mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
3174fed982
It seems attackers can also send UDP packets with no payload at all. skb_condense() can still be a win in this case. It will be possible to replace the custom code in tcp_add_backlog() to get full benefit from skb_condense() Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
4966 lines
122 KiB
C
4966 lines
122 KiB
C
/*
|
|
* Routines having to do with the 'struct sk_buff' memory handlers.
|
|
*
|
|
* Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
* Florian La Roche <rzsfl@rz.uni-sb.de>
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : Fixed the worst of the load
|
|
* balancer bugs.
|
|
* Dave Platt : Interrupt stacking fix.
|
|
* Richard Kooijman : Timestamp fixes.
|
|
* Alan Cox : Changed buffer format.
|
|
* Alan Cox : destructor hook for AF_UNIX etc.
|
|
* Linus Torvalds : Better skb_clone.
|
|
* Alan Cox : Added skb_copy.
|
|
* Alan Cox : Added all the changed routines Linus
|
|
* only put in the headers
|
|
* Ray VanTassle : Fixed --skb->lock in free
|
|
* Alan Cox : skb_copy copy arp field
|
|
* Andi Kleen : slabified it.
|
|
* Robert Olsson : Removed skb_head_pool
|
|
*
|
|
* NOTE:
|
|
* The __skb_ routines should be called with interrupts
|
|
* disabled, or you better be *real* sure that the operation is atomic
|
|
* with respect to whatever list is being frobbed (e.g. via lock_sock()
|
|
* or via disabling bottom half handlers, etc).
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
/*
|
|
* The functions in this file will not compile correctly with gcc 2.4.x
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmemcheck.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/netdevice.h>
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
#include <net/pkt_sched.h>
|
|
#endif
|
|
#include <linux/string.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/init.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/errqueue.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <net/protocol.h>
|
|
#include <net/dst.h>
|
|
#include <net/sock.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <net/xfrm.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <trace/events/skb.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/user_namespace.h>
|
|
|
|
struct kmem_cache *skbuff_head_cache __read_mostly;
|
|
static struct kmem_cache *skbuff_fclone_cache __read_mostly;
|
|
int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
|
|
EXPORT_SYMBOL(sysctl_max_skb_frags);
|
|
|
|
/**
|
|
* skb_panic - private function for out-of-line support
|
|
* @skb: buffer
|
|
* @sz: size
|
|
* @addr: address
|
|
* @msg: skb_over_panic or skb_under_panic
|
|
*
|
|
* Out-of-line support for skb_put() and skb_push().
|
|
* Called via the wrapper skb_over_panic() or skb_under_panic().
|
|
* Keep out of line to prevent kernel bloat.
|
|
* __builtin_return_address is not used because it is not always reliable.
|
|
*/
|
|
static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
|
|
const char msg[])
|
|
{
|
|
pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
|
|
msg, addr, skb->len, sz, skb->head, skb->data,
|
|
(unsigned long)skb->tail, (unsigned long)skb->end,
|
|
skb->dev ? skb->dev->name : "<NULL>");
|
|
BUG();
|
|
}
|
|
|
|
static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
|
|
{
|
|
skb_panic(skb, sz, addr, __func__);
|
|
}
|
|
|
|
static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
|
|
{
|
|
skb_panic(skb, sz, addr, __func__);
|
|
}
|
|
|
|
/*
|
|
* kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
|
|
* the caller if emergency pfmemalloc reserves are being used. If it is and
|
|
* the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
|
|
* may be used. Otherwise, the packet data may be discarded until enough
|
|
* memory is free
|
|
*/
|
|
#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
|
|
__kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
|
|
|
|
static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
|
|
unsigned long ip, bool *pfmemalloc)
|
|
{
|
|
void *obj;
|
|
bool ret_pfmemalloc = false;
|
|
|
|
/*
|
|
* Try a regular allocation, when that fails and we're not entitled
|
|
* to the reserves, fail.
|
|
*/
|
|
obj = kmalloc_node_track_caller(size,
|
|
flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
|
|
node);
|
|
if (obj || !(gfp_pfmemalloc_allowed(flags)))
|
|
goto out;
|
|
|
|
/* Try again but now we are using pfmemalloc reserves */
|
|
ret_pfmemalloc = true;
|
|
obj = kmalloc_node_track_caller(size, flags, node);
|
|
|
|
out:
|
|
if (pfmemalloc)
|
|
*pfmemalloc = ret_pfmemalloc;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/* Allocate a new skbuff. We do this ourselves so we can fill in a few
|
|
* 'private' fields and also do memory statistics to find all the
|
|
* [BEEP] leaks.
|
|
*
|
|
*/
|
|
|
|
struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
/* Get the HEAD */
|
|
skb = kmem_cache_alloc_node(skbuff_head_cache,
|
|
gfp_mask & ~__GFP_DMA, node);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
/*
|
|
* Only clear those fields we need to clear, not those that we will
|
|
* actually initialise below. Hence, don't put any more fields after
|
|
* the tail pointer in struct sk_buff!
|
|
*/
|
|
memset(skb, 0, offsetof(struct sk_buff, tail));
|
|
skb->head = NULL;
|
|
skb->truesize = sizeof(struct sk_buff);
|
|
atomic_set(&skb->users, 1);
|
|
|
|
skb->mac_header = (typeof(skb->mac_header))~0U;
|
|
out:
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* __alloc_skb - allocate a network buffer
|
|
* @size: size to allocate
|
|
* @gfp_mask: allocation mask
|
|
* @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
|
|
* instead of head cache and allocate a cloned (child) skb.
|
|
* If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
|
|
* allocations in case the data is required for writeback
|
|
* @node: numa node to allocate memory on
|
|
*
|
|
* Allocate a new &sk_buff. The returned buffer has no headroom and a
|
|
* tail room of at least size bytes. The object has a reference count
|
|
* of one. The return is the buffer. On a failure the return is %NULL.
|
|
*
|
|
* Buffers may only be allocated from interrupts using a @gfp_mask of
|
|
* %GFP_ATOMIC.
|
|
*/
|
|
struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
|
|
int flags, int node)
|
|
{
|
|
struct kmem_cache *cache;
|
|
struct skb_shared_info *shinfo;
|
|
struct sk_buff *skb;
|
|
u8 *data;
|
|
bool pfmemalloc;
|
|
|
|
cache = (flags & SKB_ALLOC_FCLONE)
|
|
? skbuff_fclone_cache : skbuff_head_cache;
|
|
|
|
if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
|
|
/* Get the HEAD */
|
|
skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
|
|
if (!skb)
|
|
goto out;
|
|
prefetchw(skb);
|
|
|
|
/* We do our best to align skb_shared_info on a separate cache
|
|
* line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
|
|
* aligned memory blocks, unless SLUB/SLAB debug is enabled.
|
|
* Both skb->head and skb_shared_info are cache line aligned.
|
|
*/
|
|
size = SKB_DATA_ALIGN(size);
|
|
size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
|
|
if (!data)
|
|
goto nodata;
|
|
/* kmalloc(size) might give us more room than requested.
|
|
* Put skb_shared_info exactly at the end of allocated zone,
|
|
* to allow max possible filling before reallocation.
|
|
*/
|
|
size = SKB_WITH_OVERHEAD(ksize(data));
|
|
prefetchw(data + size);
|
|
|
|
/*
|
|
* Only clear those fields we need to clear, not those that we will
|
|
* actually initialise below. Hence, don't put any more fields after
|
|
* the tail pointer in struct sk_buff!
|
|
*/
|
|
memset(skb, 0, offsetof(struct sk_buff, tail));
|
|
/* Account for allocated memory : skb + skb->head */
|
|
skb->truesize = SKB_TRUESIZE(size);
|
|
skb->pfmemalloc = pfmemalloc;
|
|
atomic_set(&skb->users, 1);
|
|
skb->head = data;
|
|
skb->data = data;
|
|
skb_reset_tail_pointer(skb);
|
|
skb->end = skb->tail + size;
|
|
skb->mac_header = (typeof(skb->mac_header))~0U;
|
|
skb->transport_header = (typeof(skb->transport_header))~0U;
|
|
|
|
/* make sure we initialize shinfo sequentially */
|
|
shinfo = skb_shinfo(skb);
|
|
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
|
|
atomic_set(&shinfo->dataref, 1);
|
|
kmemcheck_annotate_variable(shinfo->destructor_arg);
|
|
|
|
if (flags & SKB_ALLOC_FCLONE) {
|
|
struct sk_buff_fclones *fclones;
|
|
|
|
fclones = container_of(skb, struct sk_buff_fclones, skb1);
|
|
|
|
kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
|
|
skb->fclone = SKB_FCLONE_ORIG;
|
|
atomic_set(&fclones->fclone_ref, 1);
|
|
|
|
fclones->skb2.fclone = SKB_FCLONE_CLONE;
|
|
fclones->skb2.pfmemalloc = pfmemalloc;
|
|
}
|
|
out:
|
|
return skb;
|
|
nodata:
|
|
kmem_cache_free(cache, skb);
|
|
skb = NULL;
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(__alloc_skb);
|
|
|
|
/**
|
|
* __build_skb - build a network buffer
|
|
* @data: data buffer provided by caller
|
|
* @frag_size: size of data, or 0 if head was kmalloced
|
|
*
|
|
* Allocate a new &sk_buff. Caller provides space holding head and
|
|
* skb_shared_info. @data must have been allocated by kmalloc() only if
|
|
* @frag_size is 0, otherwise data should come from the page allocator
|
|
* or vmalloc()
|
|
* The return is the new skb buffer.
|
|
* On a failure the return is %NULL, and @data is not freed.
|
|
* Notes :
|
|
* Before IO, driver allocates only data buffer where NIC put incoming frame
|
|
* Driver should add room at head (NET_SKB_PAD) and
|
|
* MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
|
|
* After IO, driver calls build_skb(), to allocate sk_buff and populate it
|
|
* before giving packet to stack.
|
|
* RX rings only contains data buffers, not full skbs.
|
|
*/
|
|
struct sk_buff *__build_skb(void *data, unsigned int frag_size)
|
|
{
|
|
struct skb_shared_info *shinfo;
|
|
struct sk_buff *skb;
|
|
unsigned int size = frag_size ? : ksize(data);
|
|
|
|
skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
|
|
memset(skb, 0, offsetof(struct sk_buff, tail));
|
|
skb->truesize = SKB_TRUESIZE(size);
|
|
atomic_set(&skb->users, 1);
|
|
skb->head = data;
|
|
skb->data = data;
|
|
skb_reset_tail_pointer(skb);
|
|
skb->end = skb->tail + size;
|
|
skb->mac_header = (typeof(skb->mac_header))~0U;
|
|
skb->transport_header = (typeof(skb->transport_header))~0U;
|
|
|
|
/* make sure we initialize shinfo sequentially */
|
|
shinfo = skb_shinfo(skb);
|
|
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
|
|
atomic_set(&shinfo->dataref, 1);
|
|
kmemcheck_annotate_variable(shinfo->destructor_arg);
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* build_skb() is wrapper over __build_skb(), that specifically
|
|
* takes care of skb->head and skb->pfmemalloc
|
|
* This means that if @frag_size is not zero, then @data must be backed
|
|
* by a page fragment, not kmalloc() or vmalloc()
|
|
*/
|
|
struct sk_buff *build_skb(void *data, unsigned int frag_size)
|
|
{
|
|
struct sk_buff *skb = __build_skb(data, frag_size);
|
|
|
|
if (skb && frag_size) {
|
|
skb->head_frag = 1;
|
|
if (page_is_pfmemalloc(virt_to_head_page(data)))
|
|
skb->pfmemalloc = 1;
|
|
}
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(build_skb);
|
|
|
|
#define NAPI_SKB_CACHE_SIZE 64
|
|
|
|
struct napi_alloc_cache {
|
|
struct page_frag_cache page;
|
|
unsigned int skb_count;
|
|
void *skb_cache[NAPI_SKB_CACHE_SIZE];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
|
|
static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
|
|
|
|
static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
|
|
{
|
|
struct page_frag_cache *nc;
|
|
unsigned long flags;
|
|
void *data;
|
|
|
|
local_irq_save(flags);
|
|
nc = this_cpu_ptr(&netdev_alloc_cache);
|
|
data = __alloc_page_frag(nc, fragsz, gfp_mask);
|
|
local_irq_restore(flags);
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* netdev_alloc_frag - allocate a page fragment
|
|
* @fragsz: fragment size
|
|
*
|
|
* Allocates a frag from a page for receive buffer.
|
|
* Uses GFP_ATOMIC allocations.
|
|
*/
|
|
void *netdev_alloc_frag(unsigned int fragsz)
|
|
{
|
|
return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
|
|
}
|
|
EXPORT_SYMBOL(netdev_alloc_frag);
|
|
|
|
static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
|
|
{
|
|
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
|
|
|
|
return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
|
|
}
|
|
|
|
void *napi_alloc_frag(unsigned int fragsz)
|
|
{
|
|
return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
|
|
}
|
|
EXPORT_SYMBOL(napi_alloc_frag);
|
|
|
|
/**
|
|
* __netdev_alloc_skb - allocate an skbuff for rx on a specific device
|
|
* @dev: network device to receive on
|
|
* @len: length to allocate
|
|
* @gfp_mask: get_free_pages mask, passed to alloc_skb
|
|
*
|
|
* Allocate a new &sk_buff and assign it a usage count of one. The
|
|
* buffer has NET_SKB_PAD headroom built in. Users should allocate
|
|
* the headroom they think they need without accounting for the
|
|
* built in space. The built in space is used for optimisations.
|
|
*
|
|
* %NULL is returned if there is no free memory.
|
|
*/
|
|
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct page_frag_cache *nc;
|
|
unsigned long flags;
|
|
struct sk_buff *skb;
|
|
bool pfmemalloc;
|
|
void *data;
|
|
|
|
len += NET_SKB_PAD;
|
|
|
|
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
|
|
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
|
|
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
|
|
if (!skb)
|
|
goto skb_fail;
|
|
goto skb_success;
|
|
}
|
|
|
|
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
len = SKB_DATA_ALIGN(len);
|
|
|
|
if (sk_memalloc_socks())
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
|
|
local_irq_save(flags);
|
|
|
|
nc = this_cpu_ptr(&netdev_alloc_cache);
|
|
data = __alloc_page_frag(nc, len, gfp_mask);
|
|
pfmemalloc = nc->pfmemalloc;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (unlikely(!data))
|
|
return NULL;
|
|
|
|
skb = __build_skb(data, len);
|
|
if (unlikely(!skb)) {
|
|
skb_free_frag(data);
|
|
return NULL;
|
|
}
|
|
|
|
/* use OR instead of assignment to avoid clearing of bits in mask */
|
|
if (pfmemalloc)
|
|
skb->pfmemalloc = 1;
|
|
skb->head_frag = 1;
|
|
|
|
skb_success:
|
|
skb_reserve(skb, NET_SKB_PAD);
|
|
skb->dev = dev;
|
|
|
|
skb_fail:
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(__netdev_alloc_skb);
|
|
|
|
/**
|
|
* __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
|
|
* @napi: napi instance this buffer was allocated for
|
|
* @len: length to allocate
|
|
* @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
|
|
*
|
|
* Allocate a new sk_buff for use in NAPI receive. This buffer will
|
|
* attempt to allocate the head from a special reserved region used
|
|
* only for NAPI Rx allocation. By doing this we can save several
|
|
* CPU cycles by avoiding having to disable and re-enable IRQs.
|
|
*
|
|
* %NULL is returned if there is no free memory.
|
|
*/
|
|
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
|
|
struct sk_buff *skb;
|
|
void *data;
|
|
|
|
len += NET_SKB_PAD + NET_IP_ALIGN;
|
|
|
|
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
|
|
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
|
|
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
|
|
if (!skb)
|
|
goto skb_fail;
|
|
goto skb_success;
|
|
}
|
|
|
|
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
len = SKB_DATA_ALIGN(len);
|
|
|
|
if (sk_memalloc_socks())
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
|
|
data = __alloc_page_frag(&nc->page, len, gfp_mask);
|
|
if (unlikely(!data))
|
|
return NULL;
|
|
|
|
skb = __build_skb(data, len);
|
|
if (unlikely(!skb)) {
|
|
skb_free_frag(data);
|
|
return NULL;
|
|
}
|
|
|
|
/* use OR instead of assignment to avoid clearing of bits in mask */
|
|
if (nc->page.pfmemalloc)
|
|
skb->pfmemalloc = 1;
|
|
skb->head_frag = 1;
|
|
|
|
skb_success:
|
|
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
|
|
skb->dev = napi->dev;
|
|
|
|
skb_fail:
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(__napi_alloc_skb);
|
|
|
|
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
|
|
int size, unsigned int truesize)
|
|
{
|
|
skb_fill_page_desc(skb, i, page, off, size);
|
|
skb->len += size;
|
|
skb->data_len += size;
|
|
skb->truesize += truesize;
|
|
}
|
|
EXPORT_SYMBOL(skb_add_rx_frag);
|
|
|
|
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
|
|
unsigned int truesize)
|
|
{
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
skb_frag_size_add(frag, size);
|
|
skb->len += size;
|
|
skb->data_len += size;
|
|
skb->truesize += truesize;
|
|
}
|
|
EXPORT_SYMBOL(skb_coalesce_rx_frag);
|
|
|
|
static void skb_drop_list(struct sk_buff **listp)
|
|
{
|
|
kfree_skb_list(*listp);
|
|
*listp = NULL;
|
|
}
|
|
|
|
static inline void skb_drop_fraglist(struct sk_buff *skb)
|
|
{
|
|
skb_drop_list(&skb_shinfo(skb)->frag_list);
|
|
}
|
|
|
|
static void skb_clone_fraglist(struct sk_buff *skb)
|
|
{
|
|
struct sk_buff *list;
|
|
|
|
skb_walk_frags(skb, list)
|
|
skb_get(list);
|
|
}
|
|
|
|
static void skb_free_head(struct sk_buff *skb)
|
|
{
|
|
unsigned char *head = skb->head;
|
|
|
|
if (skb->head_frag)
|
|
skb_free_frag(head);
|
|
else
|
|
kfree(head);
|
|
}
|
|
|
|
static void skb_release_data(struct sk_buff *skb)
|
|
{
|
|
struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
int i;
|
|
|
|
if (skb->cloned &&
|
|
atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
|
|
&shinfo->dataref))
|
|
return;
|
|
|
|
for (i = 0; i < shinfo->nr_frags; i++)
|
|
__skb_frag_unref(&shinfo->frags[i]);
|
|
|
|
/*
|
|
* If skb buf is from userspace, we need to notify the caller
|
|
* the lower device DMA has done;
|
|
*/
|
|
if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
|
|
struct ubuf_info *uarg;
|
|
|
|
uarg = shinfo->destructor_arg;
|
|
if (uarg->callback)
|
|
uarg->callback(uarg, true);
|
|
}
|
|
|
|
if (shinfo->frag_list)
|
|
kfree_skb_list(shinfo->frag_list);
|
|
|
|
skb_free_head(skb);
|
|
}
|
|
|
|
/*
|
|
* Free an skbuff by memory without cleaning the state.
