item_key,
|
|
struct inode *inode, struct buffer_head *un_bh)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct tree_balance s_del_balance;
|
|
struct item_head s_ih;
|
|
struct item_head *q_ih;
|
|
int quota_cut_bytes;
|
|
int ret_value, del_size, removed;
|
|
int depth;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
char mode;
|
|
#endif
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
init_tb_struct(th, &s_del_balance, sb, path,
|
|
0 /*size is unknown */ );
|
|
|
|
while (1) {
|
|
removed = 0;
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
mode =
|
|
#endif
|
|
prepare_for_delete_or_cut(th, inode, path,
|
|
item_key, &removed,
|
|
&del_size,
|
|
max_reiserfs_offset(inode));
|
|
|
|
RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
|
|
|
|
copy_item_head(&s_ih, tp_item_head(path));
|
|
s_del_balance.insert_size[0] = del_size;
|
|
|
|
ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
|
|
if (ret_value != REPEAT_SEARCH)
|
|
break;
|
|
|
|
PROC_INFO_INC(sb, delete_item_restarted);
|
|
|
|
/* file system changed, repeat search */
|
|
ret_value =
|
|
search_for_position_by_key(sb, item_key, path);
|
|
if (ret_value == IO_ERROR)
|
|
break;
|
|
if (ret_value == FILE_NOT_FOUND) {
|
|
reiserfs_warning(sb, "vs-5340",
|
|
"no items of the file %K found",
|
|
item_key);
|
|
break;
|
|
}
|
|
} /* while (1) */
|
|
|
|
if (ret_value != CARRY_ON) {
|
|
unfix_nodes(&s_del_balance);
|
|
return 0;
|
|
}
|
|
|
|
/* reiserfs_delete_item returns item length when success */
|
|
ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
|
|
q_ih = tp_item_head(path);
|
|
quota_cut_bytes = ih_item_len(q_ih);
|
|
|
|
/*
|
|
* hack so the quota code doesn't have to guess if the file has a
|
|
* tail. On tail insert, we allocate quota for 1 unformatted node.
|
|
* We test the offset because the tail might have been
|
|
* split into multiple items, and we only want to decrement for
|
|
* the unfm node once
|
|
*/
|
|
if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
|
|
if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
|
|
quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
|
|
} else {
|
|
quota_cut_bytes = 0;
|
|
}
|
|
}
|
|
|
|
if (un_bh) {
|
|
int off;
|
|
char *data;
|
|
|
|
/*
|
|
* We are in direct2indirect conversion, so move tail contents
|
|
* to the unformatted node
|
|
*/
|
|
/*
|
|
* note, we do the copy before preparing the buffer because we
|
|
* don't care about the contents of the unformatted node yet.
|
|
* the only thing we really care about is the direct item's
|
|
* data is in the unformatted node.
|
|
*
|
|
* Otherwise, we would have to call
|
|
* reiserfs_prepare_for_journal on the unformatted node,
|
|
* which might schedule, meaning we'd have to loop all the
|
|
* way back up to the start of the while loop.
|
|
*
|
|
* The unformatted node must be dirtied later on. We can't be
|
|
* sure here if the entire tail has been deleted yet.
|
|
*
|
|
* un_bh is from the page cache (all unformatted nodes are
|
|
* from the page cache) and might be a highmem page. So, we
|
|
* can't use un_bh->b_data.
|
|
* -clm
|
|
*/
|
|
|
|
data = kmap_atomic(un_bh->b_page);
|
|
off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
|
|
memcpy(data + off,
|
|
ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
|
|
ret_value);
|
|
kunmap_atomic(data);
|
|
}
|
|
|
|
/* Perform balancing after all resources have been collected at once. */
|
|
do_balance(&s_del_balance, NULL, NULL, M_DELETE);
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(sb, REISERFS_DEBUG_CODE,
|
|
"reiserquota delete_item(): freeing %u, id=%u type=%c",
|
|
quota_cut_bytes, inode->i_uid, head2type(&s_ih));
|
|
#endif
|
|
depth = reiserfs_write_unlock_nested(inode->i_sb);
|
|
dquot_free_space_nodirty(inode, quota_cut_bytes);
|
|
reiserfs_write_lock_nested(inode->i_sb, depth);
|
|
|
|
/* Return deleted body length */
|
|
return ret_value;
|
|
}
|
|
|
|
/*
|
|
* Summary Of Mechanisms For Handling Collisions Between Processes:
|
|
*
|
|
* deletion of the body of the object is performed by iput(), with the
|
|
* result that if multiple processes are operating on a file, the
|
|
* deletion of the body of the file is deferred until the last process
|
|
* that has an open inode performs its iput().
