mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
17fc7004a3
Disable support for device 8086:10E8. Currently the result of loading the driver with the device present causes system instability. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2034 lines
59 KiB
C
2034 lines
59 KiB
C
/*******************************************************************************
|
|
|
|
Intel(R) Gigabit Ethernet Linux driver
|
|
Copyright(c) 2007 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
/* ethtool support for igb */
|
|
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/ethtool.h>
|
|
|
|
#include "igb.h"
|
|
|
|
struct igb_stats {
|
|
char stat_string[ETH_GSTRING_LEN];
|
|
int sizeof_stat;
|
|
int stat_offset;
|
|
};
|
|
|
|
#define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
|
|
offsetof(struct igb_adapter, m)
|
|
static const struct igb_stats igb_gstrings_stats[] = {
|
|
{ "rx_packets", IGB_STAT(stats.gprc) },
|
|
{ "tx_packets", IGB_STAT(stats.gptc) },
|
|
{ "rx_bytes", IGB_STAT(stats.gorc) },
|
|
{ "tx_bytes", IGB_STAT(stats.gotc) },
|
|
{ "rx_broadcast", IGB_STAT(stats.bprc) },
|
|
{ "tx_broadcast", IGB_STAT(stats.bptc) },
|
|
{ "rx_multicast", IGB_STAT(stats.mprc) },
|
|
{ "tx_multicast", IGB_STAT(stats.mptc) },
|
|
{ "rx_errors", IGB_STAT(net_stats.rx_errors) },
|
|
{ "tx_errors", IGB_STAT(net_stats.tx_errors) },
|
|
{ "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
|
|
{ "multicast", IGB_STAT(stats.mprc) },
|
|
{ "collisions", IGB_STAT(stats.colc) },
|
|
{ "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
|
|
{ "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
|
|
{ "rx_crc_errors", IGB_STAT(stats.crcerrs) },
|
|
{ "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
|
|
{ "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
|
|
{ "rx_missed_errors", IGB_STAT(stats.mpc) },
|
|
{ "tx_aborted_errors", IGB_STAT(stats.ecol) },
|
|
{ "tx_carrier_errors", IGB_STAT(stats.tncrs) },
|
|
{ "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
|
|
{ "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
|
|
{ "tx_window_errors", IGB_STAT(stats.latecol) },
|
|
{ "tx_abort_late_coll", IGB_STAT(stats.latecol) },
|
|
{ "tx_deferred_ok", IGB_STAT(stats.dc) },
|
|
{ "tx_single_coll_ok", IGB_STAT(stats.scc) },
|
|
{ "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
|
|
{ "tx_timeout_count", IGB_STAT(tx_timeout_count) },
|
|
{ "tx_restart_queue", IGB_STAT(restart_queue) },
|
|
{ "rx_long_length_errors", IGB_STAT(stats.roc) },
|
|
{ "rx_short_length_errors", IGB_STAT(stats.ruc) },
|
|
{ "rx_align_errors", IGB_STAT(stats.algnerrc) },
|
|
{ "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
|
|
{ "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
|
|
{ "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
|
|
{ "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
|
|
{ "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
|
|
{ "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
|
|
{ "rx_long_byte_count", IGB_STAT(stats.gorc) },
|
|
{ "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
|
|
{ "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
|
|
{ "rx_header_split", IGB_STAT(rx_hdr_split) },
|
|
{ "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
|
|
{ "tx_smbus", IGB_STAT(stats.mgptc) },
|
|
{ "rx_smbus", IGB_STAT(stats.mgprc) },
|
|
{ "dropped_smbus", IGB_STAT(stats.mgpdc) },
|
|
#ifdef CONFIG_IGB_LRO
|
|
{ "lro_aggregated", IGB_STAT(lro_aggregated) },
|
|
{ "lro_flushed", IGB_STAT(lro_flushed) },
|
|
{ "lro_no_desc", IGB_STAT(lro_no_desc) },
|
|
#endif
|
|
};
|
|
|
|
#define IGB_QUEUE_STATS_LEN \
|
|
((((struct igb_adapter *)netdev->priv)->num_rx_queues + \
|
|
((struct igb_adapter *)netdev->priv)->num_tx_queues) * \
|
|
(sizeof(struct igb_queue_stats) / sizeof(u64)))
|
|
#define IGB_GLOBAL_STATS_LEN \
|
|
sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
|
|
#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
|
|
static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
|
|
"Register test (offline)", "Eeprom test (offline)",
|
|
"Interrupt test (offline)", "Loopback test (offline)",
|
|
"Link test (on/offline)"
|
|
};
|
|
#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
|
|
|
|
static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
|
|
ecmd->supported = (SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full |
|
|
SUPPORTED_1000baseT_Full|
|
|
SUPPORTED_Autoneg |
|
|
SUPPORTED_TP);
|
|
ecmd->advertising = ADVERTISED_TP;
|
|
|
|
if (hw->mac.autoneg == 1) {
|
|
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
/* the e1000 autoneg seems to match ethtool nicely */
|
|
ecmd->advertising |= hw->phy.autoneg_advertised;
|
|
}
|
|
|
|
ecmd->port = PORT_TP;
|
|
ecmd->phy_address = hw->phy.addr;
|
|
} else {
|
|
ecmd->supported = (SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_FIBRE |
|
|
SUPPORTED_Autoneg);
|
|
|
|
ecmd->advertising = (ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_FIBRE |
|
|
ADVERTISED_Autoneg);
|
|
|
|
ecmd->port = PORT_FIBRE;
|
|
}
|
|
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
|
|
|
|
adapter->hw.mac.ops.get_speed_and_duplex(hw,
|
|
&adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
ecmd->speed = adapter->link_speed;
|
|
|
|
/* unfortunately FULL_DUPLEX != DUPLEX_FULL
|
|
* and HALF_DUPLEX != DUPLEX_HALF */
|
|
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ecmd->duplex = DUPLEX_FULL;
|
|
else
|
|
ecmd->duplex = DUPLEX_HALF;
|
|
} else {
|
|
ecmd->speed = -1;
|
|
ecmd->duplex = -1;
|
|
}
|
|
|
|
ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
|
|
hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
|
|
return 0;
|
|
}
|
|
|
|
static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* When SoL/IDER sessions are active, autoneg/speed/duplex
|
|
* cannot be changed */
|
|
if (igb_check_reset_block(hw)) {
|
|
dev_err(&adapter->pdev->dev, "Cannot change link "
|
|
"characteristics when SoL/IDER is active.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
|
|
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
hw->mac.autoneg = 1;
|
|
if (hw->phy.media_type == e1000_media_type_fiber)
|
|
hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_FIBRE |
|
|
ADVERTISED_Autoneg;
|
|
else
|
|
hw->phy.autoneg_advertised = ecmd->advertising |
|
|
ADVERTISED_TP |
|
|
ADVERTISED_Autoneg;
|
|
ecmd->advertising = hw->phy.autoneg_advertised;
|
|
} else
|
|
if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reset the link */
|
|
|
|
if (netif_running(adapter->netdev)) {
|
|
igb_down(adapter);
|
|
igb_up(adapter);
|
|
} else
|
|
igb_reset(adapter);
|
|
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
return 0;
|
|
}
|
|
|
|
static void igb_get_pauseparam(struct net_device *netdev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
pause->autoneg =
|
|
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
|
|
|
|
if (hw->fc.type == e1000_fc_rx_pause)
|
|
pause->rx_pause = 1;
|
|
else if (hw->fc.type == e1000_fc_tx_pause)
|
|
pause->tx_pause = 1;
|
|
else if (hw->fc.type == e1000_fc_full) {
|
|
pause->rx_pause = 1;
|
|
pause->tx_pause = 1;
|
|
}
|
|
}
|
|
|
|
static int igb_set_pauseparam(struct net_device *netdev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int retval = 0;
|
|
|
|
adapter->fc_autoneg = pause->autoneg;
|
|
|
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
|
|
if (pause->rx_pause && pause->tx_pause)
|
|
hw->fc.type = e1000_fc_full;
|
|
else if (pause->rx_pause && !pause->tx_pause)
|
|
hw->fc.type = e1000_fc_rx_pause;
|
|
else if (!pause->rx_pause && pause->tx_pause)