|
|
*/
|
|
static void kfree_skbmem(struct sk_buff *skb)
|
|
{
|
|
struct sk_buff_fclones *fclones;
|
|
|
|
switch (skb->fclone) {
|
|
case SKB_FCLONE_UNAVAILABLE:
|
|
kmem_cache_free(skbuff_head_cache, skb);
|
|
return;
|
|
|
|
case SKB_FCLONE_ORIG:
|
|
fclones = container_of(skb, struct sk_buff_fclones, skb1);
|
|
|
|
/* We usually free the clone (TX completion) before original skb
|
|
* This test would have no chance to be true for the clone,
|
|
* while here, branch prediction will be good.
|
|
*/
|
|
if (atomic_read(&fclones->fclone_ref) == 1)
|
|
goto fastpath;
|
|
break;
|
|
|
|
default: /* SKB_FCLONE_CLONE */
|
|
fclones = container_of(skb, struct sk_buff_fclones, skb2);
|
|
break;
|
|
}
|
|
if (!atomic_dec_and_test(&fclones->fclone_ref))
|
|
return;
|
|
fastpath:
|
|
kmem_cache_free(skbuff_fclone_cache, fclones);
|
|
}
|
|
|
|
static void skb_release_head_state(struct sk_buff *skb)
|
|
{
|
|
skb_dst_drop(skb);
|
|
#ifdef CONFIG_XFRM
|
|
secpath_put(skb->sp);
|
|
#endif
|
|
if (skb->destructor) {
|
|
WARN_ON(in_irq());
|
|
skb->destructor(skb);
|
|
}
|
|
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
|
|
nf_conntrack_put(skb->nfct);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
nf_bridge_put(skb->nf_bridge);
|
|
#endif
|
|
}
|
|
|
|
/* Free everything but the sk_buff shell. */
|
|
static void skb_release_all(struct sk_buff *skb)
|
|
{
|
|
skb_release_head_state(skb);
|
|
if (likely(skb->head))
|
|
skb_release_data(skb);
|
|
}
|
|
|
|
/**
|
|
* __kfree_skb - private function
|
|
* @skb: buffer
|
|
*
|
|
* Free an sk_buff. Release anything attached to the buffer.
|
|
* Clean the state. This is an internal helper function. Users should
|
|
* always call kfree_skb
|
|
*/
|
|
|
|
void __kfree_skb(struct sk_buff *skb)
|
|
{
|
|
skb_release_all(skb);
|
|
kfree_skbmem(skb);
|
|
}
|
|
EXPORT_SYMBOL(__kfree_skb);
|
|
|
|
/**
|
|
* kfree_skb - free an sk_buff
|
|
* @skb: buffer to free
|
|
*
|
|
* Drop a reference to the buffer and free it if the usage count has
|
|
* hit zero.
|
|
*/
|
|
void kfree_skb(struct sk_buff *skb)
|
|
{
|
|
if (unlikely(!skb))
|
|
return;
|
|
if (likely(atomic_read(&skb->users) == 1))
|
|
smp_rmb();
|
|
else if (likely(!atomic_dec_and_test(&skb->users)))
|
|
return;
|
|
trace_kfree_skb(skb, __builtin_return_address(0));
|
|
__kfree_skb(skb);
|
|
}
|
|
EXPORT_SYMBOL(kfree_skb);
|
|
|
|
void kfree_skb_list(struct sk_buff *segs)
|
|
{
|
|
while (segs) {
|
|
struct sk_buff *next = segs->next;
|
|
|
|
kfree_skb(segs);
|
|
segs = next;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kfree_skb_list);
|
|
|
|
/**
|
|
* skb_tx_error - report an sk_buff xmit error
|
|
* @skb: buffer that triggered an error
|
|
*
|
|
* Report xmit error if a device callback is tracking this skb.
|
|
* skb must be freed afterwards.
|
|
*/
|
|
void skb_tx_error(struct sk_buff *skb)
|
|
{
|
|
if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
|
|
struct ubuf_info *uarg;
|
|
|
|
uarg = skb_shinfo(skb)->destructor_arg;
|
|
if (uarg->callback)
|
|
uarg->callback(uarg, false);
|
|
skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(skb_tx_error);
|
|
|
|
/**
|
|
* consume_skb - free an skbuff
|
|
* @skb: buffer to free
|
|
*
|
|
* Drop a ref to the buffer and free it if the usage count has hit zero
|
|
* Functions identically to kfree_skb, but kfree_skb assumes that the frame
|
|
* is being dropped after a failure and notes that
|
|
*/
|
|
void consume_skb(struct sk_buff *skb)
|
|
{
|
|
if (unlikely(!skb))
|
|
return;
|
|
if (likely(atomic_read(&skb->users) == 1))
|
|
smp_rmb();
|
|
else if (likely(!atomic_dec_and_test(&skb->users)))
|
|
return;
|
|
trace_consume_skb(skb);
|
|
__kfree_skb(skb);
|
|
}
|
|
EXPORT_SYMBOL(consume_skb);
|
|
|
|
void __kfree_skb_flush(void)
|
|
{
|
|
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
|
|
|
|
/* flush skb_cache if containing objects */
|
|
if (nc->skb_count) {
|
|
kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
|
|
nc->skb_cache);
|
|
nc->skb_count = 0;
|
|
}
|
|
}
|
|
|
|
static inline void _kfree_skb_defer(struct sk_buff *skb)
|
|
{
|
|
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
|
|
|
|
/* drop skb->head and call any destructors for packet */
|
|
skb_release_all(skb);
|
|
|
|
/* record skb to CPU local list */
|
|
nc->skb_cache[nc->skb_count++] = skb;
|
|
|
|
#ifdef CONFIG_SLUB
|
|
/* SLUB writes into objects when freeing */
|
|
prefetchw(skb);
|
|
#endif
|
|
|
|
/* flush skb_cache if it is filled */
|
|
if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
|
|
kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
|
|
nc->skb_cache);
|
|
nc->skb_count = 0;
|
|
}
|
|
}
|
|
void __kfree_skb_defer(struct sk_buff *skb)
|
|
{
|
|
_kfree_skb_defer(skb);
|
|
}
|
|
|
|
void napi_consume_skb(struct sk_buff *skb, int budget)
|
|
{
|
|
if (unlikely(!skb))
|
|
return;
|
|
|
|
/* Zero budget indicate non-NAPI context called us, like netpoll */
|
|
if (unlikely(!budget)) {
|
|
dev_consume_skb_any(skb);
|
|
return;
|
|
}
|
|
|
|
if (likely(atomic_read(&skb->users) == 1))
|
|
smp_rmb();
|
|
else if (likely(!atomic_dec_and_test(&skb->users)))
|
|
return;
|
|
/* if reaching here SKB is ready to free */
|
|
trace_consume_skb(skb);
|
|
|
|
/* if SKB is a clone, don't handle this case */
|
|
if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
|
|
__kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
_kfree_skb_defer(skb);
|
|
}
|
|
EXPORT_SYMBOL(napi_consume_skb);
|
|
|
|
/* Make sure a field is enclosed inside headers_start/headers_end section */
|
|
#define CHECK_SKB_FIELD(field) \
|
|
BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
|
|
offsetof(struct sk_buff, headers_start)); \
|
|
BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
|
|
offsetof(struct sk_buff, headers_end)); \
|
|
|
|
static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
|
|
{
|
|
new->tstamp = old->tstamp;
|
|
/* We do not copy old->sk */
|
|
new->dev = old->dev;
|
|
memcpy(new->cb, old->cb, sizeof(old->cb));
|
|
skb_dst_copy(new, old);
|
|
#ifdef CONFIG_XFRM
|
|
new->sp = secpath_get(old->sp);
|
|
#endif
|
|
__nf_copy(new, old, false);
|
|
|
|
/* Note : this field could be in headers_start/headers_end section
|
|
* It is not yet because we do not want to have a 16 bit hole
|
|
*/
|
|
new->queue_mapping = old->queue_mapping;
|
|
|
|
memcpy(&new->headers_start, &old->headers_start,
|
|
offsetof(struct sk_buff, headers_end) -
|
|
offsetof(struct sk_buff, headers_start));
|
|
CHECK_SKB_FIELD(protocol);
|
|
CHECK_SKB_FIELD(csum);
|
|
CHECK_SKB_FIELD(hash);
|
|
CHECK_SKB_FIELD(priority);
|
|
CHECK_SKB_FIELD(skb_iif);
|
|
CHECK_SKB_FIELD(vlan_proto);
|
|
CHECK_SKB_FIELD(vlan_tci);
|
|
CHECK_SKB_FIELD(transport_header);
|
|
CHECK_SKB_FIELD(network_header);
|
|
CHECK_SKB_FIELD(mac_header);
|
|
CHECK_SKB_FIELD(inner_protocol);
|
|
CHECK_SKB_FIELD(inner_transport_header);
|
|
CHECK_SKB_FIELD(inner_network_header);
|
|
CHECK_SKB_FIELD(inner_mac_header);
|
|
CHECK_SKB_FIELD(mark);
|
|
#ifdef CONFIG_NETWORK_SECMARK
|
|
CHECK_SKB_FIELD(secmark);
|
|
#endif
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
CHECK_SKB_FIELD(napi_id);
|
|
#endif
|
|
#ifdef CONFIG_XPS
|
|
CHECK_SKB_FIELD(sender_cpu);
|
|
#endif
|
|
#ifdef CONFIG_NET_SCHED
|
|
CHECK_SKB_FIELD(tc_index);
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
CHECK_SKB_FIELD(tc_verd);
|
|
#endif
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* You should not add any new code to this function. Add it to
|
|
* __copy_skb_header above instead.
|
|
*/
|
|
static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
|
|
{
|
|
#define C(x) n->x = skb->x
|
|
|
|
n->next = n->prev = NULL;
|
|
n->sk = NULL;
|
|
__copy_skb_header(n, skb);
|
|
|
|
C(len);
|
|
C(data_len);
|
|
C(mac_len);
|
|
n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
|
|
n->cloned = 1;
|
|
n->nohdr = 0;
|
|
n->destructor = NULL;
|
|
C(tail);
|
|
C(end);
|
|
C(head);
|
|
C(head_frag);
|
|
C(data);
|
|
C(truesize);
|
|
atomic_set(&n->users, 1);
|
|
|
|
atomic_inc(&(skb_shinfo(skb)->dataref));
|
|
skb->cloned = 1;
|
|
|
|
return n;
|
|
#undef C
|
|
}
|
|
|
|
/**
|
|
* skb_morph - morph one skb into another
|
|
* @dst: the skb to receive the contents
|
|
* @src: the skb to supply the contents
|
|
*
|
|
* This is identical to skb_clone except that the target skb is
|
|
* supplied by the user.
|
|
*
|
|
* The target skb is returned upon exit.
|
|
*/
|
|
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
|
|
{
|
|
skb_release_all(dst);
|
|
return __skb_clone(dst, src);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_morph);
|
|
|
|
/**
|
|
* skb_copy_ubufs - copy userspace skb frags buffers to kernel
|
|
* @skb: the skb to modify
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* This must be called on SKBTX_DEV_ZEROCOPY skb.
|
|
* It will copy all frags into kernel and drop the reference
|
|
* to userspace pages.
|
|
*
|
|
* If this function is called from an interrupt gfp_mask() must be
|
|
* %GFP_ATOMIC.
|
|
*
|
|
* Returns 0 on success or a negative error code on failure
|
|
* to allocate kernel memory to copy to.
|
|
*/
|
|
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
|
|
{
|
|
int i;
|
|
int num_frags = skb_shinfo(skb)->nr_frags;
|
|
struct page *page, *head = NULL;
|
|
struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
|
|
|
|
for (i = 0; i < num_frags; i++) {
|
|
u8 *vaddr;
|
|
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
|
|
|
|
page = alloc_page(gfp_mask);
|
|
if (!page) {
|
|
while (head) {
|
|
struct page *next = (struct page *)page_private(head);
|
|
put_page(head);
|
|
head = next;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
vaddr = kmap_atomic(skb_frag_page(f));
|
|
memcpy(page_address(page),
|
|
vaddr + f->page_offset, skb_frag_size(f));
|
|
kunmap_atomic(vaddr);
|
|
set_page_private(page, (unsigned long)head);
|
|
head = page;
|
|
}
|
|
|
|
/* skb frags release userspace buffers */
|
|
for (i = 0; i < num_frags; i++)
|
|
skb_frag_unref(skb, i);
|
|
|
|
uarg->callback(uarg, false);
|
|
|
|
/* skb frags point to kernel buffers */
|
|
for (i = num_frags - 1; i >= 0; i--) {
|
|
__skb_fill_page_desc(skb, i, head, 0,
|
|
skb_shinfo(skb)->frags[i].size);
|
|
head = (struct page *)page_private(head);
|
|
}
|
|
|
|
skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_copy_ubufs);
|
|
|
|
/**
|
|
* skb_clone - duplicate an sk_buff
|
|
* @skb: buffer to clone
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* Duplicate an &sk_buff. The new one is not owned by a socket. Both
|
|
* copies share the same packet data but not structure. The new
|
|
* buffer has a reference count of 1. If the allocation fails the
|
|
* function returns %NULL otherwise the new buffer is returned.
|
|
*
|
|
* If this function is called from an interrupt gfp_mask() must be
|
|
* %GFP_ATOMIC.
|
|
*/
|
|
|
|
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
|
|
{
|
|
struct sk_buff_fclones *fclones = container_of(skb,
|
|
struct sk_buff_fclones,
|
|
skb1);
|
|
struct sk_buff *n;
|
|
|
|
if (skb_orphan_frags(skb, gfp_mask))
|
|
return NULL;
|
|
|
|
if (skb->fclone == SKB_FCLONE_ORIG &&
|
|
atomic_read(&fclones->fclone_ref) == 1) {
|
|
n = &fclones->skb2;
|
|
atomic_set(&fclones->fclone_ref, 2);
|
|
} else {
|
|
if (skb_pfmemalloc(skb))
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
|
|
n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
|
|
if (!n)
|
|
return NULL;
|
|
|
|
kmemcheck_annotate_bitfield(n, flags1);
|
|
n->fclone = SKB_FCLONE_UNAVAILABLE;
|
|
}
|
|
|
|
return __skb_clone(n, skb);
|
|
}
|
|
EXPORT_SYMBOL(skb_clone);
|
|
|
|
static void skb_headers_offset_update(struct sk_buff *skb, int off)
|
|
{
|
|
/* Only adjust this if it actually is csum_start rather than csum */
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
skb->csum_start += off;
|
|
/* {transport,network,mac}_header and tail are relative to skb->head */
|
|
skb->transport_header += off;
|
|
skb->network_header += off;
|
|
if (skb_mac_header_was_set(skb))
|
|
skb->mac_header += off;
|
|
skb->inner_transport_header += off;
|
|
skb->inner_network_header += off;
|
|
skb->inner_mac_header += off;
|
|
}
|
|
|
|
static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
|
|
{
|
|
__copy_skb_header(new, old);
|
|
|
|
skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
|
|
skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
|
|
skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
|
|
}
|
|
|
|
static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
|
|
{
|
|
if (skb_pfmemalloc(skb))
|
|
return SKB_ALLOC_RX;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_copy - create private copy of an sk_buff
|
|
* @skb: buffer to copy
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* Make a copy of both an &sk_buff and its data. This is used when the
|
|
* caller wishes to modify the data and needs a private copy of the
|
|
* data to alter. Returns %NULL on failure or the pointer to the buffer
|
|
* on success. The returned buffer has a reference count of 1.
|
|
*
|
|
* As by-product this function converts non-linear &sk_buff to linear
|
|
* one, so that &sk_buff becomes completely private and caller is allowed
|
|
* to modify all the data of returned buffer. This means that this
|
|
* function is not recommended for use in circumstances when only
|
|
* header is going to be modified. Use pskb_copy() instead.
|
|
*/
|
|
|
|
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
|
|
{
|
|
int headerlen = skb_headroom(skb);
|
|
unsigned int size = skb_end_offset(skb) + skb->data_len;
|
|
struct sk_buff *n = __alloc_skb(size, gfp_mask,
|
|
skb_alloc_rx_flag(skb), NUMA_NO_NODE);
|
|
|
|
if (!n)
|
|
return NULL;
|
|
|
|
/* Set the data pointer */
|
|
skb_reserve(n, headerlen);
|
|
/* Set the tail pointer and length */
|
|
skb_put(n, skb->len);
|
|
|
|
if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
|
|
BUG();
|
|
|
|
copy_skb_header(n, skb);
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(skb_copy);
|
|
|
|
/**
|
|
* __pskb_copy_fclone - create copy of an sk_buff with private head.
|
|
* @skb: buffer to copy
|
|
* @headroom: headroom of new skb
|
|
* @gfp_mask: allocation priority
|
|
* @fclone: if true allocate the copy of the skb from the fclone
|
|
* cache instead of the head cache; it is recommended to set this
|
|
* to true for the cases where the copy will likely be cloned
|
|
*
|
|
* Make a copy of both an &sk_buff and part of its data, located
|
|
* in header. Fragmented data remain shared. This is used when
|
|
* the caller wishes to modify only header of &sk_buff and needs
|
|
* private copy of the header to alter. Returns %NULL on failure
|
|
* or the pointer to the buffer on success.