|
|
*
|
|
* writes and truncates are protected from collisions by use of
|
|
* semaphores.
|
|
*
|
|
* creates, linking, and mknod are protected from collisions with other
|
|
* processes by making the reiserfs_add_entry() the last step in the
|
|
* creation, and then rolling back all changes if there was a collision.
|
|
* - Hans
|
|
*/
|
|
|
|
/* this deletes item which never gets split */
|
|
void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode, struct reiserfs_key *key)
|
|
{
|
|
struct super_block *sb = th->t_super;
|
|
struct tree_balance tb;
|
|
INITIALIZE_PATH(path);
|
|
int item_len = 0;
|
|
int tb_init = 0;
|
|
struct cpu_key cpu_key;
|
|
int retval;
|
|
int quota_cut_bytes = 0;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
le_key2cpu_key(&cpu_key, key);
|
|
|
|
while (1) {
|
|
retval = search_item(th->t_super, &cpu_key, &path);
|
|
if (retval == IO_ERROR) {
|
|
reiserfs_error(th->t_super, "vs-5350",
|
|
"i/o failure occurred trying "
|
|
"to delete %K", &cpu_key);
|
|
break;
|
|
}
|
|
if (retval != ITEM_FOUND) {
|
|
pathrelse(&path);
|
|
/*
|
|
* No need for a warning, if there is just no free
|
|
* space to insert '..' item into the
|
|
* newly-created subdir
|
|
*/
|
|
if (!
|
|
((unsigned long long)
|
|
GET_HASH_VALUE(le_key_k_offset
|
|
(le_key_version(key), key)) == 0
|
|
&& (unsigned long long)
|
|
GET_GENERATION_NUMBER(le_key_k_offset
|
|
(le_key_version(key),
|
|
key)) == 1))
|
|
reiserfs_warning(th->t_super, "vs-5355",
|
|
"%k not found", key);
|
|
break;
|
|
}
|
|
if (!tb_init) {
|
|
tb_init = 1;
|
|
item_len = ih_item_len(tp_item_head(&path));
|
|
init_tb_struct(th, &tb, th->t_super, &path,
|
|
-(IH_SIZE + item_len));
|
|
}
|
|
quota_cut_bytes = ih_item_len(tp_item_head(&path));
|
|
|
|
retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
|
|
if (retval == REPEAT_SEARCH) {
|
|
PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
|
|
continue;
|
|
}
|
|
|
|
if (retval == CARRY_ON) {
|
|
do_balance(&tb, NULL, NULL, M_DELETE);
|
|
/*
|
|
* Should we count quota for item? (we don't
|
|
* count quotas for save-links)
|
|
*/
|
|
if (inode) {
|
|
int depth;
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
|
|
"reiserquota delete_solid_item(): freeing %u id=%u type=%c",
|
|
quota_cut_bytes, inode->i_uid,
|
|
key2type(key));
|
|
#endif
|
|
depth = reiserfs_write_unlock_nested(sb);
|
|
dquot_free_space_nodirty(inode,
|
|
quota_cut_bytes);
|
|
reiserfs_write_lock_nested(sb, depth);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* IO_ERROR, NO_DISK_SPACE, etc */
|
|
reiserfs_warning(th->t_super, "vs-5360",
|
|
"could not delete %K due to fix_nodes failure",
|
|
&cpu_key);
|
|
unfix_nodes(&tb);
|
|
break;
|
|
}
|
|
|
|
reiserfs_check_path(&path);
|
|
}
|
|
|
|
int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode)
|
|
{
|
|
int err;
|
|
inode->i_size = 0;
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
/* for directory this deletes item containing "." and ".." */
|
|
err =
|
|
reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
|
|
if (err)
|
|
return err;
|
|
|
|
#if defined( USE_INODE_GENERATION_COUNTER )
|
|
if (!old_format_only(th->t_super)) {
|
|
__le32 *inode_generation;
|
|
|
|
inode_generation =
|
|
&REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
|
|
le32_add_cpu(inode_generation, 1);
|
|
}
|
|
/* USE_INODE_GENERATION_COUNTER */
|
|
#endif
|
|
reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
|
|
|
|
return err;
|
|
}
|
|
|
|
static void unmap_buffers(struct page *page, loff_t pos)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *head;
|
|
struct buffer_head *next;
|
|
unsigned long tail_index;
|
|
unsigned long cur_index;