|
|
hw->fc.type = e1000_fc_tx_pause;
|
|
else if (!pause->rx_pause && !pause->tx_pause)
|
|
hw->fc.type = e1000_fc_none;
|
|
|
|
hw->fc.original_type = hw->fc.type;
|
|
|
|
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
|
|
if (netif_running(adapter->netdev)) {
|
|
igb_down(adapter);
|
|
igb_up(adapter);
|
|
} else
|
|
igb_reset(adapter);
|
|
} else
|
|
retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
|
|
igb_setup_link(hw) : igb_force_mac_fc(hw));
|
|
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
return retval;
|
|
}
|
|
|
|
static u32 igb_get_rx_csum(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->rx_csum;
|
|
}
|
|
|
|
static int igb_set_rx_csum(struct net_device *netdev, u32 data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
adapter->rx_csum = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 igb_get_tx_csum(struct net_device *netdev)
|
|
{
|
|
return (netdev->features & NETIF_F_HW_CSUM) != 0;
|
|
}
|
|
|
|
static int igb_set_tx_csum(struct net_device *netdev, u32 data)
|
|
{
|
|
if (data)
|
|
netdev->features |= NETIF_F_HW_CSUM;
|
|
else
|
|
netdev->features &= ~NETIF_F_HW_CSUM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_set_tso(struct net_device *netdev, u32 data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if (data)
|
|
netdev->features |= NETIF_F_TSO;
|
|
else
|
|
netdev->features &= ~NETIF_F_TSO;
|
|
|
|
if (data)
|
|
netdev->features |= NETIF_F_TSO6;
|
|
else
|
|
netdev->features &= ~NETIF_F_TSO6;
|
|
|
|
dev_info(&adapter->pdev->dev, "TSO is %s\n",
|
|
data ? "Enabled" : "Disabled");
|
|
return 0;
|
|
}
|
|
|
|
static u32 igb_get_msglevel(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->msg_enable;
|
|
}
|
|
|
|
static void igb_set_msglevel(struct net_device *netdev, u32 data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
adapter->msg_enable = data;
|
|
}
|
|
|
|
static int igb_get_regs_len(struct net_device *netdev)
|
|
{
|
|
#define IGB_REGS_LEN 551
|
|
return IGB_REGS_LEN * sizeof(u32);
|
|
}
|
|
|
|
static void igb_get_regs(struct net_device *netdev,
|
|
struct ethtool_regs *regs, void *p)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 *regs_buff = p;
|
|
u8 i;
|
|
|
|
memset(p, 0, IGB_REGS_LEN * sizeof(u32));
|
|
|
|
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
|
|
|
|
/* General Registers */
|
|
regs_buff[0] = rd32(E1000_CTRL);
|
|
regs_buff[1] = rd32(E1000_STATUS);
|
|
regs_buff[2] = rd32(E1000_CTRL_EXT);
|
|
regs_buff[3] = rd32(E1000_MDIC);
|
|
regs_buff[4] = rd32(E1000_SCTL);
|
|
regs_buff[5] = rd32(E1000_CONNSW);
|
|
regs_buff[6] = rd32(E1000_VET);
|
|
regs_buff[7] = rd32(E1000_LEDCTL);
|
|
regs_buff[8] = rd32(E1000_PBA);
|
|
regs_buff[9] = rd32(E1000_PBS);
|
|
regs_buff[10] = rd32(E1000_FRTIMER);
|
|
regs_buff[11] = rd32(E1000_TCPTIMER);
|
|
|
|
/* NVM Register */
|
|
regs_buff[12] = rd32(E1000_EECD);
|
|
|
|
/* Interrupt */
|
|
/* Reading EICS for EICR because they read the
|
|
* same but EICS does not clear on read */
|
|
regs_buff[13] = rd32(E1000_EICS);
|
|
regs_buff[14] = rd32(E1000_EICS);
|
|
regs_buff[15] = rd32(E1000_EIMS);
|
|
regs_buff[16] = rd32(E1000_EIMC);
|
|
regs_buff[17] = rd32(E1000_EIAC);
|
|
regs_buff[18] = rd32(E1000_EIAM);
|
|
/* Reading ICS for ICR because they read the
|
|
* same but ICS does not clear on read */
|
|
regs_buff[19] = rd32(E1000_ICS);
|
|
regs_buff[20] = rd32(E1000_ICS);
|
|
regs_buff[21] = rd32(E1000_IMS);
|
|
regs_buff[22] = rd32(E1000_IMC);
|
|
regs_buff[23] = rd32(E1000_IAC);
|
|
regs_buff[24] = rd32(E1000_IAM);
|
|
regs_buff[25] = rd32(E1000_IMIRVP);
|
|
|
|
/* Flow Control */
|
|
regs_buff[26] = rd32(E1000_FCAL);
|
|
regs_buff[27] = rd32(E1000_FCAH);
|
|
regs_buff[28] = rd32(E1000_FCTTV);
|
|
regs_buff[29] = rd32(E1000_FCRTL);
|
|
regs_buff[30] = rd32(E1000_FCRTH);
|
|
regs_buff[31] = rd32(E1000_FCRTV);
|
|
|
|
/* Receive */
|
|
regs_buff[32] = rd32(E1000_RCTL);
|
|
regs_buff[33] = rd32(E1000_RXCSUM);
|
|
regs_buff[34] = rd32(E1000_RLPML);
|
|
regs_buff[35] = rd32(E1000_RFCTL);
|
|
regs_buff[36] = rd32(E1000_MRQC);
|
|
regs_buff[37] = rd32(E1000_VMD_CTL);
|
|
|
|
/* Transmit */
|
|
regs_buff[38] = rd32(E1000_TCTL);
|
|
regs_buff[39] = rd32(E1000_TCTL_EXT);
|
|
regs_buff[40] = rd32(E1000_TIPG);
|
|
regs_buff[41] = rd32(E1000_DTXCTL);
|
|
|
|
/* Wake Up */
|
|
regs_buff[42] = rd32(E1000_WUC);
|
|
regs_buff[43] = rd32(E1000_WUFC);
|
|
regs_buff[44] = rd32(E1000_WUS);
|
|
regs_buff[45] = rd32(E1000_IPAV);
|
|
regs_buff[46] = rd32(E1000_WUPL);
|
|
|
|
/* MAC */
|
|
regs_buff[47] = rd32(E1000_PCS_CFG0);
|
|
regs_buff[48] = rd32(E1000_PCS_LCTL);
|
|
regs_buff[49] = rd32(E1000_PCS_LSTAT);
|
|
regs_buff[50] = rd32(E1000_PCS_ANADV);
|
|
regs_buff[51] = rd32(E1000_PCS_LPAB);
|
|
regs_buff[52] = rd32(E1000_PCS_NPTX);
|
|
regs_buff[53] = rd32(E1000_PCS_LPABNP);
|
|
|
|
/* Statistics */
|
|
regs_buff[54] = adapter->stats.crcerrs;
|
|
regs_buff[55] = adapter->stats.algnerrc;
|
|
regs_buff[56] = adapter->stats.symerrs;
|
|
regs_buff[57] = adapter->stats.rxerrc;
|
|
regs_buff[58] = adapter->stats.mpc;
|
|
regs_buff[59] = adapter->stats.scc;
|
|
regs_buff[60] = adapter->stats.ecol;
|
|
regs_buff[61] = adapter->stats.mcc;
|
|
regs_buff[62] = adapter->stats.latecol;
|
|
regs_buff[63] = adapter->stats.colc;
|
|
regs_buff[64] = adapter->stats.dc;
|
|
regs_buff[65] = adapter->stats.tncrs;
|
|
regs_buff[66] = adapter->stats.sec;
|
|
regs_buff[67] = adapter->stats.htdpmc;
|
|
regs_buff[68] = adapter->stats.rlec;
|
|
regs_buff[69] = adapter->stats.xonrxc;
|
|
regs_buff[70] = adapter->stats.xontxc;
|
|
regs_buff[71] = adapter->stats.xoffrxc;
|
|
regs_buff[72] = adapter->stats.xofftxc;
|
|
regs_buff[73] = adapter->stats.fcruc;
|
|
regs_buff[74] = adapter->stats.prc64;
|
|
regs_buff[75] = adapter->stats.prc127;
|
|
regs_buff[76] = adapter->stats.prc255;
|
|
regs_buff[77] = adapter->stats.prc511;
|
|
regs_buff[78] = adapter->stats.prc1023;
|
|
regs_buff[79] = adapter->stats.prc1522;
|
|
regs_buff[80] = adapter->stats.gprc;
|
|
regs_buff[81] = adapter->stats.bprc;
|
|
regs_buff[82] = adapter->stats.mprc;
|
|
regs_buff[83] = adapter->stats.gptc;
|
|
regs_buff[84] = adapter->stats.gorc;
|
|
regs_buff[86] = adapter->stats.gotc;
|
|
regs_buff[88] = adapter->stats.rnbc;
|
|
regs_buff[89] = adapter->stats.ruc;
|
|
regs_buff[90] = adapter->stats.rfc;
|
|
regs_buff[91] = adapter->stats.roc;
|
|
regs_buff[92] = adapter->stats.rjc;
|
|
regs_buff[93] = adapter->stats.mgprc;
|
|
regs_buff[94] = adapter->stats.mgpdc;
|
|
regs_buff[95] = adapter->stats.mgptc;
|
|
regs_buff[96] = adapter->stats.tor;
|
|
regs_buff[98] = adapter->stats.tot;
|
|
regs_buff[100] = adapter->stats.tpr;
|
|
regs_buff[101] = adapter->stats.tpt;
|
|
regs_buff[102] = adapter->stats.ptc64;
|
|
regs_buff[103] = adapter->stats.ptc127;
|
|
regs_buff[104] = adapter->stats.ptc255;
|
|
regs_buff[105] = adapter->stats.ptc511;
|
|
regs_buff[106] = adapter->stats.ptc1023;
|
|
regs_buff[107] = adapter->stats.ptc1522;
|
|
regs_buff[108] = adapter->stats.mptc;
|
|
regs_buff[109] = adapter->stats.bptc;
|
|
regs_buff[110] = adapter->stats.tsctc;
|
|
regs_buff[111] = adapter->stats.iac;
|
|
regs_buff[112] = adapter->stats.rpthc;
|
|
regs_buff[113] = adapter->stats.hgptc;
|
|
regs_buff[114] = adapter->stats.hgorc;
|
|
regs_buff[116] = adapter->stats.hgotc;
|
|
regs_buff[118] = adapter->stats.lenerrs;
|
|
regs_buff[119] = adapter->stats.scvpc;
|
|
regs_buff[120] = adapter->stats.hrmpc;
|
|
|
|
/* These should probably be added to e1000_regs.h instead */
|
|
#define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
|
|
#define E1000_RAL(_i) (0x05400 + ((_i) * 8))