|
|
* The returned buffer has a reference count of 1.
|
|
*/
|
|
|
|
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
|
|
gfp_t gfp_mask, bool fclone)
|
|
{
|
|
unsigned int size = skb_headlen(skb) + headroom;
|
|
int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
|
|
struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
|
|
|
|
if (!n)
|
|
goto out;
|
|
|
|
/* Set the data pointer */
|
|
skb_reserve(n, headroom);
|
|
/* Set the tail pointer and length */
|
|
skb_put(n, skb_headlen(skb));
|
|
/* Copy the bytes */
|
|
skb_copy_from_linear_data(skb, n->data, n->len);
|
|
|
|
n->truesize += skb->data_len;
|
|
n->data_len = skb->data_len;
|
|
n->len = skb->len;
|
|
|
|
if (skb_shinfo(skb)->nr_frags) {
|
|
int i;
|
|
|
|
if (skb_orphan_frags(skb, gfp_mask)) {
|
|
kfree_skb(n);
|
|
n = NULL;
|
|
goto out;
|
|
}
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
|
|
skb_frag_ref(skb, i);
|
|
}
|
|
skb_shinfo(n)->nr_frags = i;
|
|
}
|
|
|
|
if (skb_has_frag_list(skb)) {
|
|
skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
|
|
skb_clone_fraglist(n);
|
|
}
|
|
|
|
copy_skb_header(n, skb);
|
|
out:
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(__pskb_copy_fclone);
|
|
|
|
/**
|
|
* pskb_expand_head - reallocate header of &sk_buff
|
|
* @skb: buffer to reallocate
|
|
* @nhead: room to add at head
|
|
* @ntail: room to add at tail
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* Expands (or creates identical copy, if @nhead and @ntail are zero)
|
|
* header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
|
|
* reference count of 1. Returns zero in the case of success or error,
|
|
* if expansion failed. In the last case, &sk_buff is not changed.
|
|
*
|
|
* All the pointers pointing into skb header may change and must be
|
|
* reloaded after call to this function.
|
|
*/
|
|
|
|
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int i;
|
|
u8 *data;
|
|
int size = nhead + skb_end_offset(skb) + ntail;
|
|
long off;
|
|
|
|
BUG_ON(nhead < 0);
|
|
|
|
if (skb_shared(skb))
|
|
BUG();
|
|
|
|
size = SKB_DATA_ALIGN(size);
|
|
|
|
if (skb_pfmemalloc(skb))
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
|
|
gfp_mask, NUMA_NO_NODE, NULL);
|
|
if (!data)
|
|
goto nodata;
|
|
size = SKB_WITH_OVERHEAD(ksize(data));
|
|
|
|
/* Copy only real data... and, alas, header. This should be
|
|
* optimized for the cases when header is void.
|
|
*/
|
|
memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
|
|
|
|
memcpy((struct skb_shared_info *)(data + size),
|
|
skb_shinfo(skb),
|
|
offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
|
|
|
|
/*
|
|
* if shinfo is shared we must drop the old head gracefully, but if it
|
|
* is not we can just drop the old head and let the existing refcount
|
|
* be since all we did is relocate the values
|
|
*/
|
|
if (skb_cloned(skb)) {
|
|
/* copy this zero copy skb frags */
|
|
if (skb_orphan_frags(skb, gfp_mask))
|
|
goto nofrags;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
|
|
skb_frag_ref(skb, i);
|
|
|
|
if (skb_has_frag_list(skb))
|
|
skb_clone_fraglist(skb);
|
|
|
|
skb_release_data(skb);
|
|
} else {
|
|
skb_free_head(skb);
|
|
}
|
|
off = (data + nhead) - skb->head;
|
|
|
|
skb->head = data;
|
|
skb->head_frag = 0;
|
|
skb->data += off;
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
skb->end = size;
|
|
off = nhead;
|
|
#else
|
|
skb->end = skb->head + size;
|
|
#endif
|
|
skb->tail += off;
|
|
skb_headers_offset_update(skb, nhead);
|
|
skb->cloned = 0;
|
|
skb->hdr_len = 0;
|
|
skb->nohdr = 0;
|
|
atomic_set(&skb_shinfo(skb)->dataref, 1);
|
|
return 0;
|
|
|
|
nofrags:
|
|
kfree(data);
|
|
nodata:
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL(pskb_expand_head);
|
|
|
|
/* Make private copy of skb with writable head and some headroom */
|
|
|
|
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
|
|
{
|
|
struct sk_buff *skb2;
|
|
int delta = headroom - skb_headroom(skb);
|
|
|
|
if (delta <= 0)
|
|
skb2 = pskb_copy(skb, GFP_ATOMIC);
|
|
else {
|
|
skb2 = skb_clone(skb, GFP_ATOMIC);
|
|
if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
|
|
GFP_ATOMIC)) {
|
|
kfree_skb(skb2);
|
|
skb2 = NULL;
|
|
}
|
|
}
|
|
return skb2;
|
|
}
|
|
EXPORT_SYMBOL(skb_realloc_headroom);
|
|
|
|
/**
|
|
* skb_copy_expand - copy and expand sk_buff
|
|
* @skb: buffer to copy
|
|
* @newheadroom: new free bytes at head
|
|
* @newtailroom: new free bytes at tail
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* Make a copy of both an &sk_buff and its data and while doing so
|
|
* allocate additional space.
|
|
*
|
|
* This is used when the caller wishes to modify the data and needs a
|
|
* private copy of the data to alter as well as more space for new fields.
|
|
* Returns %NULL on failure or the pointer to the buffer
|
|
* on success. The returned buffer has a reference count of 1.
|
|
*
|
|
* You must pass %GFP_ATOMIC as the allocation priority if this function
|
|
* is called from an interrupt.
|
|
*/
|
|
struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
|
|
int newheadroom, int newtailroom,
|
|
gfp_t gfp_mask)
|
|
{
|
|
/*
|
|
* Allocate the copy buffer
|
|
*/
|
|
struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
|
|
gfp_mask, skb_alloc_rx_flag(skb),
|
|
NUMA_NO_NODE);
|
|
int oldheadroom = skb_headroom(skb);
|
|
int head_copy_len, head_copy_off;
|
|
|
|
if (!n)
|
|
return NULL;
|
|
|
|
skb_reserve(n, newheadroom);
|
|
|
|
/* Set the tail pointer and length */
|
|
skb_put(n, skb->len);
|
|
|
|
head_copy_len = oldheadroom;
|
|
head_copy_off = 0;
|
|
if (newheadroom <= head_copy_len)
|
|
head_copy_len = newheadroom;
|
|
else
|
|
head_copy_off = newheadroom - head_copy_len;
|
|
|
|
/* Copy the linear header and data. */
|
|
if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
|
|
skb->len + head_copy_len))
|
|
BUG();
|
|
|
|
copy_skb_header(n, skb);
|
|
|
|
skb_headers_offset_update(n, newheadroom - oldheadroom);
|
|
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(skb_copy_expand);
|
|
|
|
/**
|
|
* skb_pad - zero pad the tail of an skb
|
|
* @skb: buffer to pad
|
|
* @pad: space to pad
|
|
*
|
|
* Ensure that a buffer is followed by a padding area that is zero
|
|
* filled. Used by network drivers which may DMA or transfer data
|
|
* beyond the buffer end onto the wire.
|
|
*
|
|
* May return error in out of memory cases. The skb is freed on error.
|
|
*/
|
|
|
|
int skb_pad(struct sk_buff *skb, int pad)
|
|
{
|
|
int err;
|
|
int ntail;
|
|
|
|
/* If the skbuff is non linear tailroom is always zero.. */
|
|
if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
|
|
memset(skb->data+skb->len, 0, pad);
|
|
return 0;
|
|
}
|
|
|
|
ntail = skb->data_len + pad - (skb->end - skb->tail);
|
|
if (likely(skb_cloned(skb) || ntail > 0)) {
|
|
err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
|
|
if (unlikely(err))
|
|
goto free_skb;
|
|
}
|
|
|
|
/* FIXME: The use of this function with non-linear skb's really needs
|
|
* to be audited.
|
|
*/
|
|
err = skb_linearize(skb);
|
|
if (unlikely(err))
|
|
goto free_skb;
|
|
|
|
memset(skb->data + skb->len, 0, pad);
|
|
return 0;
|
|
|
|
free_skb:
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(skb_pad);
|
|
|
|
/**
|
|
* pskb_put - add data to the tail of a potentially fragmented buffer
|
|
* @skb: start of the buffer to use
|
|
* @tail: tail fragment of the buffer to use
|
|
* @len: amount of data to add
|
|
*
|
|
* This function extends the used data area of the potentially
|
|
* fragmented buffer. @tail must be the last fragment of @skb -- or
|
|
* @skb itself. If this would exceed the total buffer size the kernel
|
|
* will panic. A pointer to the first byte of the extra data is
|
|
* returned.
|
|
*/
|
|
|
|
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
|
|
{
|
|
if (tail != skb) {
|
|
skb->data_len += len;
|
|
skb->len += len;
|
|
}
|
|
return skb_put(tail, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pskb_put);
|
|
|
|
/**
|
|
* skb_put - add data to a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to add
|
|
*
|
|
* This function extends the used data area of the buffer. If this would
|
|
* exceed the total buffer size the kernel will panic. A pointer to the
|
|
* first byte of the extra data is returned.
|
|
*/
|
|
unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned char *tmp = skb_tail_pointer(skb);
|
|
SKB_LINEAR_ASSERT(skb);
|
|
skb->tail += len;
|
|
skb->len += len;
|
|
if (unlikely(skb->tail > skb->end))
|
|
skb_over_panic(skb, len, __builtin_return_address(0));
|
|
return tmp;
|
|
}
|
|
EXPORT_SYMBOL(skb_put);
|
|
|
|
/**
|
|
* skb_push - add data to the start of a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to add
|
|
*
|
|
* This function extends the used data area of the buffer at the buffer
|
|
* start. If this would exceed the total buffer headroom the kernel will
|
|
* panic. A pointer to the first byte of the extra data is returned.
|
|
*/
|
|
unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->data -= len;
|
|
skb->len += len;
|
|
if (unlikely(skb->data<skb->head))
|
|
skb_under_panic(skb, len, __builtin_return_address(0));
|
|
return skb->data;
|
|
}
|
|
EXPORT_SYMBOL(skb_push);
|
|
|
|
/**
|
|
* skb_pull - remove data from the start of a buffer
|
|
* @skb: buffer to use
|
|
* @len: amount of data to remove
|
|
*
|
|
* This function removes data from the start of a buffer, returning
|
|
* the memory to the headroom. A pointer to the next data in the buffer
|
|
* is returned. Once the data has been pulled future pushes will overwrite
|
|
* the old data.
|
|
*/
|
|
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return skb_pull_inline(skb, len);
|
|
}
|
|
EXPORT_SYMBOL(skb_pull);
|
|
|
|
/**
|
|
* skb_trim - remove end from a buffer
|
|
* @skb: buffer to alter
|
|
* @len: new length
|
|
*
|
|
* Cut the length of a buffer down by removing data from the tail. If
|
|
* the buffer is already under the length specified it is not modified.
|
|
* The skb must be linear.
|
|
*/
|
|
void skb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (skb->len > len)
|
|
__skb_trim(skb, len);
|
|
}
|
|
EXPORT_SYMBOL(skb_trim);
|
|
|
|
/* Trims skb to length len. It can change skb pointers.
|
|
*/
|
|
|
|
int ___pskb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
struct sk_buff **fragp;
|
|
struct sk_buff *frag;
|
|
int offset = skb_headlen(skb);
|
|
int nfrags = skb_shinfo(skb)->nr_frags;
|
|
int i;
|
|
int err;
|
|
|
|
if (skb_cloned(skb) &&
|
|
unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
|
|
return err;
|
|
|
|
i = 0;
|
|
if (offset >= len)
|
|
goto drop_pages;
|
|
|
|
for (; i < nfrags; i++) {
|
|
int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (end < len) {
|
|
offset = end;
|
|
continue;
|
|
}
|
|
|
|
skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
|
|
|
|
drop_pages:
|
|
skb_shinfo(skb)->nr_frags = i;
|
|
|
|
for (; i < nfrags; i++)
|
|
skb_frag_unref(skb, i);
|
|
|
|
if (skb_has_frag_list(skb))
|
|
skb_drop_fraglist(skb);
|
|
goto done;
|
|
}
|
|
|
|
for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
|
|
fragp = &frag->next) {
|
|
int end = offset + frag->len;
|
|
|
|
if (skb_shared(frag)) {
|
|
struct sk_buff *nfrag;
|
|
|
|
nfrag = skb_clone(frag, GFP_ATOMIC);
|
|
if (unlikely(!nfrag))
|
|
return -ENOMEM;
|
|
|
|
nfrag->next = frag->next;
|
|
consume_skb(frag);
|
|
frag = nfrag;
|
|
*fragp = frag;
|
|
}
|
|
|
|
if (end < len) {
|
|
offset = end;
|
|
continue;
|
|
}
|
|
|
|
if (end > len &&
|
|
unlikely((err = pskb_trim(frag, len - offset))))
|
|
return err;
|
|
|
|
if (frag->next)
|
|
skb_drop_list(&frag->next);
|
|
break;
|
|
}
|
|
|
|
done:
|
|
if (len > skb_headlen(skb)) {
|
|
skb->data_len -= skb->len - len;
|
|
skb->len = len;
|
|
} else {
|
|
skb->len = len;
|
|
skb->data_len = 0;
|
|
skb_set_tail_pointer(skb, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(___pskb_trim);
|
|
|
|
/**
|
|
* __pskb_pull_tail - advance tail of skb header
|
|
* @skb: buffer to reallocate
|
|
* @delta: number of bytes to advance tail
|
|
*
|
|
* The function makes a sense only on a fragmented &sk_buff,
|
|
* it expands header moving its tail forward and copying necessary
|
|
* data from fragmented part.
|
|
*
|
|
* &sk_buff MUST have reference count of 1.
|
|
*
|
|
* Returns %NULL (and &sk_buff does not change) if pull failed
|
|
* or value of new tail of skb in the case of success.
|
|
*
|
|
* All the pointers pointing into skb header may change and must be
|
|
* reloaded after call to this function.
|
|
*/
|
|
|
|
/* Moves tail of skb head forward, copying data from fragmented part,
|
|
* when it is necessary.
|
|
* 1. It may fail due to malloc failure.
|
|
* 2. It may change skb pointers.
|
|
*
|
|
* It is pretty complicated. Luckily, it is called only in exceptional cases.
|
|
*/
|
|
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
|
|
{
|
|
/* If skb has not enough free space at tail, get new one
|
|
* plus 128 bytes for future expansions. If we have enough
|
|
* room at tail, reallocate without expansion only if skb is cloned.
|
|
*/
|
|
int i, k, eat = (skb->tail + delta) - skb->end;
|
|
|
|
if (eat > 0 || skb_cloned(skb)) {
|
|
if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
|
|
GFP_ATOMIC))
|
|
return NULL;
|
|
}
|
|
|
|
if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
|
|
BUG();
|
|
|
|
/* Optimization: no fragments, no reasons to preestimate
|
|
* size of pulled pages. Superb.
|
|
*/
|
|
if (!skb_has_frag_list(skb))
|
|
goto pull_pages;
|
|
|
|
/* Estimate size of pulled pages. */
|
|
eat = delta;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (size >= eat)
|
|
goto pull_pages;
|
|
eat -= size;
|
|
}
|
|
|
|
/* If we need update frag list, we are in troubles.
|
|
* Certainly, it possible to add an offset to skb data,
|
|
* but taking into account that pulling is expected to
|
|
* be very rare operation, it is worth to fight against
|
|
* further bloating skb head and crucify ourselves here instead.
|
|
* Pure masohism, indeed. 8)8)
|
|
*/
|
|
if (eat) {
|
|
struct sk_buff *list = skb_shinfo(skb)->frag_list;
|
|
struct sk_buff *clone = NULL;
|
|
struct sk_buff *insp = NULL;
|
|
|
|
do {
|
|
BUG_ON(!list);
|
|
|
|
if (list->len <= eat) {
|
|
/* Eaten as whole. */
|
|
eat -= list->len;
|
|
list = list->next;
|
|
insp = list;
|
|
} else {
|
|
/* Eaten partially. */
|
|
|
|
if (skb_shared(list)) {
|
|
/* Sucks! We need to fork list. :-( */
|
|
clone = skb_clone(list, GFP_ATOMIC);
|
|
if (!clone)
|
|
return NULL;
|
|
insp = list->next;
|
|
list = clone;
|
|
} else {
|
|
/* This may be pulled without
|
|
* problems. */
|
|
insp = list;
|
|
}
|
|
if (!pskb_pull(list, eat)) {
|
|
kfree_skb(clone);
|
|
return NULL;
|
|
}
|
|
break;
|
|
}
|
|
} while (eat);
|
|
|
|
/* Free pulled out fragments. */
|
|
while ((list = skb_shinfo(skb)->frag_list) != insp) {
|
|
skb_shinfo(skb)->frag_list = list->next;
|
|
kfree_skb(list);
|
|
}
|
|
/* And insert new clone at head. */
|
|
if (clone) {
|
|
clone->next = list;
|
|
skb_shinfo(skb)->frag_list = clone;
|
|
}
|
|
}
|
|
/* Success! Now we may commit changes to skb data. */
|
|
|
|
pull_pages:
|
|
eat = delta;
|
|
k = 0;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (size <= eat) {
|
|
skb_frag_unref(skb, i);
|
|
eat -= size;
|
|
} else {
|
|
skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
|
|
if (eat) {
|
|
skb_shinfo(skb)->frags[k].page_offset += eat;
|
|
skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
|
|
eat = 0;
|
|
}
|
|
k++;
|
|
}
|
|
}
|
|
skb_shinfo(skb)->nr_frags = k;
|
|
|
|
skb->tail += delta;
|
|
skb->data_len -= delta;
|
|
|
|
return skb_tail_pointer(skb);
|
|
}
|
|
EXPORT_SYMBOL(__pskb_pull_tail);
|
|
|
|
/**
|
|
* skb_copy_bits - copy bits from skb to kernel buffer
|
|
* @skb: source skb
|
|
* @offset: offset in source
|
|
* @to: destination buffer
|
|
* @len: number of bytes to copy
|
|
*
|
|
* Copy the specified number of bytes from the source skb to the
|
|
* destination buffer.