|
|
|
|
if (page) {
|
|
if (page_has_buffers(page)) {
|
|
tail_index = pos & (PAGE_SIZE - 1);
|
|
cur_index = 0;
|
|
head = page_buffers(page);
|
|
bh = head;
|
|
do {
|
|
next = bh->b_this_page;
|
|
|
|
/*
|
|
* we want to unmap the buffers that contain
|
|
* the tail, and all the buffers after it
|
|
* (since the tail must be at the end of the
|
|
* file). We don't want to unmap file data
|
|
* before the tail, since it might be dirty
|
|
* and waiting to reach disk
|
|
*/
|
|
cur_index += bh->b_size;
|
|
if (cur_index > tail_index) {
|
|
reiserfs_unmap_buffer(bh);
|
|
}
|
|
bh = next;
|
|
} while (bh != head);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode,
|
|
struct page *page,
|
|
struct treepath *path,
|
|
const struct cpu_key *item_key,
|
|
loff_t new_file_size, char *mode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int block_size = sb->s_blocksize;
|
|
int cut_bytes;
|
|
BUG_ON(!th->t_trans_id);
|
|
BUG_ON(new_file_size != inode->i_size);
|
|
|
|
/*
|
|
* the page being sent in could be NULL if there was an i/o error
|
|
* reading in the last block. The user will hit problems trying to
|
|
* read the file, but for now we just skip the indirect2direct
|
|
*/
|
|
if (atomic_read(&inode->i_count) > 1 ||
|
|
!tail_has_to_be_packed(inode) ||
|
|
!page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
|
|
/* leave tail in an unformatted node */
|
|
*mode = M_SKIP_BALANCING;
|
|
cut_bytes =
|
|
block_size - (new_file_size & (block_size - 1));
|
|
pathrelse(path);
|
|
return cut_bytes;
|
|
}
|
|
|
|
/* Perform the conversion to a direct_item. */
|
|
return indirect2direct(th, inode, page, path, item_key,
|
|
new_file_size, mode);
|
|
}
|
|
|
|
/*
|
|
* we did indirect_to_direct conversion. And we have inserted direct
|
|
* item successesfully, but there were no disk space to cut unfm
|
|
* pointer being converted. Therefore we have to delete inserted
|
|
* direct item(s)
|
|
*/
|
|
static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode, struct treepath *path)
|
|
{
|
|
struct cpu_key tail_key;
|
|
int tail_len;
|
|
int removed;
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
|
|
tail_key.key_length = 4;
|
|
|
|
tail_len =
|
|
(cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
|
|
while (tail_len) {
|
|
/* look for the last byte of the tail */
|
|
if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
|
|
POSITION_NOT_FOUND)
|
|
reiserfs_panic(inode->i_sb, "vs-5615",
|
|
"found invalid item");
|
|
RFALSE(path->pos_in_item !=
|
|
ih_item_len(tp_item_head(path)) - 1,
|
|
"vs-5616: appended bytes found");
|
|
PATH_LAST_POSITION(path)--;
|
|
|
|
removed =
|
|
reiserfs_delete_item(th, path, &tail_key, inode,
|
|
NULL /*unbh not needed */ );
|
|
RFALSE(removed <= 0
|
|
|| removed > tail_len,
|
|
"vs-5617: there was tail %d bytes, removed item length %d bytes",
|
|
tail_len, removed);
|
|
tail_len -= removed;
|
|
set_cpu_key_k_offset(&tail_key,
|
|
cpu_key_k_offset(&tail_key) - removed);
|
|
}
|
|
reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
|
|
"conversion has been rolled back due to "
|
|
"lack of disk space");
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
|
|
int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
|
|
struct treepath *path,
|
|
struct cpu_key *item_key,
|
|
struct inode *inode,
|
|
struct page *page, loff_t new_file_size)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
/*
|
|
* Every function which is going to call do_balance must first
|
|
* create a tree_balance structure. Then it must fill up this
|
|
* structure by using the init_tb_struct and fix_nodes functions.
|
|
* After that we can make tree balancing.
