mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 21:02:19 +00:00
399426cadf
Usually, I don't like fixing coding style issues on non-staging drivers, as it could be a mess pretty easy, and could become like a snow ball. That's the case of recent changes on two changesets: they disalign some statements. Yet, a care a lot with cx88 driver, as it was the first driver I touched at the Kernel, and I've been maintaining it since 2005. So, several of the coding style issues were due to my code. Per Andrey's suggestion, I ran checkpatch.pl in strict mode, with fixed several other issues, did some function alinments, but broke other alinments. So, I had to manually apply another round of manual fixes to make sure that everything is ok, and to make checkpatch happy with this patch. With this patch, checkpatch.pl is now happy when called with: ./scripts/checkpatch.pl -f --max-line-length=998 --ignore PREFER_PR_LEVEL Also, the 80-cols violations that made sense were fixed. Checkpatch would be happier if we convert it to use dev_foo(), but this is a more complex change. NOTE: there are some places with msleep(1). As this driver was written at the time that the default was to sleep at least 10ms on such calls (e. g. CONFIG_HZ=100), I replaced those calls by usleep_range(10000, 20000), with should be safe to avoid breakages. Fixes:65bc2fe86e
("[media] cx88: convert it to use pr_foo() macros") Fixes:7b61ba8ff8
("[media] cx88: make checkpatch happier") Suggested-by: Andrey Utkin <andrey_utkin@fastmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Reviewed-by: Andrey Utkin <andrey_utkin@fastmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
333 lines
8.6 KiB
C
333 lines
8.6 KiB
C
/*
|
|
* Stereo and SAP detection for cx88
|
|
*
|
|
* Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "cx88.h"
|
|
#include "cx88-reg.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/jiffies.h>
|
|
#include <asm/div64.h>
|
|
|
|
#define INT_PI ((s32)(3.141592653589 * 32768.0))
|
|
|
|
#define compat_remainder(a, b) \
|
|
((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
|
|
|
|
#define baseband_freq(carrier, srate, tone) ((s32)( \
|
|
(compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
|
|
|
|
/*
|
|
* We calculate the baseband frequencies of the carrier and the pilot tones
|
|
* based on the the sampling rate of the audio rds fifo.
|
|
*/
|
|
|
|
#define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
|
|
#define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
|
|
#define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
|
|
|
|
/*
|
|
* The frequencies below are from the reference driver. They probably need
|
|
* further adjustments, because they are not tested at all. You may even need
|
|
* to play a bit with the registers of the chip to select the proper signal
|
|
* for the input of the audio rds fifo, and measure it's sampling rate to
|
|
* calculate the proper baseband frequencies...
|
|
*/
|
|
|
|
#define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
|
|
#define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
|
|
#define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
|
|
|
|
#define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
|
|
#define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
|
|
#define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
|
|
|
|
#define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
|
|
#define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
|
|
|
|
#define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
|
|
#define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
|
|
|
|
/* The spectrum of the signal should be empty between these frequencies. */
|
|
#define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
|
|
#define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
|
|
|
|
static unsigned int dsp_debug;
|
|
module_param(dsp_debug, int, 0644);
|
|
MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
|
|
|
|
#define dprintk(level, fmt, arg...) do { \
|
|
if (dsp_debug >= level) \
|
|
printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt), \
|
|
__func__, ##arg); \
|
|
} while (0)
|
|
|
|
static s32 int_cos(u32 x)
|
|
{
|
|
u32 t2, t4, t6, t8;
|
|
s32 ret;
|
|
u16 period = x / INT_PI;
|
|
|
|
if (period % 2)
|
|
return -int_cos(x - INT_PI);
|
|
x = x % INT_PI;
|
|
if (x > INT_PI / 2)
|
|
return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
|
|
/*
|
|
* Now x is between 0 and INT_PI/2.
|
|
* To calculate cos(x) we use it's Taylor polinom.
|
|
*/
|
|
t2 = x * x / 32768 / 2;
|
|
t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
|
|
t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
|
|
t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
|
|
ret = 32768 - t2 + t4 - t6 + t8;
|
|
return ret;
|
|
}
|
|
|
|
static u32 int_goertzel(s16 x[], u32 N, u32 freq)
|
|
{
|
|
/*
|
|
* We use the Goertzel algorithm to determine the power of the
|
|
* given frequency in the signal
|
|
*/
|
|
s32 s_prev = 0;
|
|
s32 s_prev2 = 0;
|
|
s32 coeff = 2 * int_cos(freq);
|
|
u32 i;
|
|
|
|
u64 tmp;
|
|
u32 divisor;
|
|
|
|
for (i = 0; i < N; i++) {
|
|
s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
|
|
|
|
s_prev2 = s_prev;
|
|
s_prev = s;
|
|
}
|
|
|
|
tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
|
|
(s64)coeff * s_prev2 * s_prev / 32768;
|
|
|
|
/*
|
|
* XXX: N must be low enough so that N*N fits in s32.
|
|
* Else we need two divisions.