|
|
*
|
|
* CAUTION ! :
|
|
* If its prototype is ever changed,
|
|
* check arch/{*}/net/{*}.S files,
|
|
* since it is called from BPF assembly code.
|
|
*/
|
|
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
struct sk_buff *frag_iter;
|
|
int i, copy;
|
|
|
|
if (offset > (int)skb->len - len)
|
|
goto fault;
|
|
|
|
/* Copy header. */
|
|
if ((copy = start - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
skb_copy_from_linear_data_offset(skb, offset, to, copy);
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
to += copy;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(f);
|
|
if ((copy = end - offset) > 0) {
|
|
u8 *vaddr;
|
|
|
|
if (copy > len)
|
|
copy = len;
|
|
|
|
vaddr = kmap_atomic(skb_frag_page(f));
|
|
memcpy(to,
|
|
vaddr + f->page_offset + offset - start,
|
|
copy);
|
|
kunmap_atomic(vaddr);
|
|
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
to += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
if ((copy = end - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
if (skb_copy_bits(frag_iter, offset - start, to, copy))
|
|
goto fault;
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
to += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
fault:
|
|
return -EFAULT;
|
|
}
|
|
EXPORT_SYMBOL(skb_copy_bits);
|
|
|
|
/*
|
|
* Callback from splice_to_pipe(), if we need to release some pages
|
|
* at the end of the spd in case we error'ed out in filling the pipe.
|
|
*/
|
|
static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
|
|
{
|
|
put_page(spd->pages[i]);
|
|
}
|
|
|
|
static struct page *linear_to_page(struct page *page, unsigned int *len,
|
|
unsigned int *offset,
|
|
struct sock *sk)
|
|
{
|
|
struct page_frag *pfrag = sk_page_frag(sk);
|
|
|
|
if (!sk_page_frag_refill(sk, pfrag))
|
|
return NULL;
|
|
|
|
*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
|
|
|
|
memcpy(page_address(pfrag->page) + pfrag->offset,
|
|
page_address(page) + *offset, *len);
|
|
*offset = pfrag->offset;
|
|
pfrag->offset += *len;
|
|
|
|
return pfrag->page;
|
|
}
|
|
|
|
static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
|
|
struct page *page,
|
|
unsigned int offset)
|
|
{
|
|
return spd->nr_pages &&
|
|
spd->pages[spd->nr_pages - 1] == page &&
|
|
(spd->partial[spd->nr_pages - 1].offset +
|
|
spd->partial[spd->nr_pages - 1].len == offset);
|
|
}
|
|
|
|
/*
|
|
* Fill page/offset/length into spd, if it can hold more pages.
|
|
*/
|
|
static bool spd_fill_page(struct splice_pipe_desc *spd,
|
|
struct pipe_inode_info *pipe, struct page *page,
|
|
unsigned int *len, unsigned int offset,
|
|
bool linear,
|
|
struct sock *sk)
|
|
{
|
|
if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
|
|
return true;
|
|
|
|
if (linear) {
|
|
page = linear_to_page(page, len, &offset, sk);
|
|
if (!page)
|
|
return true;
|
|
}
|
|
if (spd_can_coalesce(spd, page, offset)) {
|
|
spd->partial[spd->nr_pages - 1].len += *len;
|
|
return false;
|
|
}
|
|
get_page(page);
|
|
spd->pages[spd->nr_pages] = page;
|
|
spd->partial[spd->nr_pages].len = *len;
|
|
spd->partial[spd->nr_pages].offset = offset;
|
|
spd->nr_pages++;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool __splice_segment(struct page *page, unsigned int poff,
|
|
unsigned int plen, unsigned int *off,
|
|
unsigned int *len,
|
|
struct splice_pipe_desc *spd, bool linear,
|
|
struct sock *sk,
|
|
struct pipe_inode_info *pipe)
|
|
{
|
|
if (!*len)
|
|
return true;
|
|
|
|
/* skip this segment if already processed */
|
|
if (*off >= plen) {
|
|
*off -= plen;
|
|
return false;
|
|
}
|
|
|
|
/* ignore any bits we already processed */
|
|
poff += *off;
|
|
plen -= *off;
|
|
*off = 0;
|
|
|
|
do {
|
|
unsigned int flen = min(*len, plen);
|
|
|
|
if (spd_fill_page(spd, pipe, page, &flen, poff,
|
|
linear, sk))
|
|
return true;
|
|
poff += flen;
|
|
plen -= flen;
|
|
*len -= flen;
|
|
} while (*len && plen);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Map linear and fragment data from the skb to spd. It reports true if the
|
|
* pipe is full or if we already spliced the requested length.
|
|
*/
|
|
static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
|
|
unsigned int *offset, unsigned int *len,
|
|
struct splice_pipe_desc *spd, struct sock *sk)
|
|
{
|
|
int seg;
|
|
struct sk_buff *iter;
|
|
|
|
/* map the linear part :
|
|
* If skb->head_frag is set, this 'linear' part is backed by a
|
|
* fragment, and if the head is not shared with any clones then
|
|
* we can avoid a copy since we own the head portion of this page.
|
|
*/
|
|
if (__splice_segment(virt_to_page(skb->data),
|
|
(unsigned long) skb->data & (PAGE_SIZE - 1),
|
|
skb_headlen(skb),
|
|
offset, len, spd,
|
|
skb_head_is_locked(skb),
|
|
sk, pipe))
|
|
return true;
|
|
|
|
/*
|
|
* then map the fragments
|
|
*/
|
|
for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
|
|
const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
|
|
|
|
if (__splice_segment(skb_frag_page(f),
|
|
f->page_offset, skb_frag_size(f),
|
|
offset, len, spd, false, sk, pipe))
|
|
return true;
|
|
}
|
|
|
|
skb_walk_frags(skb, iter) {
|
|
if (*offset >= iter->len) {
|
|
*offset -= iter->len;
|
|
continue;
|
|
}
|
|
/* __skb_splice_bits() only fails if the output has no room
|
|
* left, so no point in going over the frag_list for the error
|
|
* case.
|
|
*/
|
|
if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Map data from the skb to a pipe. Should handle both the linear part,
|
|
* the fragments, and the frag list.
|
|
*/
|
|
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
|
|
struct pipe_inode_info *pipe, unsigned int tlen,
|
|
unsigned int flags)
|
|
{
|
|
struct partial_page partial[MAX_SKB_FRAGS];
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
struct splice_pipe_desc spd = {
|
|
.pages = pages,
|
|
.partial = partial,
|
|
.nr_pages_max = MAX_SKB_FRAGS,
|
|
.flags = flags,
|
|
.ops = &nosteal_pipe_buf_ops,
|
|
.spd_release = sock_spd_release,
|
|
};
|
|
int ret = 0;
|
|
|
|
__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
|
|
|
|
if (spd.nr_pages)
|
|
ret = splice_to_pipe(pipe, &spd);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_splice_bits);
|
|
|
|
/**
|
|
* skb_store_bits - store bits from kernel buffer to skb
|
|
* @skb: destination buffer
|
|
* @offset: offset in destination
|
|
* @from: source buffer
|
|
* @len: number of bytes to copy
|
|
*
|
|
* Copy the specified number of bytes from the source buffer to the
|
|
* destination skb. This function handles all the messy bits of
|
|
* traversing fragment lists and such.
|
|
*/
|
|
|
|
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
struct sk_buff *frag_iter;
|
|
int i, copy;
|
|
|
|
if (offset > (int)skb->len - len)
|
|
goto fault;
|
|
|
|
if ((copy = start - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
skb_copy_to_linear_data_offset(skb, offset, from, copy);
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
from += copy;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(frag);
|
|
if ((copy = end - offset) > 0) {
|
|
u8 *vaddr;
|
|
|
|
if (copy > len)
|
|
copy = len;
|
|
|
|
vaddr = kmap_atomic(skb_frag_page(frag));
|
|
memcpy(vaddr + frag->page_offset + offset - start,
|
|
from, copy);
|
|
kunmap_atomic(vaddr);
|
|
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
from += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
if ((copy = end - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
if (skb_store_bits(frag_iter, offset - start,
|
|
from, copy))
|
|
goto fault;
|
|
if ((len -= copy) == 0)
|
|
return 0;
|
|
offset += copy;
|
|
from += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
if (!len)
|
|
return 0;
|
|
|
|
fault:
|
|
return -EFAULT;
|
|
}
|
|
EXPORT_SYMBOL(skb_store_bits);
|
|
|
|
/* Checksum skb data. */
|
|
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
|
|
__wsum csum, const struct skb_checksum_ops *ops)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
int i, copy = start - offset;
|
|
struct sk_buff *frag_iter;
|
|
int pos = 0;
|
|
|
|
/* Checksum header. */
|
|
if (copy > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
csum = ops->update(skb->data + offset, copy, csum);
|
|
if ((len -= copy) == 0)
|
|
return csum;
|
|
offset += copy;
|
|
pos = copy;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(frag);
|
|
if ((copy = end - offset) > 0) {
|
|
__wsum csum2;
|
|
u8 *vaddr;
|
|
|
|
if (copy > len)
|
|
copy = len;
|
|
vaddr = kmap_atomic(skb_frag_page(frag));
|
|
csum2 = ops->update(vaddr + frag->page_offset +
|
|
offset - start, copy, 0);
|
|
kunmap_atomic(vaddr);
|
|
csum = ops->combine(csum, csum2, pos, copy);
|
|
if (!(len -= copy))
|
|
return csum;
|
|
offset += copy;
|
|
pos += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
if ((copy = end - offset) > 0) {
|
|
__wsum csum2;
|
|
if (copy > len)
|
|
copy = len;
|
|
csum2 = __skb_checksum(frag_iter, offset - start,
|
|
copy, 0, ops);
|
|
csum = ops->combine(csum, csum2, pos, copy);
|
|
if ((len -= copy) == 0)
|
|
return csum;
|
|
offset += copy;
|
|
pos += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
BUG_ON(len);
|
|
|
|
return csum;
|
|
}
|
|
EXPORT_SYMBOL(__skb_checksum);
|
|
|
|
__wsum skb_checksum(const struct sk_buff *skb, int offset,
|
|
int len, __wsum csum)
|
|
{
|
|
const struct skb_checksum_ops ops = {
|
|
.update = csum_partial_ext,
|
|
.combine = csum_block_add_ext,
|
|
};
|
|
|
|
return __skb_checksum(skb, offset, len, csum, &ops);
|
|
}
|
|
EXPORT_SYMBOL(skb_checksum);
|
|
|
|
/* Both of above in one bottle. */
|
|
|
|
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
|
|
u8 *to, int len, __wsum csum)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
int i, copy = start - offset;
|
|
struct sk_buff *frag_iter;
|
|
int pos = 0;
|
|
|
|
/* Copy header. */
|
|
if (copy > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
csum = csum_partial_copy_nocheck(skb->data + offset, to,
|
|
copy, csum);
|
|
if ((len -= copy) == 0)
|
|
return csum;
|
|
offset += copy;
|
|
to += copy;
|
|
pos = copy;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
if ((copy = end - offset) > 0) {
|
|
__wsum csum2;
|
|
u8 *vaddr;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
if (copy > len)
|
|
copy = len;
|
|
vaddr = kmap_atomic(skb_frag_page(frag));
|
|
csum2 = csum_partial_copy_nocheck(vaddr +
|
|
frag->page_offset +
|
|
offset - start, to,
|
|
copy, 0);
|
|
kunmap_atomic(vaddr);
|
|
csum = csum_block_add(csum, csum2, pos);
|
|
if (!(len -= copy))
|
|
return csum;
|
|
offset += copy;
|
|
to += copy;
|
|
pos += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
skb_walk_frags(skb, frag_iter) {
|
|
__wsum csum2;
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
if ((copy = end - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
csum2 = skb_copy_and_csum_bits(frag_iter,
|
|
offset - start,
|
|
to, copy, 0);
|
|
csum = csum_block_add(csum, csum2, pos);
|
|
if ((len -= copy) == 0)
|
|
return csum;
|
|
offset += copy;
|
|
to += copy;
|
|
pos += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
BUG_ON(len);
|
|
return csum;
|
|
}
|
|
EXPORT_SYMBOL(skb_copy_and_csum_bits);
|
|
|
|
/**
|
|
* skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
|
|
* @from: source buffer
|
|
*
|
|
* Calculates the amount of linear headroom needed in the 'to' skb passed
|
|
* into skb_zerocopy().
|
|
*/
|
|
unsigned int
|
|
skb_zerocopy_headlen(const struct sk_buff *from)
|
|
{
|
|
unsigned int hlen = 0;
|
|
|
|
if (!from->head_frag ||
|
|
skb_headlen(from) < L1_CACHE_BYTES ||
|
|
skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
|
|
hlen = skb_headlen(from);
|
|
|
|
if (skb_has_frag_list(from))
|
|
hlen = from->len;
|
|
|
|
return hlen;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
|
|
|
|
/**
|
|
* skb_zerocopy - Zero copy skb to skb
|
|
* @to: destination buffer
|
|
* @from: source buffer
|
|
* @len: number of bytes to copy from source buffer
|
|
* @hlen: size of linear headroom in destination buffer
|
|
*
|
|
* Copies up to `len` bytes from `from` to `to` by creating references
|
|
* to the frags in the source buffer.
|
|
*
|
|
* The `hlen` as calculated by skb_zerocopy_headlen() specifies the
|
|
* headroom in the `to` buffer.
|
|
*
|
|
* Return value:
|
|
* 0: everything is OK
|
|
* -ENOMEM: couldn't orphan frags of @from due to lack of memory
|
|
* -EFAULT: skb_copy_bits() found some problem with skb geometry
|
|
*/
|
|
int
|
|
skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
|
|
{
|
|
int i, j = 0;
|
|
int plen = 0; /* length of skb->head fragment */
|
|
int ret;
|
|
struct page *page;
|
|
unsigned int offset;
|
|
|
|
BUG_ON(!from->head_frag && !hlen);
|
|
|
|
/* dont bother with small payloads */
|
|
if (len <= skb_tailroom(to))
|
|
return skb_copy_bits(from, 0, skb_put(to, len), len);
|
|
|
|
if (hlen) {
|
|
ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
len -= hlen;
|
|
} else {
|
|
plen = min_t(int, skb_headlen(from), len);
|
|
if (plen) {
|
|
page = virt_to_head_page(from->head);
|
|
offset = from->data - (unsigned char *)page_address(page);
|
|
__skb_fill_page_desc(to, 0, page, offset, plen);
|
|
get_page(page);
|
|
j = 1;
|
|
len -= plen;
|
|
}
|
|
}
|
|
|
|
to->truesize += len + plen;
|
|
to->len += len + plen;
|
|
to->data_len += len + plen;
|
|
|
|
if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
|
|
skb_tx_error(from);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
|
|
if (!len)
|
|
break;
|
|
skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
|
|
skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
|
|
len -= skb_shinfo(to)->frags[j].size;
|
|
skb_frag_ref(to, j);
|
|
j++;
|
|
}
|
|
skb_shinfo(to)->nr_frags = j;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_zerocopy);
|
|
|
|
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
|
|
{
|
|
__wsum csum;
|
|
long csstart;
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
csstart = skb_checksum_start_offset(skb);
|
|
else
|
|
csstart = skb_headlen(skb);
|
|
|
|
BUG_ON(csstart > skb_headlen(skb));
|
|
|
|
skb_copy_from_linear_data(skb, to, csstart);
|
|
|
|
csum = 0;
|
|
if (csstart != skb->len)
|
|
csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
|
|
skb->len - csstart, 0);
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
long csstuff = csstart + skb->csum_offset;
|
|
|
|
*((__sum16 *)(to + csstuff)) = csum_fold(csum);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(skb_copy_and_csum_dev);
|
|
|
|
/**
|
|
* skb_dequeue - remove from the head of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the head of the list. The list lock is taken so the function
|
|
* may be used safely with other locking list functions. The head item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
|
|
struct sk_buff *skb_dequeue(struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
struct sk_buff *result;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
result = __skb_dequeue(list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(skb_dequeue);
|
|
|
|
/**
|
|
* skb_dequeue_tail - remove from the tail of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the tail of the list. The list lock is taken so the function
|
|
* may be used safely with other locking list functions. The tail item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
struct sk_buff *result;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
result = __skb_dequeue_tail(list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(skb_dequeue_tail);
|
|
|
|
/**
|
|
* skb_queue_purge - empty a list
|
|
* @list: list to empty
|
|
*
|
|
* Delete all buffers on an &sk_buff list. Each buffer is removed from
|
|
* the list and one reference dropped. This function takes the list
|
|
* lock and is atomic with respect to other list locking functions.
|
|
*/
|
|
void skb_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
while ((skb = skb_dequeue(list)) != NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
EXPORT_SYMBOL(skb_queue_purge);
|
|
|
|
/**
|
|
* skb_rbtree_purge - empty a skb rbtree
|
|
* @root: root of the rbtree to empty
|
|
*
|
|
* Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
|
|
* the list and one reference dropped. This function does not take
|
|
* any lock. Synchronization should be handled by the caller (e.g., TCP
|
|
* out-of-order queue is protected by the socket lock).
|
|
*/
|
|
void skb_rbtree_purge(struct rb_root *root)
|
|
{
|
|
struct sk_buff *skb, *next;
|
|
|
|
rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
|
|
kfree_skb(skb);
|
|
|
|
*root = RB_ROOT;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_head - queue a buffer at the list head
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the start of the list. This function takes the
|
|
* list lock and can be used safely with other locking &sk_buff functions
|
|
* safely.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_queue_head(list, newsk);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(skb_queue_head);
|
|
|
|
/**
|
|
* skb_queue_tail - queue a buffer at the list tail
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the tail of the list. This function takes the
|
|
* list lock and can be used safely with other locking &sk_buff functions
|
|
* safely.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_queue_tail(list, newsk);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(skb_queue_tail);
|
|
|
|
/**
|
|
* skb_unlink - remove a buffer from a list
|
|
* @skb: buffer to remove
|
|
* @list: list to use
|
|
*
|
|
* Remove a packet from a list. The list locks are taken and this
|
|
* function is atomic with respect to other list locked calls
|
|
*
|
|
* You must know what list the SKB is on.
|
|
*/
|
|
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_unlink(skb, list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(skb_unlink);
|
|
|
|
/**
|
|
* skb_append - append a buffer
|
|
* @old: buffer to insert after
|
|
* @newsk: buffer to insert
|
|
* @list: list to use
|
|
*
|
|
* Place a packet after a given packet in a list. The list locks are taken
|
|
* and this function is atomic with respect to other list locked calls.