|
|
*/
|
|
struct tree_balance s_cut_balance;
|
|
struct item_head *p_le_ih;
|
|
int cut_size = 0; /* Amount to be cut. */
|
|
int ret_value = CARRY_ON;
|
|
int removed = 0; /* Number of the removed unformatted nodes. */
|
|
int is_inode_locked = 0;
|
|
char mode; /* Mode of the balance. */
|
|
int retval2 = -1;
|
|
int quota_cut_bytes;
|
|
loff_t tail_pos = 0;
|
|
int depth;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
|
|
cut_size);
|
|
|
|
/*
|
|
* Repeat this loop until we either cut the item without needing
|
|
* to balance, or we fix_nodes without schedule occurring
|
|
*/
|
|
while (1) {
|
|
/*
|
|
* Determine the balance mode, position of the first byte to
|
|
* be cut, and size to be cut. In case of the indirect item
|
|
* free unformatted nodes which are pointed to by the cut
|
|
* pointers.
|
|
*/
|
|
|
|
mode =
|
|
prepare_for_delete_or_cut(th, inode, path,
|
|
item_key, &removed,
|
|
&cut_size, new_file_size);
|
|
if (mode == M_CONVERT) {
|
|
/*
|
|
* convert last unformatted node to direct item or
|
|
* leave tail in the unformatted node
|
|
*/
|
|
RFALSE(ret_value != CARRY_ON,
|
|
"PAP-5570: can not convert twice");
|
|
|
|
ret_value =
|
|
maybe_indirect_to_direct(th, inode, page,
|
|
path, item_key,
|
|
new_file_size, &mode);
|
|
if (mode == M_SKIP_BALANCING)
|
|
/* tail has been left in the unformatted node */
|
|
return ret_value;
|
|
|
|
is_inode_locked = 1;
|
|
|
|
/*
|
|
* removing of last unformatted node will
|
|
* change value we have to return to truncate.
|
|
* Save it
|
|
*/
|
|
retval2 = ret_value;
|
|
|
|
/*
|
|
* So, we have performed the first part of the
|
|
* conversion:
|
|
* inserting the new direct item. Now we are
|
|
* removing the last unformatted node pointer.
|
|
* Set key to search for it.
|
|
*/
|
|
set_cpu_key_k_type(item_key, TYPE_INDIRECT);
|
|
item_key->key_length = 4;
|
|
new_file_size -=
|
|
(new_file_size & (sb->s_blocksize - 1));
|
|
tail_pos = new_file_size;
|
|
set_cpu_key_k_offset(item_key, new_file_size + 1);
|
|
if (search_for_position_by_key
|
|
(sb, item_key,
|
|
path) == POSITION_NOT_FOUND) {
|
|
print_block(PATH_PLAST_BUFFER(path), 3,
|
|
PATH_LAST_POSITION(path) - 1,
|
|
PATH_LAST_POSITION(path) + 1);
|
|
reiserfs_panic(sb, "PAP-5580", "item to "
|
|
"convert does not exist (%K)",
|
|
item_key);
|
|
}
|
|
continue;
|
|
}
|
|
if (cut_size == 0) {
|
|
pathrelse(path);
|
|
return 0;
|
|
}
|
|
|
|
s_cut_balance.insert_size[0] = cut_size;
|
|
|
|
ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
|
|
if (ret_value != REPEAT_SEARCH)
|
|
break;
|
|
|
|
PROC_INFO_INC(sb, cut_from_item_restarted);
|
|
|
|
ret_value =
|
|
search_for_position_by_key(sb, item_key, path);
|
|
if (ret_value == POSITION_FOUND)
|
|
continue;
|
|
|
|
reiserfs_warning(sb, "PAP-5610", "item %K not found",
|
|
item_key);
|
|
unfix_nodes(&s_cut_balance);
|
|
return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
|
|
} /* while */
|
|
|
|
/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
|
|
if (ret_value != CARRY_ON) {
|
|
if (is_inode_locked) {
|
|
/*
|
|
* FIXME: this seems to be not needed: we are always
|
|
* able to cut item
|
|
*/
|
|
indirect_to_direct_roll_back(th, inode, path);
|
|
}
|
|
if (ret_value == NO_DISK_SPACE)
|
|
reiserfs_warning(sb, "reiserfs-5092",
|
|
"NO_DISK_SPACE");
|
|
unfix_nodes(&s_cut_balance);
|
|
return -EIO;
|
|
}
|
|
|
|
/* go ahead and perform balancing */
|
|
|
|
RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
|
|
|
|
/* Calculate number of bytes that need to be cut from the item. */
|
|
quota_cut_bytes =
|
|
(mode ==
|
|
M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
|
|
insert_size[0];
|
|
if (retval2 == -1)
|
|
ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
|
|
else
|
|
ret_value = retval2;
|
|
|
|
/*
|
|
* For direct items, we only change the quota when deleting the last
|
|
* item.