|
|
#define E1000_RAH(_i) (0x05404 + ((_i) * 8))
|
|
#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
|
|
#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
|
|
#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
|
|
#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
|
|
#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
|
|
#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
|
|
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[129 + i] = rd32(E1000_RDBAL(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[133 + i] = rd32(E1000_RDBAH(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[137 + i] = rd32(E1000_RDLEN(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[141 + i] = rd32(E1000_RDH(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[145 + i] = rd32(E1000_RDT(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
|
|
|
|
for (i = 0; i < 10; i++)
|
|
regs_buff[153 + i] = rd32(E1000_EITR(i));
|
|
for (i = 0; i < 8; i++)
|
|
regs_buff[163 + i] = rd32(E1000_IMIR(i));
|
|
for (i = 0; i < 8; i++)
|
|
regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
|
|
for (i = 0; i < 16; i++)
|
|
regs_buff[179 + i] = rd32(E1000_RAL(i));
|
|
for (i = 0; i < 16; i++)
|
|
regs_buff[195 + i] = rd32(E1000_RAH(i));
|
|
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[211 + i] = rd32(E1000_TDBAL(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[215 + i] = rd32(E1000_TDBAH(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[219 + i] = rd32(E1000_TDLEN(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[223 + i] = rd32(E1000_TDH(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[227 + i] = rd32(E1000_TDT(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
|
|
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
|
|
for (i = 0; i < 32; i++)
|
|
regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
|
|
for (i = 0; i < 128; i++)
|
|
regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
|
|
for (i = 0; i < 128; i++)
|
|
regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
|
|
for (i = 0; i < 4; i++)
|
|
regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
|
|
|
|
regs_buff[547] = rd32(E1000_TDFH);
|
|
regs_buff[548] = rd32(E1000_TDFT);
|
|
regs_buff[549] = rd32(E1000_TDFHS);
|
|
regs_buff[550] = rd32(E1000_TDFPC);
|
|
|
|
}
|
|
|
|
static int igb_get_eeprom_len(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->hw.nvm.word_size * 2;
|
|
}
|
|
|
|
static int igb_get_eeprom(struct net_device *netdev,
|
|
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 *eeprom_buff;
|
|
int first_word, last_word;
|
|
int ret_val = 0;
|
|
u16 i;
|
|
|
|
if (eeprom->len == 0)
|
|
return -EINVAL;
|
|
|
|
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
|
|
eeprom_buff = kmalloc(sizeof(u16) *
|
|
(last_word - first_word + 1), GFP_KERNEL);
|
|
if (!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
if (hw->nvm.type == e1000_nvm_eeprom_spi)
|
|
ret_val = hw->nvm.ops.read_nvm(hw, first_word,
|
|
last_word - first_word + 1,
|
|
eeprom_buff);
|
|
else {
|
|
for (i = 0; i < last_word - first_word + 1; i++) {
|
|
ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
|
|
&eeprom_buff[i]);
|
|
if (ret_val)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
|
|
eeprom->len);
|
|
kfree(eeprom_buff);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static int igb_set_eeprom(struct net_device *netdev,
|
|
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u16 *eeprom_buff;
|
|
void *ptr;
|
|
int max_len, first_word, last_word, ret_val = 0;
|
|
u16 i;
|
|
|
|
if (eeprom->len == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
|
|
return -EFAULT;
|
|
|
|
max_len = hw->nvm.word_size * 2;
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
|
|
if (!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
ptr = (void *)eeprom_buff;
|
|
|
|
if (eeprom->offset & 1) {
|
|
/* need read/modify/write of first changed EEPROM word */
|
|
/* only the second byte of the word is being modified */
|
|
ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
|
|
&eeprom_buff[0]);
|
|
ptr++;
|
|
}
|
|
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
|
|
/* need read/modify/write of last changed EEPROM word */
|
|
/* only the first byte of the word is being modified */
|
|
ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
|
|
&eeprom_buff[last_word - first_word]);
|
|
}
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
memcpy(ptr, bytes, eeprom->len);
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
|
|
|
|
ret_val = hw->nvm.ops.write_nvm(hw, first_word,
|
|
last_word - first_word + 1, eeprom_buff);
|
|
|
|
/* Update the checksum over the first part of the EEPROM if needed
|
|
* and flush shadow RAM for 82573 controllers */
|
|
if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
|
|
igb_update_nvm_checksum(hw);
|
|
|
|
kfree(eeprom_buff);
|
|
return ret_val;
|
|
}
|
|
|
|
static void igb_get_drvinfo(struct net_device *netdev,
|
|
struct ethtool_drvinfo *drvinfo)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
char firmware_version[32];
|
|
u16 eeprom_data;
|
|
|
|
strncpy(drvinfo->driver, igb_driver_name, 32);
|
|
strncpy(drvinfo->version, igb_driver_version, 32);
|
|
|
|
/* EEPROM image version # is reported as firmware version # for
|
|
* 82575 controllers */
|
|
adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
|
|
sprintf(firmware_version, "%d.%d-%d",
|
|
(eeprom_data & 0xF000) >> 12,
|
|
(eeprom_data & 0x0FF0) >> 4,
|
|
eeprom_data & 0x000F);
|
|
|
|
strncpy(drvinfo->fw_version, firmware_version, 32);
|
|
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
|
|
drvinfo->n_stats = IGB_STATS_LEN;
|
|
drvinfo->testinfo_len = IGB_TEST_LEN;
|
|
drvinfo->regdump_len = igb_get_regs_len(netdev);
|
|
drvinfo->eedump_len = igb_get_eeprom_len(netdev);
|
|
}
|
|
|
|
static void igb_get_ringparam(struct net_device *netdev,
|
|
struct ethtool_ringparam *ring)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct igb_ring *tx_ring = adapter->tx_ring;
|
|
struct igb_ring *rx_ring = adapter->rx_ring;
|
|
|
|
ring->rx_max_pending = IGB_MAX_RXD;
|
|
ring->tx_max_pending = IGB_MAX_TXD;
|
|
ring->rx_mini_max_pending = 0;
|
|
ring->rx_jumbo_max_pending = 0;
|
|
ring->rx_pending = rx_ring->count;
|
|
ring->tx_pending = tx_ring->count;
|
|
ring->rx_mini_pending = 0;
|
|
ring->rx_jumbo_pending = 0;
|
|
}
|
|
|
|
static int igb_set_ringparam(struct net_device *netdev,
|
|
struct ethtool_ringparam *ring)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct igb_buffer *old_buf;
|
|
struct igb_buffer *old_rx_buf;
|
|
void *old_desc;
|
|
int i, err;
|
|
u32 new_rx_count, new_tx_count, old_size;
|
|
dma_addr_t old_dma;
|
|
|
|
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
|
return -EINVAL;
|
|
|
|
new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
|
|
new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
|
|
new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
|
|
|
|
new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
|
|
new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
|
|
new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
|
|
|
|
if ((new_tx_count == adapter->tx_ring->count) &&
|
|
(new_rx_count == adapter->rx_ring->count)) {
|
|
/* nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
|
|
msleep(1);
|
|
|
|
if (netif_running(adapter->netdev))
|
|
igb_down(adapter);
|
|
|
|
/*
|
|
* We can't just free everything and then setup again,
|
|
* because the ISRs in MSI-X mode get passed pointers
|
|
* to the tx and rx ring structs.