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_queue_after(list, old, newsk);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(skb_append);
|
|
|
|
/**
|
|
* skb_insert - insert a buffer
|
|
* @old: buffer to insert before
|
|
* @newsk: buffer to insert
|
|
* @list: list to use
|
|
*
|
|
* Place a packet before a given packet in a list. The list locks are
|
|
* taken and this function is atomic with respect to other list locked
|
|
* calls.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
__skb_insert(newsk, old->prev, old, list);
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(skb_insert);
|
|
|
|
static inline void skb_split_inside_header(struct sk_buff *skb,
|
|
struct sk_buff* skb1,
|
|
const u32 len, const int pos)
|
|
{
|
|
int i;
|
|
|
|
skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
|
|
pos - len);
|
|
/* And move data appendix as is. */
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
|
|
skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
|
|
|
|
skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
|
|
skb_shinfo(skb)->nr_frags = 0;
|
|
skb1->data_len = skb->data_len;
|
|
skb1->len += skb1->data_len;
|
|
skb->data_len = 0;
|
|
skb->len = len;
|
|
skb_set_tail_pointer(skb, len);
|
|
}
|
|
|
|
static inline void skb_split_no_header(struct sk_buff *skb,
|
|
struct sk_buff* skb1,
|
|
const u32 len, int pos)
|
|
{
|
|
int i, k = 0;
|
|
const int nfrags = skb_shinfo(skb)->nr_frags;
|
|
|
|
skb_shinfo(skb)->nr_frags = 0;
|
|
skb1->len = skb1->data_len = skb->len - len;
|
|
skb->len = len;
|
|
skb->data_len = len - pos;
|
|
|
|
for (i = 0; i < nfrags; i++) {
|
|
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (pos + size > len) {
|
|
skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
|
|
|
|
if (pos < len) {
|
|
/* Split frag.
|
|
* We have two variants in this case:
|
|
* 1. Move all the frag to the second
|
|
* part, if it is possible. F.e.
|
|
* this approach is mandatory for TUX,
|
|
* where splitting is expensive.
|
|
* 2. Split is accurately. We make this.
|
|
*/
|
|
skb_frag_ref(skb, i);
|
|
skb_shinfo(skb1)->frags[0].page_offset += len - pos;
|
|
skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
|
|
skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
|
|
skb_shinfo(skb)->nr_frags++;
|
|
}
|
|
k++;
|
|
} else
|
|
skb_shinfo(skb)->nr_frags++;
|
|
pos += size;
|
|
}
|
|
skb_shinfo(skb1)->nr_frags = k;
|
|
}
|
|
|
|
/**
|
|
* skb_split - Split fragmented skb to two parts at length len.
|
|
* @skb: the buffer to split
|
|
* @skb1: the buffer to receive the second part
|
|
* @len: new length for skb
|
|
*/
|
|
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
|
|
{
|
|
int pos = skb_headlen(skb);
|
|
|
|
skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
|
|
if (len < pos) /* Split line is inside header. */
|
|
skb_split_inside_header(skb, skb1, len, pos);
|
|
else /* Second chunk has no header, nothing to copy. */
|
|
skb_split_no_header(skb, skb1, len, pos);
|
|
}
|
|
EXPORT_SYMBOL(skb_split);
|
|
|
|
/* Shifting from/to a cloned skb is a no-go.
|
|
*
|
|
* Caller cannot keep skb_shinfo related pointers past calling here!
|
|
*/
|
|
static int skb_prepare_for_shift(struct sk_buff *skb)
|
|
{
|
|
return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
}
|
|
|
|
/**
|
|
* skb_shift - Shifts paged data partially from skb to another
|
|
* @tgt: buffer into which tail data gets added
|
|
* @skb: buffer from which the paged data comes from
|
|
* @shiftlen: shift up to this many bytes
|
|
*
|
|
* Attempts to shift up to shiftlen worth of bytes, which may be less than
|
|
* the length of the skb, from skb to tgt. Returns number bytes shifted.
|
|
* It's up to caller to free skb if everything was shifted.
|
|
*
|
|
* If @tgt runs out of frags, the whole operation is aborted.
|
|
*
|
|
* Skb cannot include anything else but paged data while tgt is allowed
|
|
* to have non-paged data as well.
|
|
*
|
|
* TODO: full sized shift could be optimized but that would need
|
|
* specialized skb free'er to handle frags without up-to-date nr_frags.
|
|
*/
|
|
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
|
|
{
|
|
int from, to, merge, todo;
|
|
struct skb_frag_struct *fragfrom, *fragto;
|
|
|
|
BUG_ON(shiftlen > skb->len);
|
|
|
|
if (skb_headlen(skb))
|
|
return 0;
|
|
|
|
todo = shiftlen;
|
|
from = 0;
|
|
to = skb_shinfo(tgt)->nr_frags;
|
|
fragfrom = &skb_shinfo(skb)->frags[from];
|
|
|
|
/* Actual merge is delayed until the point when we know we can
|
|
* commit all, so that we don't have to undo partial changes
|
|
*/
|
|
if (!to ||
|
|
!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
|
|
fragfrom->page_offset)) {
|
|
merge = -1;
|
|
} else {
|
|
merge = to - 1;
|
|
|
|
todo -= skb_frag_size(fragfrom);
|
|
if (todo < 0) {
|
|
if (skb_prepare_for_shift(skb) ||
|
|
skb_prepare_for_shift(tgt))
|
|
return 0;
|
|
|
|
/* All previous frag pointers might be stale! */
|
|
fragfrom = &skb_shinfo(skb)->frags[from];
|
|
fragto = &skb_shinfo(tgt)->frags[merge];
|
|
|
|
skb_frag_size_add(fragto, shiftlen);
|
|
skb_frag_size_sub(fragfrom, shiftlen);
|
|
fragfrom->page_offset += shiftlen;
|
|
|
|
goto onlymerged;
|
|
}
|
|
|
|
from++;
|
|
}
|
|
|
|
/* Skip full, not-fitting skb to avoid expensive operations */
|
|
if ((shiftlen == skb->len) &&
|
|
(skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
|
|
return 0;
|
|
|
|
if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
|
|
return 0;
|
|
|
|
while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
|
|
if (to == MAX_SKB_FRAGS)
|
|
return 0;
|
|
|
|
fragfrom = &skb_shinfo(skb)->frags[from];
|
|
fragto = &skb_shinfo(tgt)->frags[to];
|
|
|
|
if (todo >= skb_frag_size(fragfrom)) {
|
|
*fragto = *fragfrom;
|
|
todo -= skb_frag_size(fragfrom);
|
|
from++;
|
|
to++;
|
|
|
|
} else {
|
|
__skb_frag_ref(fragfrom);
|
|
fragto->page = fragfrom->page;
|
|
fragto->page_offset = fragfrom->page_offset;
|
|
skb_frag_size_set(fragto, todo);
|
|
|
|
fragfrom->page_offset += todo;
|
|
skb_frag_size_sub(fragfrom, todo);
|
|
todo = 0;
|
|
|
|
to++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Ready to "commit" this state change to tgt */
|
|
skb_shinfo(tgt)->nr_frags = to;
|
|
|
|
if (merge >= 0) {
|
|
fragfrom = &skb_shinfo(skb)->frags[0];
|
|
fragto = &skb_shinfo(tgt)->frags[merge];
|
|
|
|
skb_frag_size_add(fragto, skb_frag_size(fragfrom));
|
|
__skb_frag_unref(fragfrom);
|
|
}
|
|
|
|
/* Reposition in the original skb */
|
|
to = 0;
|
|
while (from < skb_shinfo(skb)->nr_frags)
|
|
skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
|
|
skb_shinfo(skb)->nr_frags = to;
|
|
|
|
BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
|
|
|
|
onlymerged:
|
|
/* Most likely the tgt won't ever need its checksum anymore, skb on
|
|
* the other hand might need it if it needs to be resent
|
|
*/
|
|
tgt->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
|
|
/* Yak, is it really working this way? Some helper please? */
|
|
skb->len -= shiftlen;
|
|
skb->data_len -= shiftlen;
|
|
skb->truesize -= shiftlen;
|
|
tgt->len += shiftlen;
|
|
tgt->data_len += shiftlen;
|
|
tgt->truesize += shiftlen;
|
|
|
|
return shiftlen;
|
|
}
|
|
|
|
/**
|
|
* skb_prepare_seq_read - Prepare a sequential read of skb data
|
|
* @skb: the buffer to read
|
|
* @from: lower offset of data to be read
|
|
* @to: upper offset of data to be read
|
|
* @st: state variable
|
|
*
|
|
* Initializes the specified state variable. Must be called before
|
|
* invoking skb_seq_read() for the first time.
|
|
*/
|
|
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
|
|
unsigned int to, struct skb_seq_state *st)
|
|
{
|
|
st->lower_offset = from;
|
|
st->upper_offset = to;
|
|
st->root_skb = st->cur_skb = skb;
|
|
st->frag_idx = st->stepped_offset = 0;
|
|
st->frag_data = NULL;
|
|
}
|
|
EXPORT_SYMBOL(skb_prepare_seq_read);
|
|
|
|
/**
|
|
* skb_seq_read - Sequentially read skb data
|
|
* @consumed: number of bytes consumed by the caller so far
|
|
* @data: destination pointer for data to be returned
|
|
* @st: state variable
|
|
*
|
|
* Reads a block of skb data at @consumed relative to the
|
|
* lower offset specified to skb_prepare_seq_read(). Assigns
|
|
* the head of the data block to @data and returns the length
|
|
* of the block or 0 if the end of the skb data or the upper
|
|
* offset has been reached.
|
|
*
|
|
* The caller is not required to consume all of the data
|
|
* returned, i.e. @consumed is typically set to the number
|
|
* of bytes already consumed and the next call to
|
|
* skb_seq_read() will return the remaining part of the block.
|
|
*
|
|
* Note 1: The size of each block of data returned can be arbitrary,
|
|
* this limitation is the cost for zerocopy sequential
|
|
* reads of potentially non linear data.
|
|
*
|
|
* Note 2: Fragment lists within fragments are not implemented
|
|
* at the moment, state->root_skb could be replaced with
|
|
* a stack for this purpose.
|
|
*/
|
|
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
|
|
struct skb_seq_state *st)
|
|
{
|
|
unsigned int block_limit, abs_offset = consumed + st->lower_offset;
|
|
skb_frag_t *frag;
|
|
|
|
if (unlikely(abs_offset >= st->upper_offset)) {
|
|
if (st->frag_data) {
|
|
kunmap_atomic(st->frag_data);
|
|
st->frag_data = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
next_skb:
|
|
block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
|
|
|
|
if (abs_offset < block_limit && !st->frag_data) {
|
|
*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
|
|
return block_limit - abs_offset;
|
|
}
|
|
|
|
if (st->frag_idx == 0 && !st->frag_data)
|
|
st->stepped_offset += skb_headlen(st->cur_skb);
|
|
|
|
while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
|
|
frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
|
|
block_limit = skb_frag_size(frag) + st->stepped_offset;
|
|
|
|
if (abs_offset < block_limit) {
|
|
if (!st->frag_data)
|
|
st->frag_data = kmap_atomic(skb_frag_page(frag));
|
|
|
|
*data = (u8 *) st->frag_data + frag->page_offset +
|
|
(abs_offset - st->stepped_offset);
|
|
|
|
return block_limit - abs_offset;
|
|
}
|
|
|
|
if (st->frag_data) {
|
|
kunmap_atomic(st->frag_data);
|
|
st->frag_data = NULL;
|
|
}
|
|
|
|
st->frag_idx++;
|
|
st->stepped_offset += skb_frag_size(frag);
|
|
}
|
|
|
|
if (st->frag_data) {
|
|
kunmap_atomic(st->frag_data);
|
|
st->frag_data = NULL;
|
|
}
|
|
|
|
if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
|
|
st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
|
|
st->frag_idx = 0;
|
|
goto next_skb;
|
|
} else if (st->cur_skb->next) {
|
|
st->cur_skb = st->cur_skb->next;
|
|
st->frag_idx = 0;
|
|
goto next_skb;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(skb_seq_read);
|
|
|
|
/**
|
|
* skb_abort_seq_read - Abort a sequential read of skb data
|
|
* @st: state variable
|
|
*
|
|
* Must be called if skb_seq_read() was not called until it
|
|
* returned 0.
|
|
*/
|
|
void skb_abort_seq_read(struct skb_seq_state *st)
|
|
{
|
|
if (st->frag_data)
|
|
kunmap_atomic(st->frag_data);
|
|
}
|
|
EXPORT_SYMBOL(skb_abort_seq_read);
|
|
|
|
#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
|
|
|
|
static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
|
|
struct ts_config *conf,
|
|
struct ts_state *state)
|
|
{
|
|
return skb_seq_read(offset, text, TS_SKB_CB(state));
|
|
}
|
|
|
|
static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
|
|
{
|
|
skb_abort_seq_read(TS_SKB_CB(state));
|
|
}
|
|
|
|
/**
|
|
* skb_find_text - Find a text pattern in skb data
|
|
* @skb: the buffer to look in
|
|
* @from: search offset
|
|
* @to: search limit
|
|
* @config: textsearch configuration
|
|
*
|
|
* Finds a pattern in the skb data according to the specified
|
|
* textsearch configuration. Use textsearch_next() to retrieve
|
|
* subsequent occurrences of the pattern. Returns the offset
|
|
* to the first occurrence or UINT_MAX if no match was found.
|
|
*/
|
|
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
|
|
unsigned int to, struct ts_config *config)
|
|
{
|
|
struct ts_state state;
|
|
unsigned int ret;
|
|
|
|
config->get_next_block = skb_ts_get_next_block;
|
|
config->finish = skb_ts_finish;
|
|
|
|
skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
|
|
|
|
ret = textsearch_find(config, &state);
|
|
return (ret <= to - from ? ret : UINT_MAX);
|
|
}
|
|
EXPORT_SYMBOL(skb_find_text);
|
|
|
|
/**
|
|
* skb_append_datato_frags - append the user data to a skb
|
|
* @sk: sock structure
|
|
* @skb: skb structure to be appended with user data.
|
|
* @getfrag: call back function to be used for getting the user data
|
|
* @from: pointer to user message iov
|
|
* @length: length of the iov message
|
|
*
|
|
* Description: This procedure append the user data in the fragment part
|
|
* of the skb if any page alloc fails user this procedure returns -ENOMEM
|
|
*/
|
|
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
|
|
int (*getfrag)(void *from, char *to, int offset,
|
|
int len, int odd, struct sk_buff *skb),
|
|
void *from, int length)
|
|
{
|
|
int frg_cnt = skb_shinfo(skb)->nr_frags;
|
|
int copy;
|
|
int offset = 0;
|
|
int ret;
|
|
struct page_frag *pfrag = ¤t->task_frag;
|
|
|
|
do {
|
|
/* Return error if we don't have space for new frag */
|
|
if (frg_cnt >= MAX_SKB_FRAGS)
|
|
return -EMSGSIZE;
|
|
|
|
if (!sk_page_frag_refill(sk, pfrag))
|
|
return -ENOMEM;
|
|
|
|
/* copy the user data to page */
|
|
copy = min_t(int, length, pfrag->size - pfrag->offset);
|
|
|
|
ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
|
|
offset, copy, 0, skb);
|
|
if (ret < 0)
|
|
return -EFAULT;
|
|
|
|
/* copy was successful so update the size parameters */
|
|
skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
|
|
copy);
|
|
frg_cnt++;
|
|
pfrag->offset += copy;
|
|
get_page(pfrag->page);
|
|
|
|
skb->truesize += copy;
|
|
atomic_add(copy, &sk->sk_wmem_alloc);
|
|
skb->len += copy;
|
|
skb->data_len += copy;
|
|
offset += copy;
|
|
length -= copy;
|
|
|
|
} while (length > 0);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(skb_append_datato_frags);
|
|
|
|
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
|
|
int offset, size_t size)
|
|
{
|
|
int i = skb_shinfo(skb)->nr_frags;
|
|
|
|
if (skb_can_coalesce(skb, i, page, offset)) {
|
|
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
|
|
} else if (i < MAX_SKB_FRAGS) {
|
|
get_page(page);
|
|
skb_fill_page_desc(skb, i, page, offset, size);
|
|
} else {
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_append_pagefrags);
|
|
|
|
/**
|
|
* skb_pull_rcsum - pull skb and update receive checksum
|
|
* @skb: buffer to update
|
|
* @len: length of data pulled
|
|
*
|
|
* This function performs an skb_pull on the packet and updates
|
|
* the CHECKSUM_COMPLETE checksum. It should be used on
|
|
* receive path processing instead of skb_pull unless you know
|
|
* that the checksum difference is zero (e.g., a valid IP header)
|
|
* or you are setting ip_summed to CHECKSUM_NONE.
|
|
*/
|
|
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned char *data = skb->data;
|
|
|
|
BUG_ON(len > skb->len);
|
|
__skb_pull(skb, len);
|
|
skb_postpull_rcsum(skb, data, len);
|
|
return skb->data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_pull_rcsum);
|
|
|
|
/**
|
|
* skb_segment - Perform protocol segmentation on skb.