|
|
*/
|
|
p_le_ih = tp_item_head(s_cut_balance.tb_path);
|
|
if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
|
|
if (mode == M_DELETE &&
|
|
(le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
|
|
1) {
|
|
/* FIXME: this is to keep 3.5 happy */
|
|
REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
|
|
quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
|
|
} else {
|
|
quota_cut_bytes = 0;
|
|
}
|
|
}
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
if (is_inode_locked) {
|
|
struct item_head *le_ih =
|
|
tp_item_head(s_cut_balance.tb_path);
|
|
/*
|
|
* we are going to complete indirect2direct conversion. Make
|
|
* sure, that we exactly remove last unformatted node pointer
|
|
* of the item
|
|
*/
|
|
if (!is_indirect_le_ih(le_ih))
|
|
reiserfs_panic(sb, "vs-5652",
|
|
"item must be indirect %h", le_ih);
|
|
|
|
if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
|
|
reiserfs_panic(sb, "vs-5653", "completing "
|
|
"indirect2direct conversion indirect "
|
|
"item %h being deleted must be of "
|
|
"4 byte long", le_ih);
|
|
|
|
if (mode == M_CUT
|
|
&& s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
|
|
reiserfs_panic(sb, "vs-5654", "can not complete "
|
|
"indirect2direct conversion of %h "
|
|
"(CUT, insert_size==%d)",
|
|
le_ih, s_cut_balance.insert_size[0]);
|
|
}
|
|
/*
|
|
* it would be useful to make sure, that right neighboring
|
|
* item is direct item of this file
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
do_balance(&s_cut_balance, NULL, NULL, mode);
|
|
if (is_inode_locked) {
|
|
/*
|
|
* we've done an indirect->direct conversion. when the
|
|
* data block was freed, it was removed from the list of
|
|
* blocks that must be flushed before the transaction
|
|
* commits, make sure to unmap and invalidate it
|
|
*/
|
|
unmap_buffers(page, tail_pos);
|
|
REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
|
|
}
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
|
|
"reiserquota cut_from_item(): freeing %u id=%u type=%c",
|
|
quota_cut_bytes, inode->i_uid, '?');
|
|
#endif
|
|
depth = reiserfs_write_unlock_nested(sb);
|
|
dquot_free_space_nodirty(inode, quota_cut_bytes);
|
|
reiserfs_write_lock_nested(sb, depth);
|
|
return ret_value;
|
|
}
|
|
|
|
static void truncate_directory(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode)
|
|
{
|
|
BUG_ON(!th->t_trans_id);
|
|
if (inode->i_nlink)
|
|
reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
|
|
|
|
set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
|
|
set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
|
|
reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
|
|
reiserfs_update_sd(th, inode);
|
|
set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
|
|
set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
|
|
}
|
|
|
|
/*
|
|
* Truncate file to the new size. Note, this must be called with a
|
|
* transaction already started
|
|
*/
|
|
int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode, /* ->i_size contains new size */
|
|
struct page *page, /* up to date for last block */
|
|
/*
|
|
* when it is called by file_release to convert
|
|
* the tail - no timestamps should be updated
|
|
*/
|
|
int update_timestamps
|
|
)
|
|
{
|
|
INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
|
|
struct item_head *p_le_ih; /* Pointer to an item header. */
|
|
|
|
/* Key to search for a previous file item. */
|
|
struct cpu_key s_item_key;
|
|
loff_t file_size, /* Old file size. */
|
|
new_file_size; /* New file size. */
|
|
int deleted; /* Number of deleted or truncated bytes. */
|
|
int retval;
|
|
int err = 0;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
if (!