|
|
*/
|
|
if (new_tx_count != adapter->tx_ring->count) {
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
/* Save existing descriptor ring */
|
|
old_buf = adapter->tx_ring[i].buffer_info;
|
|
old_desc = adapter->tx_ring[i].desc;
|
|
old_size = adapter->tx_ring[i].size;
|
|
old_dma = adapter->tx_ring[i].dma;
|
|
/* Try to allocate a new one */
|
|
adapter->tx_ring[i].buffer_info = NULL;
|
|
adapter->tx_ring[i].desc = NULL;
|
|
adapter->tx_ring[i].count = new_tx_count;
|
|
err = igb_setup_tx_resources(adapter,
|
|
&adapter->tx_ring[i]);
|
|
if (err) {
|
|
/* Restore the old one so at least
|
|
the adapter still works, even if
|
|
we failed the request */
|
|
adapter->tx_ring[i].buffer_info = old_buf;
|
|
adapter->tx_ring[i].desc = old_desc;
|
|
adapter->tx_ring[i].size = old_size;
|
|
adapter->tx_ring[i].dma = old_dma;
|
|
goto err_setup;
|
|
}
|
|
/* Free the old buffer manually */
|
|
vfree(old_buf);
|
|
pci_free_consistent(adapter->pdev, old_size,
|
|
old_desc, old_dma);
|
|
}
|
|
}
|
|
|
|
if (new_rx_count != adapter->rx_ring->count) {
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
|
|
old_rx_buf = adapter->rx_ring[i].buffer_info;
|
|
old_desc = adapter->rx_ring[i].desc;
|
|
old_size = adapter->rx_ring[i].size;
|
|
old_dma = adapter->rx_ring[i].dma;
|
|
|
|
adapter->rx_ring[i].buffer_info = NULL;
|
|
adapter->rx_ring[i].desc = NULL;
|
|
adapter->rx_ring[i].dma = 0;
|
|
adapter->rx_ring[i].count = new_rx_count;
|
|
err = igb_setup_rx_resources(adapter,
|
|
&adapter->rx_ring[i]);
|
|
if (err) {
|
|
adapter->rx_ring[i].buffer_info = old_rx_buf;
|
|
adapter->rx_ring[i].desc = old_desc;
|
|
adapter->rx_ring[i].size = old_size;
|
|
adapter->rx_ring[i].dma = old_dma;
|
|
goto err_setup;
|
|
}
|
|
|
|
vfree(old_rx_buf);
|
|
pci_free_consistent(adapter->pdev, old_size, old_desc,
|
|
old_dma);
|
|
}
|
|
}
|
|
|
|
err = 0;
|
|
err_setup:
|
|
if (netif_running(adapter->netdev))
|
|
igb_up(adapter);
|
|
|
|
clear_bit(__IGB_RESETTING, &adapter->state);
|
|
return err;
|
|
}
|
|
|
|
/* ethtool register test data */
|
|
struct igb_reg_test {
|
|
u16 reg;
|
|
u16 reg_offset;
|
|
u16 array_len;
|
|
u16 test_type;
|
|
u32 mask;
|
|
u32 write;
|
|
};
|
|
|
|
/* In the hardware, registers are laid out either singly, in arrays
|
|
* spaced 0x100 bytes apart, or in contiguous tables. We assume
|
|
* most tests take place on arrays or single registers (handled
|
|
* as a single-element array) and special-case the tables.
|
|
* Table tests are always pattern tests.
|
|
*
|
|
* We also make provision for some required setup steps by specifying
|
|
* registers to be written without any read-back testing.
|
|
*/
|
|
|
|
#define PATTERN_TEST 1
|
|
#define SET_READ_TEST 2
|
|
#define WRITE_NO_TEST 3
|
|
#define TABLE32_TEST 4
|
|
#define TABLE64_TEST_LO 5
|
|
#define TABLE64_TEST_HI 6
|
|
|
|
/* 82576 reg test */
|
|
static struct igb_reg_test reg_test_82576[] = {
|
|
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
|
|
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
|
|
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
|
|
{ E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
|
|
/* Enable all four RX queues before testing. */
|
|
{ E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
|
|
/* RDH is read-only for 82576, only test RDT. */
|
|
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
|
|
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
|
|
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
|
|
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
|
|
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
|
|
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
|
|
{ E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
|
|
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
|
|
{ E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
|
|
{ E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* 82575 register test */
|
|
static struct igb_reg_test reg_test_82575[] = {
|
|
{ E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
|
|
{ E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
|
|
{ E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
|
|
/* Enable all four RX queues before testing. */
|
|
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
|
|
/* RDH is read-only for 82575, only test RDT. */
|
|
{ E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
|
|
{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
|
|
{ E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
|
|
{ E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
|
|
{ E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
|
|
{ E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
|
|
{ E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
|
|
{ E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
|
|
{ E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
|
|
{ E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
|
|
{ E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
|
|
{ E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
|
|
int reg, u32 mask, u32 write)
|
|
{
|
|
u32 pat, val;
|
|
u32 _test[] =
|
|
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
|
|
for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
|
|
writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
|
|
val = readl(adapter->hw.hw_addr + reg);
|
|
if (val != (_test[pat] & write & mask)) {
|
|
dev_err(&adapter->pdev->dev, "pattern test reg %04X "
|
|
"failed: got 0x%08X expected 0x%08X\n",
|
|
reg, val, (_test[pat] & write & mask));
|
|
*data = reg;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
|
|
int reg, u32 mask, u32 write)
|
|
{
|
|
u32 val;
|
|
writel((write & mask), (adapter->hw.hw_addr + reg));
|
|
val = readl(adapter->hw.hw_addr + reg);
|
|
if ((write & mask) != (val & mask)) {
|
|
dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
|
|
" got 0x%08X expected 0x%08X\n", reg,
|
|
(val & mask), (write & mask));
|
|
*data = reg;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define REG_PATTERN_TEST(reg, mask, write) \
|
|
do { \
|
|
if (reg_pattern_test(adapter, data, reg, mask, write)) \
|
|
return 1; \
|
|
} while (0)
|
|
|
|
#define REG_SET_AND_CHECK(reg, mask, write) \
|
|
do { \
|
|
if (reg_set_and_check(adapter, data, reg, mask, write)) \
|
|
return 1; \
|
|
} while (0)
|
|
|
|
static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_reg_test *test;
|
|
u32 value, before, after;
|
|
u32 i, toggle;
|
|
|
|
toggle = 0x7FFFF3FF;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
test = reg_test_82576;
|
|
break;
|
|
default:
|
|
test = reg_test_82575;
|
|
break;
|
|
}
|
|
|
|
/* Because the status register is such a special case,
|
|
* we handle it separately from the rest of the register
|
|
* tests. Some bits are read-only, some toggle, and some
|
|
* are writable on newer MACs.