|
|
* @head_skb: buffer to segment
|
|
* @features: features for the output path (see dev->features)
|
|
*
|
|
* This function performs segmentation on the given skb. It returns
|
|
* a pointer to the first in a list of new skbs for the segments.
|
|
* In case of error it returns ERR_PTR(err).
|
|
*/
|
|
struct sk_buff *skb_segment(struct sk_buff *head_skb,
|
|
netdev_features_t features)
|
|
{
|
|
struct sk_buff *segs = NULL;
|
|
struct sk_buff *tail = NULL;
|
|
struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
|
|
skb_frag_t *frag = skb_shinfo(head_skb)->frags;
|
|
unsigned int mss = skb_shinfo(head_skb)->gso_size;
|
|
unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
|
|
struct sk_buff *frag_skb = head_skb;
|
|
unsigned int offset = doffset;
|
|
unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
|
|
unsigned int partial_segs = 0;
|
|
unsigned int headroom;
|
|
unsigned int len = head_skb->len;
|
|
__be16 proto;
|
|
bool csum, sg;
|
|
int nfrags = skb_shinfo(head_skb)->nr_frags;
|
|
int err = -ENOMEM;
|
|
int i = 0;
|
|
int pos;
|
|
int dummy;
|
|
|
|
__skb_push(head_skb, doffset);
|
|
proto = skb_network_protocol(head_skb, &dummy);
|
|
if (unlikely(!proto))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sg = !!(features & NETIF_F_SG);
|
|
csum = !!can_checksum_protocol(features, proto);
|
|
|
|
if (sg && csum && (mss != GSO_BY_FRAGS)) {
|
|
if (!(features & NETIF_F_GSO_PARTIAL)) {
|
|
struct sk_buff *iter;
|
|
|
|
if (!list_skb ||
|
|
!net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
|
|
goto normal;
|
|
|
|
/* Split the buffer at the frag_list pointer.
|
|
* This is based on the assumption that all
|
|
* buffers in the chain excluding the last
|
|
* containing the same amount of data.
|
|
*/
|
|
skb_walk_frags(head_skb, iter) {
|
|
if (skb_headlen(iter))
|
|
goto normal;
|
|
|
|
len -= iter->len;
|
|
}
|
|
}
|
|
|
|
/* GSO partial only requires that we trim off any excess that
|
|
* doesn't fit into an MSS sized block, so take care of that
|
|
* now.
|
|
*/
|
|
partial_segs = len / mss;
|
|
if (partial_segs > 1)
|
|
mss *= partial_segs;
|
|
else
|
|
partial_segs = 0;
|
|
}
|
|
|
|
normal:
|
|
headroom = skb_headroom(head_skb);
|
|
pos = skb_headlen(head_skb);
|
|
|
|
do {
|
|
struct sk_buff *nskb;
|
|
skb_frag_t *nskb_frag;
|
|
int hsize;
|
|
int size;
|
|
|
|
if (unlikely(mss == GSO_BY_FRAGS)) {
|
|
len = list_skb->len;
|
|
} else {
|
|
len = head_skb->len - offset;
|
|
if (len > mss)
|
|
len = mss;
|
|
}
|
|
|
|
hsize = skb_headlen(head_skb) - offset;
|
|
if (hsize < 0)
|
|
hsize = 0;
|
|
if (hsize > len || !sg)
|
|
hsize = len;
|
|
|
|
if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
|
|
(skb_headlen(list_skb) == len || sg)) {
|
|
BUG_ON(skb_headlen(list_skb) > len);
|
|
|
|
i = 0;
|
|
nfrags = skb_shinfo(list_skb)->nr_frags;
|
|
frag = skb_shinfo(list_skb)->frags;
|
|
frag_skb = list_skb;
|
|
pos += skb_headlen(list_skb);
|
|
|
|
while (pos < offset + len) {
|
|
BUG_ON(i >= nfrags);
|
|
|
|
size = skb_frag_size(frag);
|
|
if (pos + size > offset + len)
|
|
break;
|
|
|
|
i++;
|
|
pos += size;
|
|
frag++;
|
|
}
|
|
|
|
nskb = skb_clone(list_skb, GFP_ATOMIC);
|
|
list_skb = list_skb->next;
|
|
|
|
if (unlikely(!nskb))
|
|
goto err;
|
|
|
|
if (unlikely(pskb_trim(nskb, len))) {
|
|
kfree_skb(nskb);
|
|
goto err;
|
|
}
|
|
|
|
hsize = skb_end_offset(nskb);
|
|
if (skb_cow_head(nskb, doffset + headroom)) {
|
|
kfree_skb(nskb);
|
|
goto err;
|
|
}
|
|
|
|
nskb->truesize += skb_end_offset(nskb) - hsize;
|
|
skb_release_head_state(nskb);
|
|
__skb_push(nskb, doffset);
|
|
} else {
|
|
nskb = __alloc_skb(hsize + doffset + headroom,
|
|
GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
|
|
NUMA_NO_NODE);
|
|
|
|
if (unlikely(!nskb))
|
|
goto err;
|
|
|
|
skb_reserve(nskb, headroom);
|
|
__skb_put(nskb, doffset);
|
|
}
|
|
|
|
if (segs)
|
|
tail->next = nskb;
|
|
else
|
|
segs = nskb;
|
|
tail = nskb;
|
|
|
|
__copy_skb_header(nskb, head_skb);
|
|
|
|
skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
|
|
skb_reset_mac_len(nskb);
|
|
|
|
skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
|
|
nskb->data - tnl_hlen,
|
|
doffset + tnl_hlen);
|
|
|
|
if (nskb->len == len + doffset)
|
|
goto perform_csum_check;
|
|
|
|
if (!sg) {
|
|
if (!nskb->remcsum_offload)
|
|
nskb->ip_summed = CHECKSUM_NONE;
|
|
SKB_GSO_CB(nskb)->csum =
|
|
skb_copy_and_csum_bits(head_skb, offset,
|
|
skb_put(nskb, len),
|
|
len, 0);
|
|
SKB_GSO_CB(nskb)->csum_start =
|
|
skb_headroom(nskb) + doffset;
|
|
continue;
|
|
}
|
|
|
|
nskb_frag = skb_shinfo(nskb)->frags;
|
|
|
|
skb_copy_from_linear_data_offset(head_skb, offset,
|
|
skb_put(nskb, hsize), hsize);
|
|
|
|
skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
|
|
SKBTX_SHARED_FRAG;
|
|
|
|
while (pos < offset + len) {
|
|
if (i >= nfrags) {
|
|
BUG_ON(skb_headlen(list_skb));
|
|
|
|
i = 0;
|
|
nfrags = skb_shinfo(list_skb)->nr_frags;
|
|
frag = skb_shinfo(list_skb)->frags;
|
|
frag_skb = list_skb;
|
|
|
|
BUG_ON(!nfrags);
|
|
|
|
list_skb = list_skb->next;
|
|
}
|
|
|
|
if (unlikely(skb_shinfo(nskb)->nr_frags >=
|
|
MAX_SKB_FRAGS)) {
|
|
net_warn_ratelimited(
|
|
"skb_segment: too many frags: %u %u\n",
|
|
pos, mss);
|
|
goto err;
|
|
}
|
|
|
|
if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
|
|
goto err;
|
|
|
|
*nskb_frag = *frag;
|
|
__skb_frag_ref(nskb_frag);
|
|
size = skb_frag_size(nskb_frag);
|
|
|
|
if (pos < offset) {
|
|
nskb_frag->page_offset += offset - pos;
|
|
skb_frag_size_sub(nskb_frag, offset - pos);
|
|
}
|
|
|
|
skb_shinfo(nskb)->nr_frags++;
|
|
|
|
if (pos + size <= offset + len) {
|
|
i++;
|
|
frag++;
|
|
pos += size;
|
|
} else {
|
|
skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
|
|
goto skip_fraglist;
|
|
}
|
|
|
|
nskb_frag++;
|
|
}
|
|
|
|
skip_fraglist:
|
|
nskb->data_len = len - hsize;
|
|
nskb->len += nskb->data_len;
|
|
nskb->truesize += nskb->data_len;
|
|
|
|
perform_csum_check:
|
|
if (!csum) {
|
|
if (skb_has_shared_frag(nskb)) {
|
|
err = __skb_linearize(nskb);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
if (!nskb->remcsum_offload)
|
|
nskb->ip_summed = CHECKSUM_NONE;
|
|
SKB_GSO_CB(nskb)->csum =
|
|
skb_checksum(nskb, doffset,
|
|
nskb->len - doffset, 0);
|
|
SKB_GSO_CB(nskb)->csum_start =
|
|
skb_headroom(nskb) + doffset;
|
|
}
|
|
} while ((offset += len) < head_skb->len);
|
|
|
|
/* Some callers want to get the end of the list.
|
|
* Put it in segs->prev to avoid walking the list.
|
|
* (see validate_xmit_skb_list() for example)
|
|
*/
|
|
segs->prev = tail;
|
|
|
|
if (partial_segs) {
|
|
struct sk_buff *iter;
|
|
int type = skb_shinfo(head_skb)->gso_type;
|
|
unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
|
|
|
|
/* Update type to add partial and then remove dodgy if set */
|
|
type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
|
|
type &= ~SKB_GSO_DODGY;
|
|
|
|
/* Update GSO info and prepare to start updating headers on
|
|
* our way back down the stack of protocols.
|
|
*/
|
|
for (iter = segs; iter; iter = iter->next) {
|
|
skb_shinfo(iter)->gso_size = gso_size;
|
|
skb_shinfo(iter)->gso_segs = partial_segs;
|
|
skb_shinfo(iter)->gso_type = type;
|
|
SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
|
|
}
|
|
|
|
if (tail->len - doffset <= gso_size)
|
|
skb_shinfo(tail)->gso_size = 0;
|
|
else if (tail != segs)
|
|
skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
|
|
}
|
|
|
|
/* Following permits correct backpressure, for protocols
|
|
* using skb_set_owner_w().
|
|
* Idea is to tranfert ownership from head_skb to last segment.
|
|
*/
|
|
if (head_skb->destructor == sock_wfree) {
|
|
swap(tail->truesize, head_skb->truesize);
|
|
swap(tail->destructor, head_skb->destructor);
|
|
swap(tail->sk, head_skb->sk);
|
|
}
|
|
return segs;
|
|
|
|
err:
|
|
kfree_skb_list(segs);
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_segment);
|
|
|
|
int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
|
|
{
|
|
struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
|
|
unsigned int offset = skb_gro_offset(skb);
|
|
unsigned int headlen = skb_headlen(skb);
|
|
unsigned int len = skb_gro_len(skb);
|
|
struct sk_buff *lp, *p = *head;
|
|
unsigned int delta_truesize;
|
|
|
|
if (unlikely(p->len + len >= 65536))
|
|
return -E2BIG;
|
|
|
|
lp = NAPI_GRO_CB(p)->last;
|
|
pinfo = skb_shinfo(lp);
|
|
|
|
if (headlen <= offset) {
|
|
skb_frag_t *frag;
|
|
skb_frag_t *frag2;
|
|
int i = skbinfo->nr_frags;
|
|
int nr_frags = pinfo->nr_frags + i;
|
|
|
|
if (nr_frags > MAX_SKB_FRAGS)
|
|
goto merge;
|
|
|
|
offset -= headlen;
|
|
pinfo->nr_frags = nr_frags;
|
|
skbinfo->nr_frags = 0;
|
|
|
|
frag = pinfo->frags + nr_frags;
|
|
frag2 = skbinfo->frags + i;
|
|
do {
|
|
*--frag = *--frag2;
|
|
} while (--i);
|
|
|
|
frag->page_offset += offset;
|
|
skb_frag_size_sub(frag, offset);
|
|
|
|
/* all fragments truesize : remove (head size + sk_buff) */
|
|
delta_truesize = skb->truesize -
|
|
SKB_TRUESIZE(skb_end_offset(skb));
|
|
|
|
skb->truesize -= skb->data_len;
|
|
skb->len -= skb->data_len;
|
|
skb->data_len = 0;
|
|
|
|
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
|
|
goto done;
|
|
} else if (skb->head_frag) {
|
|
int nr_frags = pinfo->nr_frags;
|
|
skb_frag_t *frag = pinfo->frags + nr_frags;
|
|
struct page *page = virt_to_head_page(skb->head);
|
|
unsigned int first_size = headlen - offset;
|
|
unsigned int first_offset;
|
|
|
|
if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
|
|
goto merge;
|
|
|
|
first_offset = skb->data -
|
|
(unsigned char *)page_address(page) +
|
|
offset;
|
|
|
|
pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
|
|
|
|
frag->page.p = page;
|
|
frag->page_offset = first_offset;
|
|
skb_frag_size_set(frag, first_size);
|
|
|
|
memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
|
|
/* We dont need to clear skbinfo->nr_frags here */
|
|
|
|
delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
|
|
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
|
|
goto done;
|
|
}
|
|
|
|
merge:
|
|
delta_truesize = skb->truesize;
|
|
if (offset > headlen) {
|
|
unsigned int eat = offset - headlen;
|
|
|
|
skbinfo->frags[0].page_offset += eat;
|
|
skb_frag_size_sub(&skbinfo->frags[0], eat);
|
|
skb->data_len -= eat;
|
|
skb->len -= eat;
|
|
offset = headlen;
|
|
}
|
|
|
|
__skb_pull(skb, offset);
|
|
|
|
if (NAPI_GRO_CB(p)->last == p)
|
|
skb_shinfo(p)->frag_list = skb;
|
|
else
|
|
NAPI_GRO_CB(p)->last->next = skb;
|
|
NAPI_GRO_CB(p)->last = skb;
|
|
__skb_header_release(skb);
|
|
lp = p;
|
|
|
|
done:
|
|
NAPI_GRO_CB(p)->count++;
|
|
p->data_len += len;
|
|
p->truesize += delta_truesize;
|
|
p->len += len;
|
|
if (lp != p) {
|
|
lp->data_len += len;
|
|
lp->truesize += delta_truesize;
|
|
lp->len += len;
|
|
}
|
|
NAPI_GRO_CB(skb)->same_flow = 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_gro_receive);
|
|
|
|
void __init skb_init(void)
|
|
{
|
|
skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
|
|
sizeof(struct sk_buff),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
|
|
NULL);
|
|
skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
|
|
sizeof(struct sk_buff_fclones),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
|
|
NULL);
|
|
}
|
|
|
|
/**
|
|
* skb_to_sgvec - Fill a scatter-gather list from a socket buffer
|
|
* @skb: Socket buffer containing the buffers to be mapped
|
|
* @sg: The scatter-gather list to map into
|
|
* @offset: The offset into the buffer's contents to start mapping
|
|
* @len: Length of buffer space to be mapped
|
|
*
|
|
* Fill the specified scatter-gather list with mappings/pointers into a
|
|
* region of the buffer space attached to a socket buffer.
|
|
*/
|
|
static int
|
|
__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
int i, copy = start - offset;
|
|
struct sk_buff *frag_iter;
|
|
int elt = 0;
|
|
|
|
if (copy > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
sg_set_buf(sg, skb->data + offset, copy);
|
|
elt++;
|
|
if ((len -= copy) == 0)
|
|
return elt;
|
|
offset += copy;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
if ((copy = end - offset) > 0) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
if (copy > len)
|
|
copy = len;
|
|
sg_set_page(&sg[elt], skb_frag_page(frag), copy,
|
|
frag->page_offset+offset-start);
|
|
elt++;
|
|
if (!(len -= copy))
|
|
return elt;
|
|
offset += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
if ((copy = end - offset) > 0) {
|
|
if (copy > len)
|
|
copy = len;
|
|
elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
|
|
copy);
|
|
if ((len -= copy) == 0)
|
|
return elt;
|
|
offset += copy;
|
|
}
|
|
start = end;
|
|
}
|
|
BUG_ON(len);
|
|
return elt;
|
|
}
|
|
|
|
/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
|
|
* sglist without mark the sg which contain last skb data as the end.
|
|
* So the caller can mannipulate sg list as will when padding new data after
|
|
* the first call without calling sg_unmark_end to expend sg list.
|
|
*
|
|
* Scenario to use skb_to_sgvec_nomark:
|
|
* 1. sg_init_table
|
|
* 2. skb_to_sgvec_nomark(payload1)
|
|
* 3. skb_to_sgvec_nomark(payload2)
|
|
*
|
|
* This is equivalent to:
|
|
* 1. sg_init_table
|
|
* 2. skb_to_sgvec(payload1)
|
|
* 3. sg_unmark_end
|
|
* 4. skb_to_sgvec(payload2)
|
|
*
|
|
* When mapping mutilple payload conditionally, skb_to_sgvec_nomark
|
|
* is more preferable.
|
|
*/
|
|
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
|
|
int offset, int len)
|
|
{
|
|
return __skb_to_sgvec(skb, sg, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
|
|
|
|
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
|
|
{
|
|
int nsg = __skb_to_sgvec(skb, sg, offset, len);
|
|
|
|
sg_mark_end(&sg[nsg - 1]);
|
|
|
|
return nsg;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_to_sgvec);
|
|
|
|
/**
|
|
* skb_cow_data - Check that a socket buffer's data buffers are writable
|
|
* @skb: The socket buffer to check.
|
|
* @tailbits: Amount of trailing space to be added
|
|
* @trailer: Returned pointer to the skb where the @tailbits space begins
|
|
*
|
|
* Make sure that the data buffers attached to a socket buffer are
|
|
* writable. If they are not, private copies are made of the data buffers
|
|
* and the socket buffer is set to use these instead.
|
|
*
|
|
* If @tailbits is given, make sure that there is space to write @tailbits
|
|
* bytes of data beyond current end of socket buffer. @trailer will be
|
|
* set to point to the skb in which this space begins.
|
|
*
|
|
* The number of scatterlist elements required to completely map the
|
|
* COW'd and extended socket buffer will be returned.
|
|
*/
|
|
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
|
|
{
|
|
int copyflag;
|
|
int elt;
|
|
struct sk_buff *skb1, **skb_p;
|
|
|
|
/* If skb is cloned or its head is paged, reallocate
|
|
* head pulling out all the pages (pages are considered not writable
|
|
* at the moment even if they are anonymous).