|
|
(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
|
|
|| S_ISLNK(inode->i_mode)))
|
|
return 0;
|
|
|
|
/* deletion of directory - no need to update timestamps */
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
truncate_directory(th, inode);
|
|
return 0;
|
|
}
|
|
|
|
/* Get new file size. */
|
|
new_file_size = inode->i_size;
|
|
|
|
/* FIXME: note, that key type is unimportant here */
|
|
make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
|
|
TYPE_DIRECT, 3);
|
|
|
|
retval =
|
|
search_for_position_by_key(inode->i_sb, &s_item_key,
|
|
&s_search_path);
|
|
if (retval == IO_ERROR) {
|
|
reiserfs_error(inode->i_sb, "vs-5657",
|
|
"i/o failure occurred trying to truncate %K",
|
|
&s_item_key);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
|
|
reiserfs_error(inode->i_sb, "PAP-5660",
|
|
"wrong result %d of search for %K", retval,
|
|
&s_item_key);
|
|
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
s_search_path.pos_in_item--;
|
|
|
|
/* Get real file size (total length of all file items) */
|
|
p_le_ih = tp_item_head(&s_search_path);
|
|
if (is_statdata_le_ih(p_le_ih))
|
|
file_size = 0;
|
|
else {
|
|
loff_t offset = le_ih_k_offset(p_le_ih);
|
|
int bytes =
|
|
op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
|
|
|
|
/*
|
|
* this may mismatch with real file size: if last direct item
|
|
* had no padding zeros and last unformatted node had no free
|
|
* space, this file would have this file size
|
|
*/
|
|
file_size = offset + bytes - 1;
|
|
}
|
|
/*
|
|
* are we doing a full truncate or delete, if so
|
|
* kick in the reada code
|
|
*/
|
|
if (new_file_size == 0)
|
|
s_search_path.reada = PATH_READA | PATH_READA_BACK;
|
|
|
|
if (file_size == 0 || file_size < new_file_size) {
|
|
goto update_and_out;
|
|
}
|
|
|
|
/* Update key to search for the last file item. */
|
|
set_cpu_key_k_offset(&s_item_key, file_size);
|
|
|
|
do {
|
|
/* Cut or delete file item. */
|
|
deleted =
|
|
reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
|
|
inode, page, new_file_size);
|
|
if (deleted < 0) {
|
|
reiserfs_warning(inode->i_sb, "vs-5665",
|
|
"reiserfs_cut_from_item failed");
|
|
reiserfs_check_path(&s_search_path);
|
|
return 0;
|
|
}
|
|
|
|
RFALSE(deleted > file_size,
|
|
"PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
|
|
deleted, file_size, &s_item_key);
|
|
|
|
/* Change key to search the last file item. */
|
|
file_size -= deleted;
|
|
|
|
set_cpu_key_k_offset(&s_item_key, file_size);
|
|
|
|
/*
|
|
* While there are bytes to truncate and previous
|
|
* file item is presented in the tree.
|
|
*/
|
|
|
|
/*
|
|
* This loop could take a really long time, and could log
|
|
* many more blocks than a transaction can hold. So, we do
|
|
* a polite journal end here, and if the transaction needs
|
|
* ending, we make sure the file is consistent before ending
|
|
* the current trans and starting a new one
|
|
*/
|
|
if (journal_transaction_should_end(th, 0) ||
|
|
reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
|
|
pathrelse(&s_search_path);
|
|
|
|
if (update_timestamps) {
|
|
inode->i_mtime = current_time(inode);
|
|
inode_set_ctime_current(inode);
|
|
}
|
|
reiserfs_update_sd(th, inode);
|
|
|
|
err = journal_end(th);
|
|
if (err)
|
|
goto out;
|
|
err = journal_begin(th, inode->i_sb,
|
|
JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
|
|
if (err)
|
|
goto out;
|
|
reiserfs_update_inode_transaction(inode);
|
|
}
|
|
} while (file_size > ROUND_UP(new_file_size) &&
|
|
search_for_position_by_key(inode->i_sb, &s_item_key,
|
|
&s_search_path) == POSITION_FOUND);
|
|
|
|
RFALSE(file_size > ROUND_UP(new_file_size),
|
|
"PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
|
|
new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