|
|
*/
|
|
before = rd32(E1000_STATUS);
|
|
value = (rd32(E1000_STATUS) & toggle);
|
|
wr32(E1000_STATUS, toggle);
|
|
after = rd32(E1000_STATUS) & toggle;
|
|
if (value != after) {
|
|
dev_err(&adapter->pdev->dev, "failed STATUS register test "
|
|
"got: 0x%08X expected: 0x%08X\n", after, value);
|
|
*data = 1;
|
|
return 1;
|
|
}
|
|
/* restore previous status */
|
|
wr32(E1000_STATUS, before);
|
|
|
|
/* Perform the remainder of the register test, looping through
|
|
* the test table until we either fail or reach the null entry.
|
|
*/
|
|
while (test->reg) {
|
|
for (i = 0; i < test->array_len; i++) {
|
|
switch (test->test_type) {
|
|
case PATTERN_TEST:
|
|
REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
|
|
test->mask,
|
|
test->write);
|
|
break;
|
|
case SET_READ_TEST:
|
|
REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
|
|
test->mask,
|
|
test->write);
|
|
break;
|
|
case WRITE_NO_TEST:
|
|
writel(test->write,
|
|
(adapter->hw.hw_addr + test->reg)
|
|
+ (i * test->reg_offset));
|
|
break;
|
|
case TABLE32_TEST:
|
|
REG_PATTERN_TEST(test->reg + (i * 4),
|
|
test->mask,
|
|
test->write);
|
|
break;
|
|
case TABLE64_TEST_LO:
|
|
REG_PATTERN_TEST(test->reg + (i * 8),
|
|
test->mask,
|
|
test->write);
|
|
break;
|
|
case TABLE64_TEST_HI:
|
|
REG_PATTERN_TEST((test->reg + 4) + (i * 8),
|
|
test->mask,
|
|
test->write);
|
|
break;
|
|
}
|
|
}
|
|
test++;
|
|
}
|
|
|
|
*data = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
|
|
{
|
|
u16 temp;
|
|
u16 checksum = 0;
|
|
u16 i;
|
|
|
|
*data = 0;
|
|
/* Read and add up the contents of the EEPROM */
|
|
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
|
|
if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
|
|
< 0) {
|
|
*data = 1;
|
|
break;
|
|
}
|
|
checksum += temp;
|
|
}
|
|
|
|
/* If Checksum is not Correct return error else test passed */
|
|
if ((checksum != (u16) NVM_SUM) && !(*data))
|
|
*data = 2;
|
|
|
|
return *data;
|
|
}
|
|
|
|
static irqreturn_t igb_test_intr(int irq, void *data)
|
|
{
|
|
struct net_device *netdev = (struct net_device *) data;
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
adapter->test_icr |= rd32(E1000_ICR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
u32 mask, i = 0, shared_int = true;
|
|
u32 irq = adapter->pdev->irq;
|
|
|
|
*data = 0;
|
|
|
|
/* Hook up test interrupt handler just for this test */
|
|
if (adapter->msix_entries) {
|
|
/* NOTE: we don't test MSI-X interrupts here, yet */
|
|
return 0;
|
|
} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
|
|
shared_int = false;
|
|
if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
|
|
*data = 1;
|
|
return -1;
|
|
}
|
|
} else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
|
|
netdev->name, netdev)) {
|
|
shared_int = false;
|
|
} else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
|
|
netdev->name, netdev)) {
|
|
*data = 1;
|
|
return -1;
|
|
}
|
|
dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
|
|
(shared_int ? "shared" : "unshared"));
|
|
|
|
/* Disable all the interrupts */
|
|
wr32(E1000_IMC, 0xFFFFFFFF);
|
|
msleep(10);
|
|
|
|
/* Test each interrupt */
|
|
for (; i < 10; i++) {
|
|
/* Interrupt to test */
|
|
mask = 1 << i;
|
|
|
|
if (!shared_int) {
|
|
/* Disable the interrupt to be reported in
|
|
* the cause register and then force the same
|
|
* interrupt and see if one gets posted. If
|
|
* an interrupt was posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
wr32(E1000_IMC, ~mask & 0x00007FFF);
|
|
wr32(E1000_ICS, ~mask & 0x00007FFF);
|
|
msleep(10);
|
|
|
|
if (adapter->test_icr & mask) {
|
|
*data = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Enable the interrupt to be reported in
|
|
* the cause register and then force the same
|
|
* interrupt and see if one gets posted. If
|
|
* an interrupt was not posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
wr32(E1000_IMS, mask);
|
|
wr32(E1000_ICS, mask);
|
|
msleep(10);
|
|
|
|
if (!(adapter->test_icr & mask)) {
|
|
*data = 4;
|
|
break;
|
|
}
|
|
|
|
if (!shared_int) {
|
|
/* Disable the other interrupts to be reported in
|
|
* the cause register and then force the other
|
|
* interrupts and see if any get posted. If
|
|
* an interrupt was posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
wr32(E1000_IMC, ~mask & 0x00007FFF);
|
|
wr32(E1000_ICS, ~mask & 0x00007FFF);
|
|
msleep(10);
|
|
|
|
if (adapter->test_icr) {
|
|
*data = 5;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable all the interrupts */
|
|
wr32(E1000_IMC, 0xFFFFFFFF);
|
|
msleep(10);
|
|
|
|
/* Unhook test interrupt handler */
|
|
free_irq(irq, netdev);
|
|
|
|
return *data;
|
|
}
|
|
|
|
static void igb_free_desc_rings(struct igb_adapter *adapter)
|
|
{
|
|
struct igb_ring *tx_ring = &adapter->test_tx_ring;
|
|
struct igb_ring *rx_ring = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i;
|
|
|
|
if (tx_ring->desc && tx_ring->buffer_info) {
|
|
for (i = 0; i < tx_ring->count; i++) {
|
|
struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
|
|
if (buf->dma)
|
|
pci_unmap_single(pdev, buf->dma, buf->length,
|
|
PCI_DMA_TODEVICE);
|
|
if (buf->skb)
|
|
dev_kfree_skb(buf->skb);
|
|
}
|
|
}
|
|
|
|
if (rx_ring->desc && rx_ring->buffer_info) {
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
|
|
if (buf->dma)
|
|
pci_unmap_single(pdev, buf->dma,
|
|
IGB_RXBUFFER_2048,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (buf->skb)
|
|
dev_kfree_skb(buf->skb);
|
|
}
|
|
}
|
|
|
|
if (tx_ring->desc) {
|
|
pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
|
|
tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
if (rx_ring->desc) {
|
|
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
|
|
rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
|
}
|
|
|
|
kfree(tx_ring->buffer_info);
|
|
tx_ring->buffer_info = NULL;
|
|
kfree(rx_ring->buffer_info);
|
|
rx_ring->buffer_info = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
static int igb_setup_desc_rings(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_ring *tx_ring = &adapter->test_tx_ring;
|
|
struct igb_ring *rx_ring = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u32 rctl;
|
|
int i, ret_val;
|
|
|
|
/* Setup Tx descriptor ring and Tx buffers */
|
|
|
|
if (!tx_ring->count)
|
|
tx_ring->count = IGB_DEFAULT_TXD;
|
|
|
|
tx_ring->buffer_info = kcalloc(tx_ring->count,
|
|
sizeof(struct igb_buffer),
|
|
GFP_KERNEL);
|
|
if (!tx_ring->buffer_info) {
|
|
ret_val = 1;
|
|
goto err_nomem;
|
|
}
|
|
|
|
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
|
|
&tx_ring->dma);
|
|
if (!tx_ring->desc) {
|
|
ret_val = 2;
|
|
goto err_nomem;
|
|
}
|
|
tx_ring->next_to_use = tx_ring->next_to_clean = 0;
|
|
|
|
wr32(E1000_TDBAL(0),
|
|
((u64) tx_ring->dma & 0x00000000FFFFFFFF));
|
|
wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
|
|
wr32(E1000_TDLEN(0),
|
|