|
|
*/
|
|
divisor = N * N;
|
|
do_div(tmp, divisor);
|
|
|
|
return (u32)tmp;
|
|
}
|
|
|
|
static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
|
|
{
|
|
u32 sum = int_goertzel(x, N, freq);
|
|
|
|
return (u32)int_sqrt(sum);
|
|
}
|
|
|
|
static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
|
|
{
|
|
int i;
|
|
u32 sum = 0;
|
|
u32 freq_step;
|
|
int samples = 5;
|
|
|
|
if (N > 192) {
|
|
/* The last 192 samples are enough for noise detection */
|
|
x += (N - 192);
|
|
N = 192;
|
|
}
|
|
|
|
freq_step = (freq_end - freq_start) / (samples - 1);
|
|
|
|
for (i = 0; i < samples; i++) {
|
|
sum += int_goertzel(x, N, freq_start);
|
|
freq_start += freq_step;
|
|
}
|
|
|
|
return (u32)int_sqrt(sum / samples);
|
|
}
|
|
|
|
static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
|
|
{
|
|
s32 carrier, stereo, dual, noise;
|
|
s32 carrier_freq, stereo_freq, dual_freq;
|
|
s32 ret;
|
|
|
|
switch (core->tvaudio) {
|
|
case WW_BG:
|
|
case WW_DK:
|
|
carrier_freq = FREQ_A2_CARRIER;
|
|
stereo_freq = FREQ_A2_STEREO;
|
|
dual_freq = FREQ_A2_DUAL;
|
|
break;
|
|
case WW_M:
|
|
carrier_freq = FREQ_A2M_CARRIER;
|
|
stereo_freq = FREQ_A2M_STEREO;
|
|
dual_freq = FREQ_A2M_DUAL;
|
|
break;
|
|
case WW_EIAJ:
|
|
carrier_freq = FREQ_EIAJ_CARRIER;
|
|
stereo_freq = FREQ_EIAJ_STEREO;
|
|
dual_freq = FREQ_EIAJ_DUAL;
|
|
break;
|
|
default:
|
|
pr_warn("unsupported audio mode %d for %s\n",
|
|
core->tvaudio, __func__);
|
|
return UNSET;
|
|
}
|
|
|
|
carrier = freq_magnitude(x, N, carrier_freq);
|
|
stereo = freq_magnitude(x, N, stereo_freq);
|
|
dual = freq_magnitude(x, N, dual_freq);
|
|
noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
|
|
|
|
dprintk(1,
|
|
"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
|
|
carrier, stereo, dual, noise);
|
|
|
|
if (stereo > dual)
|
|
ret = V4L2_TUNER_SUB_STEREO;
|
|
else
|
|
ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
|
|
|
|
if (core->tvaudio == WW_EIAJ) {
|
|
/* EIAJ checks may need adjustments */
|
|
if ((carrier > max(stereo, dual) * 2) &&
|
|
(carrier < max(stereo, dual) * 6) &&
|
|
(carrier > 20 && carrier < 200) &&
|
|
(max(stereo, dual) > min(stereo, dual))) {
|
|
/*
|
|
* For EIAJ the carrier is always present,
|
|
* so we probably don't need noise detection
|
|
*/
|
|
return ret;
|
|
}
|
|
} else {
|
|
if ((carrier > max(stereo, dual) * 2) &&
|
|
(carrier < max(stereo, dual) * 8) &&
|
|
(carrier > 20 && carrier < 200) &&
|
|
(noise < 10) &&
|
|
(max(stereo, dual) > min(stereo, dual) * 2)) {
|
|
return ret;
|
|
}
|
|
}
|
|
return V4L2_TUNER_SUB_MONO;
|
|
}
|
|
|
|
static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
|
|
{
|
|
s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
|
|
s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
|
|
s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
|
|
s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
|
|
|
|
dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
|
|
dual_ref, dual, sap_ref, sap);
|
|
/* FIXME: Currently not supported */
|
|
return UNSET;
|
|
}
|
|
|
|
static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
|
|
{
|
|
const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
|
|
s16 *samples;
|
|
|
|
unsigned int i;
|
|
unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
|
|
unsigned int spl = bpl / 4;
|
|
unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
|
|
|
|
u32 current_address = cx_read(srch->ptr1_reg);
|
|
u32 offset = (current_address - srch->fifo_start + bpl);
|
|
|
|
dprintk(1,
|
|
"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
|
|
current_address,
|
|
current_address - srch->fifo_start, sample_count,
|
|
cx_read(MO_AUD_INTSTAT));
|
|
samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
|
|
if (!samples)
|
|
return NULL;
|
|
|
|
*N = sample_count;
|
|
|
|
for (i = 0; i < sample_count; i++) {
|
|
offset = offset % (AUD_RDS_LINES * bpl);
|
|
samples[i] = cx_read(srch->fifo_start + offset);
|
|
offset += 4;
|
|
}
|
|
|
|
dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
|
|
|
|
return samples;
|
|
}
|
|
|
|
s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
|
|
{
|
|
s16 *samples;
|
|
u32 N = 0;
|
|
s32 ret = UNSET;
|
|
|
|
/* If audio RDS fifo is disabled, we can't read the samples */
|
|
if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
|
|
return ret;
|
|
if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
|
|
return ret;
|
|
|
|
/* Wait at least 500 ms after an audio standard change */
|
|
if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
|
|
return ret;
|
|
|
|
samples = read_rds_samples(core, &N);
|
|
|
|
if (!samples)
|
|
return ret;
|
|
|
|
switch (core->tvaudio) {
|
|
case WW_BG:
|
|
case WW_DK:
|
|
case WW_EIAJ:
|
|
case WW_M:
|
|
ret = detect_a2_a2m_eiaj(core, samples, N);
|
|
break;
|
|
case WW_BTSC:
|
|
ret = detect_btsc(core, samples, N);
|
|
break;
|
|
case WW_NONE:
|
|
case WW_I:
|
|
case WW_L:
|
|
case WW_I2SPT:
|
|
case WW_FM:
|
|
case WW_I2SADC:
|
|
break;
|
|
}
|
|
|
|
kfree(samples);
|
|
|
|
if (ret != UNSET)
|
|
dprintk(1, "stereo/sap detection result:%s%s%s\n",
|
|
(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
|
|
(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
|
|
(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
|
|
|