|
|
|
|
update_and_out:
|
|
if (update_timestamps) {
|
|
/* this is truncate, not file closing */
|
|
inode->i_mtime = current_time(inode);
|
|
inode_set_ctime_current(inode);
|
|
}
|
|
reiserfs_update_sd(th, inode);
|
|
|
|
out:
|
|
pathrelse(&s_search_path);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
/* this makes sure, that we __append__, not overwrite or add holes */
|
|
static void check_research_for_paste(struct treepath *path,
|
|
const struct cpu_key *key)
|
|
{
|
|
struct item_head *found_ih = tp_item_head(path);
|
|
|
|
if (is_direct_le_ih(found_ih)) {
|
|
if (le_ih_k_offset(found_ih) +
|
|
op_bytes_number(found_ih,
|
|
get_last_bh(path)->b_size) !=
|
|
cpu_key_k_offset(key)
|
|
|| op_bytes_number(found_ih,
|
|
get_last_bh(path)->b_size) !=
|
|
pos_in_item(path))
|
|
reiserfs_panic(NULL, "PAP-5720", "found direct item "
|
|
"%h or position (%d) does not match "
|
|
"to key %K", found_ih,
|
|
pos_in_item(path), key);
|
|
}
|
|
if (is_indirect_le_ih(found_ih)) {
|
|
if (le_ih_k_offset(found_ih) +
|
|
op_bytes_number(found_ih,
|
|
get_last_bh(path)->b_size) !=
|
|
cpu_key_k_offset(key)
|
|
|| I_UNFM_NUM(found_ih) != pos_in_item(path)
|
|
|| get_ih_free_space(found_ih) != 0)
|
|
reiserfs_panic(NULL, "PAP-5730", "found indirect "
|
|
"item (%h) or position (%d) does not "
|
|
"match to key (%K)",
|
|
found_ih, pos_in_item(path), key);
|
|
}
|
|
}
|
|
#endif /* config reiserfs check */
|
|
|
|
/*
|
|
* Paste bytes to the existing item.
|
|
* Returns bytes number pasted into the item.
|
|
*/
|
|
int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
|
|
/* Path to the pasted item. */
|
|
struct treepath *search_path,
|
|
/* Key to search for the needed item. */
|
|
const struct cpu_key *key,
|
|
/* Inode item belongs to */
|
|
struct inode *inode,
|
|
/* Pointer to the bytes to paste. */
|
|
const char *body,
|
|
/* Size of pasted bytes. */
|
|
int pasted_size)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct tree_balance s_paste_balance;
|
|
int retval;
|
|
int fs_gen;
|
|
int depth;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
fs_gen = get_generation(inode->i_sb);
|
|
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
|
|
"reiserquota paste_into_item(): allocating %u id=%u type=%c",
|
|
pasted_size, inode->i_uid,
|
|
key2type(&key->on_disk_key));
|
|
#endif
|
|
|
|
depth = reiserfs_write_unlock_nested(sb);
|
|
retval = dquot_alloc_space_nodirty(inode, pasted_size);
|
|
reiserfs_write_lock_nested(sb, depth);
|
|
if (retval) {
|
|
pathrelse(search_path);
|
|
return retval;
|
|
}
|
|
init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
|
|
pasted_size);
|
|
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
|
|
s_paste_balance.key = key->on_disk_key;
|
|
#endif
|
|
|
|
/* DQUOT_* can schedule, must check before the fix_nodes */
|
|
if (fs_changed(fs_gen, inode->i_sb)) {
|
|
goto search_again;
|
|
}
|
|
|
|
while ((retval =
|
|
fix_nodes(M_PASTE, &s_paste_balance, NULL,
|
|
body)) == REPEAT_SEARCH) {
|
|
search_again:
|
|
/* file system changed while we were in the fix_nodes */
|
|
PROC_INFO_INC(th->t_super, paste_into_item_restarted);
|
|
retval =
|
|
search_for_position_by_key(th->t_super, key,
|
|
search_path);
|
|
if (retval == IO_ERROR) {
|
|
retval = -EIO;
|
|
goto error_out;
|
|
}
|
|
if (retval == POSITION_FOUND) {
|
|
reiserfs_warning(inode->i_sb, "PAP-5710",
|
|
"entry or pasted byte (%K) exists",
|
|
key);
|
|
retval = -EEXIST;
|
|
goto error_out;
|
|
}
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
check_research_for_paste(search_path, key);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Perform balancing after all resources are collected by fix_nodes,
|
|
* and accessing them will not risk triggering schedule.