|
|
*/
|
|
if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
|
|
__pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Easy case. Most of packets will go this way. */
|
|
if (!skb_has_frag_list(skb)) {
|
|
/* A little of trouble, not enough of space for trailer.
|
|
* This should not happen, when stack is tuned to generate
|
|
* good frames. OK, on miss we reallocate and reserve even more
|
|
* space, 128 bytes is fair. */
|
|
|
|
if (skb_tailroom(skb) < tailbits &&
|
|
pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
|
|
return -ENOMEM;
|
|
|
|
/* Voila! */
|
|
*trailer = skb;
|
|
return 1;
|
|
}
|
|
|
|
/* Misery. We are in troubles, going to mincer fragments... */
|
|
|
|
elt = 1;
|
|
skb_p = &skb_shinfo(skb)->frag_list;
|
|
copyflag = 0;
|
|
|
|
while ((skb1 = *skb_p) != NULL) {
|
|
int ntail = 0;
|
|
|
|
/* The fragment is partially pulled by someone,
|
|
* this can happen on input. Copy it and everything
|
|
* after it. */
|
|
|
|
if (skb_shared(skb1))
|
|
copyflag = 1;
|
|
|
|
/* If the skb is the last, worry about trailer. */
|
|
|
|
if (skb1->next == NULL && tailbits) {
|
|
if (skb_shinfo(skb1)->nr_frags ||
|
|
skb_has_frag_list(skb1) ||
|
|
skb_tailroom(skb1) < tailbits)
|
|
ntail = tailbits + 128;
|
|
}
|
|
|
|
if (copyflag ||
|
|
skb_cloned(skb1) ||
|
|
ntail ||
|
|
skb_shinfo(skb1)->nr_frags ||
|
|
skb_has_frag_list(skb1)) {
|
|
struct sk_buff *skb2;
|
|
|
|
/* Fuck, we are miserable poor guys... */
|
|
if (ntail == 0)
|
|
skb2 = skb_copy(skb1, GFP_ATOMIC);
|
|
else
|
|
skb2 = skb_copy_expand(skb1,
|
|
skb_headroom(skb1),
|
|
ntail,
|
|
GFP_ATOMIC);
|
|
if (unlikely(skb2 == NULL))
|
|
return -ENOMEM;
|
|
|
|
if (skb1->sk)
|
|
skb_set_owner_w(skb2, skb1->sk);
|
|
|
|
/* Looking around. Are we still alive?
|
|
* OK, link new skb, drop old one */
|
|
|
|
skb2->next = skb1->next;
|
|
*skb_p = skb2;
|
|
kfree_skb(skb1);
|
|
skb1 = skb2;
|
|
}
|
|
elt++;
|
|
*trailer = skb1;
|
|
skb_p = &skb1->next;
|
|
}
|
|
|
|
return elt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_cow_data);
|
|
|
|
static void sock_rmem_free(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
|
|
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
|
|
}
|
|
|
|
/*
|
|
* Note: We dont mem charge error packets (no sk_forward_alloc changes)
|
|
*/
|
|
int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
|
|
(unsigned int)sk->sk_rcvbuf)
|
|
return -ENOMEM;
|
|
|
|
skb_orphan(skb);
|
|
skb->sk = sk;
|
|
skb->destructor = sock_rmem_free;
|
|
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
|
|
|
|
/* before exiting rcu section, make sure dst is refcounted */
|
|
skb_dst_force(skb);
|
|
|
|
skb_queue_tail(&sk->sk_error_queue, skb);
|
|
if (!sock_flag(sk, SOCK_DEAD))
|
|
sk->sk_data_ready(sk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sock_queue_err_skb);
|
|
|
|
static bool is_icmp_err_skb(const struct sk_buff *skb)
|
|
{
|
|
return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
|
|
SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
|
|
}
|
|
|
|
struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
|
|
{
|
|
struct sk_buff_head *q = &sk->sk_error_queue;
|
|
struct sk_buff *skb, *skb_next = NULL;
|
|
bool icmp_next = false;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
skb = __skb_dequeue(q);
|
|
if (skb && (skb_next = skb_peek(q)))
|
|
icmp_next = is_icmp_err_skb(skb_next);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
|
|
if (is_icmp_err_skb(skb) && !icmp_next)
|
|
sk->sk_err = 0;
|
|
|
|
if (skb_next)
|
|
sk->sk_error_report(sk);
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(sock_dequeue_err_skb);
|
|
|
|
/**
|
|
* skb_clone_sk - create clone of skb, and take reference to socket
|
|
* @skb: the skb to clone
|
|
*
|
|
* This function creates a clone of a buffer that holds a reference on
|
|
* sk_refcnt. Buffers created via this function are meant to be
|
|
* returned using sock_queue_err_skb, or free via kfree_skb.
|
|
*
|
|
* When passing buffers allocated with this function to sock_queue_err_skb
|
|
* it is necessary to wrap the call with sock_hold/sock_put in order to
|
|
* prevent the socket from being released prior to being enqueued on
|
|
* the sk_error_queue.
|
|
*/
|
|
struct sk_buff *skb_clone_sk(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct sk_buff *clone;
|
|
|
|
if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
|
|
return NULL;
|
|
|
|
clone = skb_clone(skb, GFP_ATOMIC);
|
|
if (!clone) {
|
|
sock_put(sk);
|
|
return NULL;
|
|
}
|
|
|
|
clone->sk = sk;
|
|
clone->destructor = sock_efree;
|
|
|
|
return clone;
|
|
}
|
|
EXPORT_SYMBOL(skb_clone_sk);
|
|
|
|
static void __skb_complete_tx_timestamp(struct sk_buff *skb,
|
|
struct sock *sk,
|
|
int tstype)
|
|
{
|
|
struct sock_exterr_skb *serr;
|
|
int err;
|
|
|
|
serr = SKB_EXT_ERR(skb);
|
|
memset(serr, 0, sizeof(*serr));
|
|
serr->ee.ee_errno = ENOMSG;
|
|
serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
|
|
serr->ee.ee_info = tstype;
|
|
if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
|
|
serr->ee.ee_data = skb_shinfo(skb)->tskey;
|
|
if (sk->sk_protocol == IPPROTO_TCP &&
|
|
sk->sk_type == SOCK_STREAM)
|
|
serr->ee.ee_data -= sk->sk_tskey;
|
|
}
|
|
|
|
err = sock_queue_err_skb(sk, skb);
|
|
|
|
if (err)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
|
|
{
|
|
bool ret;
|
|
|
|
if (likely(sysctl_tstamp_allow_data || tsonly))
|
|
return true;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
ret = sk->sk_socket && sk->sk_socket->file &&
|
|
file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
return ret;
|
|
}
|
|
|
|
void skb_complete_tx_timestamp(struct sk_buff *skb,
|
|
struct skb_shared_hwtstamps *hwtstamps)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
|
|
if (!skb_may_tx_timestamp(sk, false))
|
|
return;
|
|
|
|
/* take a reference to prevent skb_orphan() from freeing the socket */
|
|
sock_hold(sk);
|
|
|
|
*skb_hwtstamps(skb) = *hwtstamps;
|
|
__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
|
|
|
|
sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
|
|
|
|
void __skb_tstamp_tx(struct sk_buff *orig_skb,
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
struct sock *sk, int tstype)
|
|
{
|
|
struct sk_buff *skb;
|
|
bool tsonly;
|
|
|
|
if (!sk)
|
|
return;
|
|
|
|
tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
|
|
if (!skb_may_tx_timestamp(sk, tsonly))
|
|
return;
|
|
|
|
if (tsonly) {
|
|
#ifdef CONFIG_INET
|
|
if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
|
|
sk->sk_protocol == IPPROTO_TCP &&
|
|
sk->sk_type == SOCK_STREAM)
|
|
skb = tcp_get_timestamping_opt_stats(sk);
|
|
else
|
|
#endif
|
|
skb = alloc_skb(0, GFP_ATOMIC);
|
|
} else {
|
|
skb = skb_clone(orig_skb, GFP_ATOMIC);
|
|
}
|
|
if (!skb)
|
|
return;
|
|
|
|
if (tsonly) {
|
|
skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
|
|
skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
|
|
}
|
|
|
|
if (hwtstamps)
|
|
*skb_hwtstamps(skb) = *hwtstamps;
|
|
else
|
|
skb->tstamp = ktime_get_real();
|
|
|
|
__skb_complete_tx_timestamp(skb, sk, tstype);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
|
|
|
|
void skb_tstamp_tx(struct sk_buff *orig_skb,
|
|
struct skb_shared_hwtstamps *hwtstamps)
|
|
{
|
|
return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
|
|
SCM_TSTAMP_SND);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_tstamp_tx);
|
|
|
|
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct sock_exterr_skb *serr;
|
|
int err;
|
|
|
|
skb->wifi_acked_valid = 1;
|
|
skb->wifi_acked = acked;
|
|
|
|
serr = SKB_EXT_ERR(skb);
|
|
memset(serr, 0, sizeof(*serr));
|
|
serr->ee.ee_errno = ENOMSG;
|
|
serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
|
|
|
|
/* take a reference to prevent skb_orphan() from freeing the socket */
|
|
sock_hold(sk);
|
|
|
|
err = sock_queue_err_skb(sk, skb);
|
|
if (err)
|
|
kfree_skb(skb);
|
|
|
|
sock_put(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
|
|
|
|
/**
|
|
* skb_partial_csum_set - set up and verify partial csum values for packet
|
|
* @skb: the skb to set
|
|
* @start: the number of bytes after skb->data to start checksumming.
|
|
* @off: the offset from start to place the checksum.
|
|
*
|
|
* For untrusted partially-checksummed packets, we need to make sure the values
|
|
* for skb->csum_start and skb->csum_offset are valid so we don't oops.
|
|
*
|
|
* This function checks and sets those values and skb->ip_summed: if this
|
|
* returns false you should drop the packet.
|
|
*/
|
|
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
|
|
{
|
|
if (unlikely(start > skb_headlen(skb)) ||
|
|
unlikely((int)start + off > skb_headlen(skb) - 2)) {
|
|
net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
|
|
start, off, skb_headlen(skb));
|
|
return false;
|
|
}
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->csum_start = skb_headroom(skb) + start;
|
|
skb->csum_offset = off;
|
|
skb_set_transport_header(skb, start);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_partial_csum_set);
|
|
|
|
static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
|
|
unsigned int max)
|
|
{
|
|
if (skb_headlen(skb) >= len)
|
|
return 0;
|
|
|
|
/* If we need to pullup then pullup to the max, so we
|
|
* won't need to do it again.
|
|
*/
|
|
if (max > skb->len)
|
|
max = skb->len;
|
|
|
|
if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (skb_headlen(skb) < len)
|
|
return -EPROTO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_TCP_HDR_LEN (15 * 4)
|
|
|
|
static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
|
|
typeof(IPPROTO_IP) proto,
|
|
unsigned int off)
|
|
{
|
|
switch (proto) {
|
|
int err;
|
|
|
|
case IPPROTO_TCP:
|
|
err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
|
|
off + MAX_TCP_HDR_LEN);
|
|
if (!err && !skb_partial_csum_set(skb, off,
|
|
offsetof(struct tcphdr,
|
|
check)))
|
|
err = -EPROTO;
|
|
return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
|
|
|
|
case IPPROTO_UDP:
|
|
err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
|
|
off + sizeof(struct udphdr));
|
|
if (!err && !skb_partial_csum_set(skb, off,
|
|
offsetof(struct udphdr,
|
|
check)))
|
|
err = -EPROTO;
|
|
return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
|
|
}
|
|
|
|
return ERR_PTR(-EPROTO);
|
|
}
|
|
|
|
/* This value should be large enough to cover a tagged ethernet header plus
|
|
* maximally sized IP and TCP or UDP headers.
|
|
*/
|
|
#define MAX_IP_HDR_LEN 128
|
|
|
|
static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
|
|
{
|
|
unsigned int off;
|
|
bool fragment;
|
|
__sum16 *csum;
|
|
int err;
|
|
|
|
fragment = false;
|
|
|
|
err = skb_maybe_pull_tail(skb,
|
|
sizeof(struct iphdr),
|
|
MAX_IP_HDR_LEN);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
|
|
fragment = true;
|
|
|
|
off = ip_hdrlen(skb);
|
|
|
|
err = -EPROTO;
|
|
|
|
if (fragment)
|
|
goto out;
|
|
|
|
csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
|
|
if (IS_ERR(csum))
|
|
return PTR_ERR(csum);
|
|
|
|
if (recalculate)
|
|
*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
|
|
ip_hdr(skb)->daddr,
|
|
skb->len - off,
|
|
ip_hdr(skb)->protocol, 0);
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/* This value should be large enough to cover a tagged ethernet header plus
|
|
* an IPv6 header, all options, and a maximal TCP or UDP header.
|
|
*/
|
|
#define MAX_IPV6_HDR_LEN 256
|
|
|
|
#define OPT_HDR(type, skb, off) \
|
|
(type *)(skb_network_header(skb) + (off))
|
|
|
|
static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
|
|
{
|
|
int err;
|
|
u8 nexthdr;
|
|
unsigned int off;
|
|
unsigned int len;
|
|
bool fragment;
|
|
bool done;
|
|
__sum16 *csum;
|
|
|
|
fragment = false;
|
|
done = false;
|
|
|
|
off = sizeof(struct ipv6hdr);
|
|
|
|
err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
nexthdr = ipv6_hdr(skb)->nexthdr;
|
|
|
|
len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
|
|
while (off <= len && !done) {
|
|
switch (nexthdr) {
|
|
case IPPROTO_DSTOPTS:
|
|
case IPPROTO_HOPOPTS:
|
|
case IPPROTO_ROUTING: {
|
|
struct ipv6_opt_hdr *hp;
|
|
|
|
err = skb_maybe_pull_tail(skb,
|
|
off +
|
|
sizeof(struct ipv6_opt_hdr),
|
|
MAX_IPV6_HDR_LEN);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
|
|
nexthdr = hp->nexthdr;
|
|
off += ipv6_optlen(hp);
|
|
break;
|
|
}
|
|
case IPPROTO_AH: {
|
|
struct ip_auth_hdr *hp;
|
|
|
|
err = skb_maybe_pull_tail(skb,
|
|
off +
|
|
sizeof(struct ip_auth_hdr),
|
|
MAX_IPV6_HDR_LEN);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
hp = OPT_HDR(struct ip_auth_hdr, skb, off);
|
|
nexthdr = hp->nexthdr;
|
|
off += ipv6_authlen(hp);
|
|
break;
|
|
}
|
|
case IPPROTO_FRAGMENT: {
|
|
struct frag_hdr *hp;
|
|
|
|
err = skb_maybe_pull_tail(skb,
|
|
off +
|
|
sizeof(struct frag_hdr),
|
|
MAX_IPV6_HDR_LEN);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
hp = OPT_HDR(struct frag_hdr, skb, off);
|
|
|
|
if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
|
|
fragment = true;
|
|
|
|
nexthdr = hp->nexthdr;
|
|
off += sizeof(struct frag_hdr);
|
|
break;
|
|
}
|
|
default:
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
err = -EPROTO;
|
|
|
|
if (!done || fragment)
|
|
goto out;
|
|
|
|
csum = skb_checksum_setup_ip(skb, nexthdr, off);
|
|
if (IS_ERR(csum))
|
|
return PTR_ERR(csum);
|
|
|
|
if (recalculate)
|
|
*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
skb->len - off, nexthdr, 0);
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* skb_checksum_setup - set up partial checksum offset
|
|
* @skb: the skb to set up
|
|
* @recalculate: if true the pseudo-header checksum will be recalculated
|
|
*/
|
|
int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
|
|
{
|
|
int err;
|
|
|
|
switch (skb->protocol) {
|
|
case htons(ETH_P_IP):
|
|
err = skb_checksum_setup_ipv4(skb, recalculate);
|
|
break;
|
|
|
|
case htons(ETH_P_IPV6):
|
|
err = skb_checksum_setup_ipv6(skb, recalculate);
|
|
break;
|
|
|
|
default:
|
|
err = -EPROTO;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(skb_checksum_setup);
|
|
|
|
/**
|
|
* skb_checksum_maybe_trim - maybe trims the given skb
|
|
* @skb: the skb to check
|
|
* @transport_len: the data length beyond the network header
|
|
*
|
|
* Checks whether the given skb has data beyond the given transport length.
|
|
* If so, returns a cloned skb trimmed to this transport length.
|
|
* Otherwise returns the provided skb. Returns NULL in error cases
|
|
* (e.g. transport_len exceeds skb length or out-of-memory).
|
|
*
|
|
* Caller needs to set the skb transport header and free any returned skb if it
|
|
* differs from the provided skb.
|
|
*/
|
|
static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
|
|
unsigned int transport_len)
|
|
{
|
|
struct sk_buff *skb_chk;
|
|
unsigned int len = skb_transport_offset(skb) + transport_len;
|
|
int ret;
|
|
|
|
if (skb->len < len)
|
|
return NULL;
|
|
else if (skb->len == len)
|
|
return skb;
|
|
|
|
skb_chk = skb_clone(skb, GFP_ATOMIC);
|
|
if (!skb_chk)
|
|
return NULL;
|
|
|
|
ret = pskb_trim_rcsum(skb_chk, len);
|
|
if (ret) {
|
|
kfree_skb(skb_chk);
|
|
return NULL;
|
|
}
|
|
|
|
return skb_chk;
|
|
}
|
|
|
|
/**
|
|
* skb_checksum_trimmed - validate checksum of an skb
|
|
* @skb: the skb to check
|
|
* @transport_len: the data length beyond the network header
|
|
* @skb_chkf: checksum function to use
|
|
*
|
|
* Applies the given checksum function skb_chkf to the provided skb.
|
|
* Returns a checked and maybe trimmed skb. Returns NULL on error.
|
|
*
|
|
* If the skb has data beyond the given transport length, then a
|
|
* trimmed & cloned skb is checked and returned.
|
|
*
|
|
* Caller needs to set the skb transport header and free any returned skb if it
|
|
* differs from the provided skb.