tx_ring->count * sizeof(struct e1000_tx_desc));
|
|
wr32(E1000_TDH(0), 0);
|
|
wr32(E1000_TDT(0), 0);
|
|
wr32(E1000_TCTL,
|
|
E1000_TCTL_PSP | E1000_TCTL_EN |
|
|
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
|
|
E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
|
|
|
for (i = 0; i < tx_ring->count; i++) {
|
|
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
|
|
struct sk_buff *skb;
|
|
unsigned int size = 1024;
|
|
|
|
skb = alloc_skb(size, GFP_KERNEL);
|
|
if (!skb) {
|
|
ret_val = 3;
|
|
goto err_nomem;
|
|
}
|
|
skb_put(skb, size);
|
|
tx_ring->buffer_info[i].skb = skb;
|
|
tx_ring->buffer_info[i].length = skb->len;
|
|
tx_ring->buffer_info[i].dma =
|
|
pci_map_single(pdev, skb->data, skb->len,
|
|
PCI_DMA_TODEVICE);
|
|
tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
|
|
tx_desc->lower.data = cpu_to_le32(skb->len);
|
|
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
|
|
E1000_TXD_CMD_IFCS |
|
|
E1000_TXD_CMD_RS);
|
|
tx_desc->upper.data = 0;
|
|
}
|
|
|
|
/* Setup Rx descriptor ring and Rx buffers */
|
|
|
|
if (!rx_ring->count)
|
|
rx_ring->count = IGB_DEFAULT_RXD;
|
|
|
|
rx_ring->buffer_info = kcalloc(rx_ring->count,
|
|
sizeof(struct igb_buffer),
|
|
GFP_KERNEL);
|
|
if (!rx_ring->buffer_info) {
|
|
ret_val = 4;
|
|
goto err_nomem;
|
|
}
|
|
|
|
rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
|
|
rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
|
|
&rx_ring->dma);
|
|
if (!rx_ring->desc) {
|
|
ret_val = 5;
|
|
goto err_nomem;
|
|
}
|
|
rx_ring->next_to_use = rx_ring->next_to_clean = 0;
|
|
|
|
rctl = rd32(E1000_RCTL);
|
|
wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
wr32(E1000_RDBAL(0),
|
|
((u64) rx_ring->dma & 0xFFFFFFFF));
|
|
wr32(E1000_RDBAH(0),
|
|
((u64) rx_ring->dma >> 32));
|
|
wr32(E1000_RDLEN(0), rx_ring->size);
|
|
wr32(E1000_RDH(0), 0);
|
|
wr32(E1000_RDT(0), 0);
|
|
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
wr32(E1000_RCTL, rctl);
|
|
wr32(E1000_SRRCTL(0), 0);
|
|
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
|
|
struct sk_buff *skb;
|
|
|
|
skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
|
|
GFP_KERNEL);
|
|
if (!skb) {
|
|
ret_val = 6;
|
|
goto err_nomem;
|
|
}
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
rx_ring->buffer_info[i].skb = skb;
|
|
rx_ring->buffer_info[i].dma =
|
|
pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
|
|
PCI_DMA_FROMDEVICE);
|
|
rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
|
|
memset(skb->data, 0x00, skb->len);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_nomem:
|
|
igb_free_desc_rings(adapter);
|
|
return ret_val;
|
|
}
|
|
|
|
static void igb_phy_disable_receiver(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
|
|
hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
|
|
hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
|
|
hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
|
|
}
|
|
|
|
static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ctrl_reg = 0;
|
|
u32 stat_reg = 0;
|
|
|
|
hw->mac.autoneg = false;
|
|
|
|
if (hw->phy.type == e1000_phy_m88) {
|
|
/* Auto-MDI/MDIX Off */
|
|
hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
|
|
/* reset to update Auto-MDI/MDIX */
|
|
hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
|
|
/* autoneg off */
|
|
hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
|
|
}
|
|
|
|
ctrl_reg = rd32(E1000_CTRL);
|
|
|
|
/* force 1000, set loopback */
|
|
hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
|
|
|
|
/* Now set up the MAC to the same speed/duplex as the PHY. */
|
|
ctrl_reg = rd32(E1000_CTRL);
|
|
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
|
|
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
|
|
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper &&
|
|
hw->phy.type == e1000_phy_m88)
|
|
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
|
|
else {
|
|
/* Set the ILOS bit on the fiber Nic if half duplex link is
|
|
* detected. */
|
|
stat_reg = rd32(E1000_STATUS);
|
|
if ((stat_reg & E1000_STATUS_FD) == 0)
|
|
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
|
|
}
|
|
|
|
wr32(E1000_CTRL, ctrl_reg);
|
|
|
|
/* Disable the receiver on the PHY so when a cable is plugged in, the
|
|
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
|
|
*/
|
|
if (hw->phy.type == e1000_phy_m88)
|
|
igb_phy_disable_receiver(adapter);
|
|
|
|
udelay(500);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_set_phy_loopback(struct igb_adapter *adapter)
|
|
{
|
|
return igb_integrated_phy_loopback(adapter);
|
|
}
|
|
|
|
static int igb_setup_loopback_test(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
if (hw->phy.media_type == e1000_media_type_fiber ||
|
|
hw->phy.media_type == e1000_media_type_internal_serdes) {
|
|
reg = rd32(E1000_RCTL);
|
|
reg |= E1000_RCTL_LBM_TCVR;
|
|
wr32(E1000_RCTL, reg);
|
|
|
|
wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
|
|
|
|
reg = rd32(E1000_CTRL);
|
|
reg &= ~(E1000_CTRL_RFCE |
|
|
E1000_CTRL_TFCE |
|
|
E1000_CTRL_LRST);
|
|
reg |= E1000_CTRL_SLU |
|
|
E1000_CTRL_FD;
|
|
wr32(E1000_CTRL, reg);
|
|
|
|
/* Unset switch control to serdes energy detect */
|
|
reg = rd32(E1000_CONNSW);
|
|
reg &= ~E1000_CONNSW_ENRGSRC;
|
|
wr32(E1000_CONNSW, reg);
|
|
|
|
/* Set PCS register for forced speed */
|
|
reg = rd32(E1000_PCS_LCTL);
|
|
reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
|
|
reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
|
|
E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
|
|
E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
|
|
E1000_PCS_LCTL_FSD | /* Force Speed */
|
|
E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
|
|
wr32(E1000_PCS_LCTL, reg);
|
|
|
|
return 0;
|
|
} else if (hw->phy.media_type == e1000_media_type_copper) {
|
|
return igb_set_phy_loopback(adapter);
|
|
}
|
|
|
|
return 7;
|
|
}
|
|
|
|
static void igb_loopback_cleanup(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl;
|
|
u16 phy_reg;
|
|
|
|
rctl = rd32(E1000_RCTL);
|
|
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
wr32(E1000_RCTL, rctl);
|
|
|
|
hw->mac.autoneg = true;
|
|
hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
|
|
if (phy_reg & MII_CR_LOOPBACK) {
|
|
phy_reg &= ~MII_CR_LOOPBACK;
|
|
hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
|
|
igb_phy_sw_reset(hw);
|
|
}
|
|
}
|
|
|
|
static void igb_create_lbtest_frame(struct sk_buff *skb,
|
|
unsigned int frame_size)
|
|
{
|
|
memset(skb->data, 0xFF, frame_size);
|
|
frame_size &= ~1;
|
|
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
|
|
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
|
|
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
|
|
}
|
|
|
|
static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
|
|
{
|
|
frame_size &= ~1;
|
|
if (*(skb->data + 3) == 0xFF)
|
|
if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