|
|
*/
|
|
if (retval == CARRY_ON) {
|
|
do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
|
|
return 0;
|
|
}
|
|
retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
|
|
error_out:
|
|
/* this also releases the path */
|
|
unfix_nodes(&s_paste_balance);
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
|
|
"reiserquota paste_into_item(): freeing %u id=%u type=%c",
|
|
pasted_size, inode->i_uid,
|
|
key2type(&key->on_disk_key));
|
|
#endif
|
|
depth = reiserfs_write_unlock_nested(sb);
|
|
dquot_free_space_nodirty(inode, pasted_size);
|
|
reiserfs_write_lock_nested(sb, depth);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Insert new item into the buffer at the path.
|
|
* th - active transaction handle
|
|
* path - path to the inserted item
|
|
* ih - pointer to the item header to insert
|
|
* body - pointer to the bytes to insert
|
|
*/
|
|
int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
|
|
struct treepath *path, const struct cpu_key *key,
|
|
struct item_head *ih, struct inode *inode,
|
|
const char *body)
|
|
{
|
|
struct tree_balance s_ins_balance;
|
|
int retval;
|
|
int fs_gen = 0;
|
|
int quota_bytes = 0;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
if (inode) { /* Do we count quotas for item? */
|
|
int depth;
|
|
fs_gen = get_generation(inode->i_sb);
|
|
quota_bytes = ih_item_len(ih);
|
|
|
|
/*
|
|
* hack so the quota code doesn't have to guess
|
|
* if the file has a tail, links are always tails,
|
|
* so there's no guessing needed
|
|
*/
|
|
if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
|
|
quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
|
|
#ifdef REISERQUOTA_DEBUG
|
|
reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
|
|
"reiserquota insert_item(): allocating %u id=%u type=%c",
|
|
quota_bytes, inode->i_uid, head2type(ih));
|
|
#endif
|
|
/*
|
|
* We can't dirty inode here. It would be immediately
|
|
* written but appropriate stat item isn't inserted yet...
|
|
*/
|
|
depth = reiserfs_write_unlock_nested(inode->i_sb);
|
|
retval = dquot_alloc_space_nodirty(inode, quota_bytes);
|
|
reiserfs_write_lock_nested(inode->i_sb, depth);
|
|
if (retval) {
|
|
pathrelse(path);
|
|
return retval;
|
|
}
|
|
}
|
|
init_tb_struct(th, &s_ins_balance, th->t_super, path,
|
|
IH_SIZE + ih_item_len(ih));
|
|
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
|
|
s_ins_balance.key = key->on_disk_key;
|
|
#endif
|
|
/*
|
|
* DQUOT_* can schedule, must check to be sure calling
|
|
* fix_nodes is safe
|
|
*/
|
|
if (inode && fs_changed(fs_gen, inode->i_sb)) {
|
|
goto search_again;
|
|
}
|
|
|
|
while ((retval =
|
|
fix_nodes(M_INSERT, &s_ins_balance, ih,
|
|
body)) == REPEAT_SEARCH) {
|
|
search_again:
|
|
/* file system changed while we were in the fix_nodes */
|
|
PROC_INFO_INC(th->t_super, insert_item_restarted);
|
|
retval = search_item(th->t_super, key, path);
|
|
if (retval == IO_ERROR) {
|
|
retval = -EIO;
|
|
goto error_out;
|
|
}
|
|
if (retval == ITEM_FOUND) {
|
|
reiserfs_warning(th->t_super, "PAP-5760",
|
|
"key %K already exists in the tree",
|
|
key);
|
|
retval = -EEXIST;
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
/* make balancing after all resources will be collected at a time */
|
|
if (retval == CARRY_ON) {
|
|
do_balance(&s_ins_balance, ih, body, M_INSERT);
|
|
return 0;
|
|
}
|
|
|
|
retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
|
|
error_out:
|
|
/* also releases the path */
|
|
unfix_nodes(&s_ins_balance);
|
|
#ifdef REISERQUOTA_DEBUG
|
|
if (inode)
|
|
reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
|
|
"reiserquota insert_item(): freeing %u id=%u type=%c",
|
|
quota_bytes, inode->i_uid, head2type(ih));
|
|
#endif
|
|
if (inode) {
|
|
int depth = reiserfs_write_unlock_nested(inode->i_sb);
|
|
dquot_free_space_nodirty(inode, quota_bytes);
|
|
reiserfs_write_lock_nested(inode->i_sb, depth);
|
|
}
|
|
return retval;
|
|
}
|