|
|
(*(skb->data + frame_size / 2 + 12) == 0xAF))
|
|
return 0;
|
|
return 13;
|
|
}
|
|
|
|
static int igb_run_loopback_test(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_ring *tx_ring = &adapter->test_tx_ring;
|
|
struct igb_ring *rx_ring = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i, j, k, l, lc, good_cnt;
|
|
int ret_val = 0;
|
|
unsigned long time;
|
|
|
|
wr32(E1000_RDT(0), rx_ring->count - 1);
|
|
|
|
/* Calculate the loop count based on the largest descriptor ring
|
|
* The idea is to wrap the largest ring a number of times using 64
|
|
* send/receive pairs during each loop
|
|
*/
|
|
|
|
if (rx_ring->count <= tx_ring->count)
|
|
lc = ((tx_ring->count / 64) * 2) + 1;
|
|
else
|
|
lc = ((rx_ring->count / 64) * 2) + 1;
|
|
|
|
k = l = 0;
|
|
for (j = 0; j <= lc; j++) { /* loop count loop */
|
|
for (i = 0; i < 64; i++) { /* send the packets */
|
|
igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
|
|
1024);
|
|
pci_dma_sync_single_for_device(pdev,
|
|
tx_ring->buffer_info[k].dma,
|
|
tx_ring->buffer_info[k].length,
|
|
PCI_DMA_TODEVICE);
|
|
k++;
|
|
if (k == tx_ring->count)
|
|
k = 0;
|
|
}
|
|
wr32(E1000_TDT(0), k);
|
|
msleep(200);
|
|
time = jiffies; /* set the start time for the receive */
|
|
good_cnt = 0;
|
|
do { /* receive the sent packets */
|
|
pci_dma_sync_single_for_cpu(pdev,
|
|
rx_ring->buffer_info[l].dma,
|
|
IGB_RXBUFFER_2048,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ret_val = igb_check_lbtest_frame(
|
|
rx_ring->buffer_info[l].skb, 1024);
|
|
if (!ret_val)
|
|
good_cnt++;
|
|
l++;
|
|
if (l == rx_ring->count)
|
|
l = 0;
|
|
/* time + 20 msecs (200 msecs on 2.4) is more than
|
|
* enough time to complete the receives, if it's
|
|
* exceeded, break and error off
|
|
*/
|
|
} while (good_cnt < 64 && jiffies < (time + 20));
|
|
if (good_cnt != 64) {
|
|
ret_val = 13; /* ret_val is the same as mis-compare */
|
|
break;
|
|
}
|
|
if (jiffies >= (time + 20)) {
|
|
ret_val = 14; /* error code for time out error */
|
|
break;
|
|
}
|
|
} /* end loop count loop */
|
|
return ret_val;
|
|
}
|
|
|
|
static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
|
|
{
|
|
/* PHY loopback cannot be performed if SoL/IDER
|
|
* sessions are active */
|
|
if (igb_check_reset_block(&adapter->hw)) {
|
|
dev_err(&adapter->pdev->dev,
|
|
"Cannot do PHY loopback test "
|
|
"when SoL/IDER is active.\n");
|
|
*data = 0;
|
|
goto out;
|
|
}
|
|
*data = igb_setup_desc_rings(adapter);
|
|
if (*data)
|
|
goto out;
|
|
*data = igb_setup_loopback_test(adapter);
|
|
if (*data)
|
|
goto err_loopback;
|
|
*data = igb_run_loopback_test(adapter);
|
|
igb_loopback_cleanup(adapter);
|
|
|
|
err_loopback:
|
|
igb_free_desc_rings(adapter);
|
|
out:
|
|
return *data;
|
|
}
|
|
|
|
static int igb_link_test(struct igb_adapter *adapter, u64 *data)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
*data = 0;
|
|
if (hw->phy.media_type == e1000_media_type_internal_serdes) {
|
|
int i = 0;
|
|
hw->mac.serdes_has_link = false;
|
|
|
|
/* On some blade server designs, link establishment
|
|
* could take as long as 2-3 minutes */
|
|
do {
|
|
hw->mac.ops.check_for_link(&adapter->hw);
|
|
if (hw->mac.serdes_has_link)
|
|
return *data;
|
|
msleep(20);
|
|
} while (i++ < 3750);
|
|
|
|
*data = 1;
|
|
} else {
|
|
hw->mac.ops.check_for_link(&adapter->hw);
|
|
if (hw->mac.autoneg)
|
|
msleep(4000);
|
|
|
|
if (!(rd32(E1000_STATUS) &
|
|
E1000_STATUS_LU))
|
|
*data = 1;
|
|
}
|
|
return *data;
|
|
}
|
|
|
|
static void igb_diag_test(struct net_device *netdev,
|
|
struct ethtool_test *eth_test, u64 *data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
u16 autoneg_advertised;
|
|
u8 forced_speed_duplex, autoneg;
|
|
bool if_running = netif_running(netdev);
|
|
|
|
set_bit(__IGB_TESTING, &adapter->state);
|
|
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
|
|
/* Offline tests */
|
|
|
|
/* save speed, duplex, autoneg settings */
|
|
autoneg_advertised = adapter->hw.phy.autoneg_advertised;
|
|
forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
|
|
autoneg = adapter->hw.mac.autoneg;
|
|
|
|
dev_info(&adapter->pdev->dev, "offline testing starting\n");
|
|
|
|
/* Link test performed before hardware reset so autoneg doesn't
|
|
* interfere with test result */
|
|
if (igb_link_test(adapter, &data[4]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
if (if_running)
|
|
/* indicate we're in test mode */
|
|
dev_close(netdev);
|
|
else
|
|
igb_reset(adapter);
|
|
|
|
if (igb_reg_test(adapter, &data[0]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
igb_reset(adapter);
|
|
if (igb_eeprom_test(adapter, &data[1]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
igb_reset(adapter);
|
|
if (igb_intr_test(adapter, &data[2]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
igb_reset(adapter);
|
|
if (igb_loopback_test(adapter, &data[3]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
/* restore speed, duplex, autoneg settings */
|
|
adapter->hw.phy.autoneg_advertised = autoneg_advertised;
|
|
adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
|
|
adapter->hw.mac.autoneg = autoneg;
|
|
|
|
/* force this routine to wait until autoneg complete/timeout */
|
|
adapter->hw.phy.autoneg_wait_to_complete = true;
|
|
igb_reset(adapter);
|
|
adapter->hw.phy.autoneg_wait_to_complete = false;
|
|
|
|
clear_bit(__IGB_TESTING, &adapter->state);
|
|
if (if_running)
|
|
dev_open(netdev);
|
|
} else {
|
|
dev_info(&adapter->pdev->dev, "online testing starting\n");
|
|
/* Online tests */
|
|
if (igb_link_test(adapter, &data[4]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
/* Online tests aren't run; pass by default */
|
|
data[0] = 0;
|
|
data[1] = 0;
|
|
data[2] = 0;
|
|
data[3] = 0;
|
|
|
|
clear_bit(__IGB_TESTING, &adapter->state);
|
|
}
|
|
msleep_interruptible(4 * 1000);
|
|
}
|
|
|
|
static int igb_wol_exclusion(struct igb_adapter *adapter,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int retval = 1; /* fail by default */
|
|
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_82575GB_QUAD_COPPER:
|
|
/* WoL not supported */
|
|
wol->supported = 0;
|
|
break;
|
|
case E1000_DEV_ID_82575EB_FIBER_SERDES:
|
|
case E1000_DEV_ID_82576_FIBER:
|
|
case E1000_DEV_ID_82576_SERDES:
|
|
/* Wake events not supported on port B */
|
|
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
|
|
wol->supported = 0;
|
|
break;
|
|
}
|
|
/* return success for non excluded adapter ports */
|
|
retval = 0;
|
|
break;
|
|
default:
|
|
/* dual port cards only support WoL on port A from now on
|
|
* unless it was enabled in the eeprom for port B
|
|
* so exclude FUNC_1 ports from having WoL enabled */
|
|
if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
|
|
!adapter->eeprom_wol) {
|
|
wol->supported = 0;
|
|
break;
|
|
}
|
|
|
|
retval = 0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
wol->supported = WAKE_UCAST | WAKE_MCAST |
|
|
WAKE_BCAST | WAKE_MAGIC;
|
|
wol->wolopts = 0;
|
|
|
|
/* this function will set ->supported = 0 and return 1 if wol is not
|
|
* supported by this hardware */
|
|
if (igb_wol_exclusion(adapter, wol))
|
|
return;
|
|
|
|
/* apply any specific unsupported masks here */
|
|
switch (adapter->hw.device_id) {
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (adapter->wol & E1000_WUFC_EX)
|
|
wol->wolopts |= WAKE_UCAST;
|
|
if (adapter->wol & E1000_WUFC_MC)
|
|
wol->wolopts |= WAKE_MCAST;
|
|
if (adapter->wol & E1000_WUFC_BC)
|
|
wol->wolopts |= WAKE_BCAST;
|
|
if (adapter->wol & E1000_WUFC_MAG)
|
|
wol->wolopts |= WAKE_MAGIC;
|
|
|
|
return;
|
|
}
|
|
|
|
static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (igb_wol_exclusion(adapter, wol))
|
|
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
|
|
switch (hw->device_id) {
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* these settings will always override what we currently have */
|
|
adapter->wol = 0;
|
|
|
|
if (wol->wolopts & WAKE_UCAST)
|
|
adapter->wol |= E1000_WUFC_EX;
|
|
if (wol->wolopts & WAKE_MCAST)
|
|
adapter->wol |= E1000_WUFC_MC;
|
|
if (wol->wolopts & WAKE_BCAST)
|
|
adapter->wol |= E1000_WUFC_BC;
|
|
if (wol->wolopts & WAKE_MAGIC)
|
|
adapter->wol |= E1000_WUFC_MAG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* toggle LED 4 times per second = 2 "blinks" per second */
|
|
#define IGB_ID_INTERVAL (HZ/4)
|
|
|
|
/* bit defines for adapter->led_status */
|
|
#define IGB_LED_ON 0
|
|
|
|
static int igb_phys_id(struct net_device *netdev, u32 data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
|
|
data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
|
|
|
|
igb_blink_led(hw);
|
|
msleep_interruptible(data * 1000);
|
|
|
|
igb_led_off(hw);
|
|
clear_bit(IGB_LED_ON, &adapter->led_status);
|
|
igb_cleanup_led(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_set_coalesce(struct net_device *netdev,
|
|
struct ethtool_coalesce *ec)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
|
|
((ec->rx_coalesce_usecs > 3) &&
|
|
(ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
|
|
(ec->rx_coalesce_usecs == 2))
|
|
return -EINVAL;
|
|
|
|
/* convert to rate of irq's per second */
|
|
if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
|
|
adapter->itr_setting = ec->rx_coalesce_usecs;
|
|
adapter->itr = IGB_START_ITR;
|
|
} else {
|
|
adapter->itr_setting = ec->rx_coalesce_usecs << 2;
|
|
adapter->itr = adapter->itr_setting;
|
|
}
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
wr32(adapter->rx_ring[i].itr_register, adapter->itr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_get_coalesce(struct net_device *netdev,
|
|
struct ethtool_coalesce *ec)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if (adapter->itr_setting <= 3)
|
|
ec->rx_coalesce_usecs = adapter->itr_setting;
|
|
else
|
|
ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int igb_nway_reset(struct net_device *netdev)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
if (netif_running(netdev))
|
|
igb_reinit_locked(adapter);
|
|
return 0;
|
|
}
|
|
|
|
static int igb_get_sset_count(struct net_device *netdev, int sset)
|
|
{
|
|
switch (sset) {
|
|
case ETH_SS_STATS:
|
|
return IGB_STATS_LEN;
|
|
case ETH_SS_TEST:
|
|
return IGB_TEST_LEN;
|
|
default:
|
|
return -ENOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void igb_get_ethtool_stats(struct net_device *netdev,
|
|
struct ethtool_stats *stats, u64 *data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
u64 *queue_stat;
|
|
int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
|
|
int j;
|
|
int i;
|
|
#ifdef CONFIG_IGB_LRO
|
|
int aggregated = 0, flushed = 0, no_desc = 0;
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
|
|
flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
|
|
no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
|
|
}
|
|
adapter->lro_aggregated = aggregated;
|
|
adapter->lro_flushed = flushed;
|
|
adapter->lro_no_desc = no_desc;
|
|
#endif
|
|
|
|
igb_update_stats(adapter);
|
|
for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
|
|
char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
|
|
data[i] = (igb_gstrings_stats[i].sizeof_stat ==
|
|
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
|
|
}
|
|
for (j = 0; j < adapter->num_tx_queues; j++) {
|
|
int k;
|
|
queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
|
|
for (k = 0; k < stat_count; k++)
|
|
data[i + k] = queue_stat[k];
|
|
i += k;
|
|
}
|
|
for (j = 0; j < adapter->num_rx_queues; j++) {
|
|
int k;
|
|
queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
|
|
for (k = 0; k < stat_count; k++)
|
|
data[i + k] = queue_stat[k];
|
|
i += k;
|
|
}
|
|
}
|
|
|
|
static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
u8 *p = data;
|
|
int i;
|
|
|
|
switch (stringset) {
|
|
case ETH_SS_TEST:
|
|
memcpy(data, *igb_gstrings_test,
|
|
IGB_TEST_LEN*ETH_GSTRING_LEN);
|
|
break;
|
|
case ETH_SS_STATS:
|
|
for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
|
|
memcpy(p, igb_gstrings_stats[i].stat_string,
|
|
ETH_GSTRING_LEN);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
sprintf(p, "tx_queue_%u_packets", i);
|
|
p += ETH_GSTRING_LEN;
|
|
sprintf(p, "tx_queue_%u_bytes", i);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
sprintf(p, "rx_queue_%u_packets", i);
|
|
p += ETH_GSTRING_LEN;
|
|
sprintf(p, "rx_queue_%u_bytes", i);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct ethtool_ops igb_ethtool_ops = {
|
|
.get_settings = igb_get_settings,
|
|
.set_settings = igb_set_settings,
|
|
.get_drvinfo = igb_get_drvinfo,
|
|
.get_regs_len = igb_get_regs_len,
|
|
.get_regs = igb_get_regs,
|
|
.get_wol = igb_get_wol,
|
|
.set_wol = igb_set_wol,
|
|
.get_msglevel = igb_get_msglevel,
|
|
.set_msglevel = igb_set_msglevel,
|
|
.nway_reset = igb_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_eeprom_len = igb_get_eeprom_len,
|
|
.get_eeprom = igb_get_eeprom,
|
|
.set_eeprom = igb_set_eeprom,
|
|
.get_ringparam = igb_get_ringparam,
|
|
.set_ringparam = igb_set_ringparam,
|
|
.get_pauseparam = igb_get_pauseparam,
|
|
.set_pauseparam = igb_set_pauseparam,
|
|
.get_rx_csum = igb_get_rx_csum,
|
|
.set_rx_csum = igb_set_rx_csum,
|
|
.get_tx_csum = igb_get_tx_csum,
|
|
.set_tx_csum = igb_set_tx_csum,
|
|
.get_sg = ethtool_op_get_sg,
|
|
.set_sg = ethtool_op_set_sg,
|
|
.get_tso = ethtool_op_get_tso,
|
|
.set_tso = igb_set_tso,
|
|
.self_test = igb_diag_test,
|
|
.get_strings = igb_get_strings,
|
|
.phys_id = igb_phys_id,
|
|
.get_sset_count = igb_get_sset_count,
|
|
.get_ethtool_stats = igb_get_ethtool_stats,
|
|
.get_coalesce = igb_get_coalesce,
|
|
.set_coalesce = igb_set_coalesce,
|
|
};
|
|
|
|
void igb_set_ethtool_ops(struct net_device *netdev)
|
|
{
|
|
SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
|
|
}
|