|
|
*/
|
|
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
|
|
unsigned int transport_len,
|
|
__sum16(*skb_chkf)(struct sk_buff *skb))
|
|
{
|
|
struct sk_buff *skb_chk;
|
|
unsigned int offset = skb_transport_offset(skb);
|
|
__sum16 ret;
|
|
|
|
skb_chk = skb_checksum_maybe_trim(skb, transport_len);
|
|
if (!skb_chk)
|
|
goto err;
|
|
|
|
if (!pskb_may_pull(skb_chk, offset))
|
|
goto err;
|
|
|
|
skb_pull_rcsum(skb_chk, offset);
|
|
ret = skb_chkf(skb_chk);
|
|
skb_push_rcsum(skb_chk, offset);
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
return skb_chk;
|
|
|
|
err:
|
|
if (skb_chk && skb_chk != skb)
|
|
kfree_skb(skb_chk);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
EXPORT_SYMBOL(skb_checksum_trimmed);
|
|
|
|
void __skb_warn_lro_forwarding(const struct sk_buff *skb)
|
|
{
|
|
net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
|
|
skb->dev->name);
|
|
}
|
|
EXPORT_SYMBOL(__skb_warn_lro_forwarding);
|
|
|
|
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
|
|
{
|
|
if (head_stolen) {
|
|
skb_release_head_state(skb);
|
|
kmem_cache_free(skbuff_head_cache, skb);
|
|
} else {
|
|
__kfree_skb(skb);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kfree_skb_partial);
|
|
|
|
/**
|
|
* skb_try_coalesce - try to merge skb to prior one
|
|
* @to: prior buffer
|
|
* @from: buffer to add
|
|
* @fragstolen: pointer to boolean
|
|
* @delta_truesize: how much more was allocated than was requested
|
|
*/
|
|
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
|
|
bool *fragstolen, int *delta_truesize)
|
|
{
|
|
int i, delta, len = from->len;
|
|
|
|
*fragstolen = false;
|
|
|
|
if (skb_cloned(to))
|
|
return false;
|
|
|
|
if (len <= skb_tailroom(to)) {
|
|
if (len)
|
|
BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
|
|
*delta_truesize = 0;
|
|
return true;
|
|
}
|
|
|
|
if (skb_has_frag_list(to) || skb_has_frag_list(from))
|
|
return false;
|
|
|
|
if (skb_headlen(from) != 0) {
|
|
struct page *page;
|
|
unsigned int offset;
|
|
|
|
if (skb_shinfo(to)->nr_frags +
|
|
skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
|
|
return false;
|
|
|
|
if (skb_head_is_locked(from))
|
|
return false;
|
|
|
|
delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
|
|
|
|
page = virt_to_head_page(from->head);
|
|
offset = from->data - (unsigned char *)page_address(page);
|
|
|
|
skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
|
|
page, offset, skb_headlen(from));
|
|
*fragstolen = true;
|
|
} else {
|
|
if (skb_shinfo(to)->nr_frags +
|
|
skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
|
|
return false;
|
|
|
|
delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
|
|
}
|
|
|
|
WARN_ON_ONCE(delta < len);
|
|
|
|
memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
|
|
skb_shinfo(from)->frags,
|
|
skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
|
|
skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
|
|
|
|
if (!skb_cloned(from))
|
|
skb_shinfo(from)->nr_frags = 0;
|
|
|
|
/* if the skb is not cloned this does nothing
|
|
* since we set nr_frags to 0.
|
|
*/
|
|
for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
|
|
skb_frag_ref(from, i);
|
|
|
|
to->truesize += delta;
|
|
to->len += len;
|
|
to->data_len += len;
|
|
|
|
*delta_truesize = delta;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(skb_try_coalesce);
|
|
|
|
/**
|
|
* skb_scrub_packet - scrub an skb
|
|
*
|
|
* @skb: buffer to clean
|
|
* @xnet: packet is crossing netns
|
|
*
|
|
* skb_scrub_packet can be used after encapsulating or decapsulting a packet
|
|
* into/from a tunnel. Some information have to be cleared during these
|
|
* operations.
|
|
* skb_scrub_packet can also be used to clean a skb before injecting it in
|
|
* another namespace (@xnet == true). We have to clear all information in the
|
|
* skb that could impact namespace isolation.
|
|
*/
|
|
void skb_scrub_packet(struct sk_buff *skb, bool xnet)
|
|
{
|
|
skb->tstamp.tv64 = 0;
|
|
skb->pkt_type = PACKET_HOST;
|
|
skb->skb_iif = 0;
|
|
skb->ignore_df = 0;
|
|
skb_dst_drop(skb);
|
|
secpath_reset(skb);
|
|
nf_reset(skb);
|
|
nf_reset_trace(skb);
|
|
|
|
if (!xnet)
|
|
return;
|
|
|
|
skb_orphan(skb);
|
|
skb->mark = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_scrub_packet);
|
|
|
|
/**
|
|
* skb_gso_transport_seglen - Return length of individual segments of a gso packet
|
|
*
|
|
* @skb: GSO skb
|
|
*
|
|
* skb_gso_transport_seglen is used to determine the real size of the
|
|
* individual segments, including Layer4 headers (TCP/UDP).
|
|
*
|
|
* The MAC/L2 or network (IP, IPv6) headers are not accounted for.
|
|
*/
|
|
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
|
|
{
|
|
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
unsigned int thlen = 0;
|
|
|
|
if (skb->encapsulation) {
|
|
thlen = skb_inner_transport_header(skb) -
|
|
skb_transport_header(skb);
|
|
|
|
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
|
|
thlen += inner_tcp_hdrlen(skb);
|
|
} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
|
|
thlen = tcp_hdrlen(skb);
|
|
} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
|
|
thlen = sizeof(struct sctphdr);
|
|
}
|
|
/* UFO sets gso_size to the size of the fragmentation
|
|
* payload, i.e. the size of the L4 (UDP) header is already
|
|
* accounted for.
|
|
*/
|
|
return thlen + shinfo->gso_size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
|
|
|
|
/**
|
|
* skb_gso_validate_mtu - Return in case such skb fits a given MTU
|
|
*
|
|
* @skb: GSO skb
|
|
* @mtu: MTU to validate against
|
|
*
|
|
* skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
|
|
* once split.
|
|
*/
|
|
bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
|
|
{
|
|
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
const struct sk_buff *iter;
|
|
unsigned int hlen;
|
|
|
|
hlen = skb_gso_network_seglen(skb);
|
|
|
|
if (shinfo->gso_size != GSO_BY_FRAGS)
|
|
return hlen <= mtu;
|
|
|
|
/* Undo this so we can re-use header sizes */
|
|
hlen -= GSO_BY_FRAGS;
|
|
|
|
skb_walk_frags(skb, iter) {
|
|
if (hlen + skb_headlen(iter) > mtu)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
|
|
|
|
static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
|
|
{
|
|
if (skb_cow(skb, skb_headroom(skb)) < 0) {
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
|
|
2 * ETH_ALEN);
|
|
skb->mac_header += VLAN_HLEN;
|
|
return skb;
|
|
}
|
|
|
|
struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
|
|
{
|
|
struct vlan_hdr *vhdr;
|
|
u16 vlan_tci;
|
|
|
|
if (unlikely(skb_vlan_tag_present(skb))) {
|
|
/* vlan_tci is already set-up so leave this for another time */
|
|
return skb;
|
|
}
|
|
|
|
skb = skb_share_check(skb, GFP_ATOMIC);
|
|
if (unlikely(!skb))
|
|
goto err_free;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
|
|
goto err_free;
|
|
|
|
vhdr = (struct vlan_hdr *)skb->data;
|
|
vlan_tci = ntohs(vhdr->h_vlan_TCI);
|
|
__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
|
|
|
|
skb_pull_rcsum(skb, VLAN_HLEN);
|
|
vlan_set_encap_proto(skb, vhdr);
|
|
|
|
skb = skb_reorder_vlan_header(skb);
|
|
if (unlikely(!skb))
|
|
goto err_free;
|
|
|
|
skb_reset_network_header(skb);
|
|
skb_reset_transport_header(skb);
|
|
skb_reset_mac_len(skb);
|
|
|
|
return skb;
|
|
|
|
err_free:
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(skb_vlan_untag);
|
|
|
|
int skb_ensure_writable(struct sk_buff *skb, int write_len)
|
|
{
|
|
if (!pskb_may_pull(skb, write_len))
|
|
return -ENOMEM;
|
|
|
|
if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
|
|
return 0;
|
|
|
|
return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
}
|
|
EXPORT_SYMBOL(skb_ensure_writable);
|
|
|
|
/* remove VLAN header from packet and update csum accordingly.
|
|
* expects a non skb_vlan_tag_present skb with a vlan tag payload
|
|
*/
|
|
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
|
|
{
|
|
struct vlan_hdr *vhdr;
|
|
int offset = skb->data - skb_mac_header(skb);
|
|
int err;
|
|
|
|
if (WARN_ONCE(offset,
|
|
"__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
|
|
offset)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
|
|
|
|
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
|
|
*vlan_tci = ntohs(vhdr->h_vlan_TCI);
|
|
|
|
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
|
|
__skb_pull(skb, VLAN_HLEN);
|
|
|
|
vlan_set_encap_proto(skb, vhdr);
|
|
skb->mac_header += VLAN_HLEN;
|
|
|
|
if (skb_network_offset(skb) < ETH_HLEN)
|
|
skb_set_network_header(skb, ETH_HLEN);
|
|
|
|
skb_reset_mac_len(skb);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(__skb_vlan_pop);
|
|
|
|
/* Pop a vlan tag either from hwaccel or from payload.
|
|
* Expects skb->data at mac header.
|
|
*/
|
|
int skb_vlan_pop(struct sk_buff *skb)
|
|
{
|
|
u16 vlan_tci;
|
|
__be16 vlan_proto;
|
|
int err;
|
|
|
|
if (likely(skb_vlan_tag_present(skb))) {
|
|
skb->vlan_tci = 0;
|
|
} else {
|
|
if (unlikely(!eth_type_vlan(skb->protocol)))
|
|
return 0;
|
|
|
|
err = __skb_vlan_pop(skb, &vlan_tci);
|
|
if (err)
|
|
return err;
|
|
}
|
|
/* move next vlan tag to hw accel tag */
|
|
if (likely(!eth_type_vlan(skb->protocol)))
|
|
return 0;
|
|
|
|
vlan_proto = skb->protocol;
|
|
err = __skb_vlan_pop(skb, &vlan_tci);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(skb_vlan_pop);
|
|
|
|
/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
|
|
* Expects skb->data at mac header.
|
|
*/
|
|
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
|
|
{
|
|
if (skb_vlan_tag_present(skb)) {
|
|
int offset = skb->data - skb_mac_header(skb);
|
|
int err;
|
|
|
|
if (WARN_ONCE(offset,
|
|
"skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
|
|
offset)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = __vlan_insert_tag(skb, skb->vlan_proto,
|
|
skb_vlan_tag_get(skb));
|
|
if (err)
|
|
return err;
|
|
|
|
skb->protocol = skb->vlan_proto;
|
|
skb->mac_len += VLAN_HLEN;
|
|
|
|
skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
|
|
}
|
|
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(skb_vlan_push);
|
|
|
|
/**
|
|
* alloc_skb_with_frags - allocate skb with page frags
|
|
*
|
|
* @header_len: size of linear part
|
|
* @data_len: needed length in frags
|
|
* @max_page_order: max page order desired.
|
|
* @errcode: pointer to error code if any
|
|
* @gfp_mask: allocation mask
|
|
*
|
|
* This can be used to allocate a paged skb, given a maximal order for frags.
|
|
*/
|
|
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
|
|
unsigned long data_len,
|
|
int max_page_order,
|
|
int *errcode,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
|
|
unsigned long chunk;
|
|
struct sk_buff *skb;
|
|
struct page *page;
|
|
gfp_t gfp_head;
|
|
int i;
|
|
|
|
*errcode = -EMSGSIZE;
|
|
/* Note this test could be relaxed, if we succeed to allocate
|
|
* high order pages...
|
|
*/
|
|
if (npages > MAX_SKB_FRAGS)
|
|
return NULL;
|
|
|
|
gfp_head = gfp_mask;
|
|
if (gfp_head & __GFP_DIRECT_RECLAIM)
|
|
gfp_head |= __GFP_REPEAT;
|
|
|
|
*errcode = -ENOBUFS;
|
|
skb = alloc_skb(header_len, gfp_head);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
skb->truesize += npages << PAGE_SHIFT;
|
|
|
|
for (i = 0; npages > 0; i++) {
|
|
int order = max_page_order;
|
|
|
|
while (order) {
|
|
if (npages >= 1 << order) {
|
|
page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
|
|
__GFP_COMP |
|
|
__GFP_NOWARN |
|
|
__GFP_NORETRY,
|
|
order);
|
|
if (page)
|
|
goto fill_page;
|
|
/* Do not retry other high order allocations */
|
|
order = 1;
|
|
max_page_order = 0;
|
|
}
|
|
order--;
|
|
}
|
|
page = alloc_page(gfp_mask);
|
|
if (!page)
|
|
goto failure;
|
|
fill_page:
|
|
chunk = min_t(unsigned long, data_len,
|
|
PAGE_SIZE << order);
|
|
skb_fill_page_desc(skb, i, page, 0, chunk);
|
|
data_len -= chunk;
|
|
npages -= 1 << order;
|
|
}
|
|
return skb;
|
|
|
|
failure:
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(alloc_skb_with_frags);
|
|
|
|
/* carve out the first off bytes from skb when off < headlen */
|
|
static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
|
|
const int headlen, gfp_t gfp_mask)
|
|
{
|
|
int i;
|
|
int size = skb_end_offset(skb);
|
|
int new_hlen = headlen - off;
|
|
u8 *data;
|
|
|
|
size = SKB_DATA_ALIGN(size);
|
|
|
|
if (skb_pfmemalloc(skb))
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
data = kmalloc_reserve(size +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
|
|
gfp_mask, NUMA_NO_NODE, NULL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
size = SKB_WITH_OVERHEAD(ksize(data));
|
|
|
|
/* Copy real data, and all frags */
|
|
skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
|
|
skb->len -= off;
|
|
|
|
memcpy((struct skb_shared_info *)(data + size),
|
|
skb_shinfo(skb),
|
|
offsetof(struct skb_shared_info,
|
|
frags[skb_shinfo(skb)->nr_frags]));
|
|
if (skb_cloned(skb)) {
|
|
/* drop the old head gracefully */
|
|
if (skb_orphan_frags(skb, gfp_mask)) {
|
|
kfree(data);
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
|
|
skb_frag_ref(skb, i);
|
|
if (skb_has_frag_list(skb))
|
|
skb_clone_fraglist(skb);
|
|
skb_release_data(skb);
|
|
} else {
|
|
/* we can reuse existing recount- all we did was
|
|
* relocate values
|
|
*/
|
|
skb_free_head(skb);
|
|
}
|
|
|
|
skb->head = data;
|
|
skb->data = data;
|
|
skb->head_frag = 0;
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
skb->end = size;
|
|
#else
|
|
skb->end = skb->head + size;
|
|
#endif
|
|
skb_set_tail_pointer(skb, skb_headlen(skb));
|
|
skb_headers_offset_update(skb, 0);
|
|
skb->cloned = 0;
|
|
skb->hdr_len = 0;
|
|
skb->nohdr = 0;
|
|
atomic_set(&skb_shinfo(skb)->dataref, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
|
|
|
|
/* carve out the first eat bytes from skb's frag_list. May recurse into
|
|
* pskb_carve()
|
|
*/
|
|
static int pskb_carve_frag_list(struct sk_buff *skb,
|
|
struct skb_shared_info *shinfo, int eat,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct sk_buff *list = shinfo->frag_list;
|
|
struct sk_buff *clone = NULL;
|
|
struct sk_buff *insp = NULL;
|
|
|
|
do {
|
|
if (!list) {
|
|
pr_err("Not enough bytes to eat. Want %d\n", eat);
|
|
return -EFAULT;
|
|
}
|
|
if (list->len <= eat) {
|
|
/* Eaten as whole. */
|
|
eat -= list->len;
|
|
list = list->next;
|
|
insp = list;
|
|
} else {
|
|
/* Eaten partially. */
|
|
if (skb_shared(list)) {
|
|
clone = skb_clone(list, gfp_mask);
|
|
if (!clone)
|
|
return -ENOMEM;
|
|
insp = list->next;
|
|
list = clone;
|
|
} else {
|
|
/* This may be pulled without problems. */
|
|
insp = list;
|
|
}
|
|
if (pskb_carve(list, eat, gfp_mask) < 0) {
|
|
kfree_skb(clone);
|
|
return -ENOMEM;
|
|
}
|
|
break;
|
|
}
|
|
} while (eat);
|
|
|
|
/* Free pulled out fragments. */
|
|
while ((list = shinfo->frag_list) != insp) {
|
|
shinfo->frag_list = list->next;
|
|
kfree_skb(list);
|
|
}
|
|
/* And insert new clone at head. */
|
|
if (clone) {
|
|
clone->next = list;
|
|
shinfo->frag_list = clone;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* carve off first len bytes from skb. Split line (off) is in the
|
|
* non-linear part of skb
|
|
*/
|
|
static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
|
|
int pos, gfp_t gfp_mask)
|
|
{
|
|
int i, k = 0;
|
|
int size = skb_end_offset(skb);
|
|
u8 *data;
|
|
const int nfrags = skb_shinfo(skb)->nr_frags;
|
|
struct skb_shared_info *shinfo;
|
|
|
|
size = SKB_DATA_ALIGN(size);
|
|
|
|
if (skb_pfmemalloc(skb))
|
|
gfp_mask |= __GFP_MEMALLOC;
|
|
data = kmalloc_reserve(size +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
|
|
gfp_mask, NUMA_NO_NODE, NULL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
size = SKB_WITH_OVERHEAD(ksize(data));
|
|
|
|
memcpy((struct skb_shared_info *)(data + size),
|
|
skb_shinfo(skb), offsetof(struct skb_shared_info,
|
|
frags[skb_shinfo(skb)->nr_frags]));
|
|
if (skb_orphan_frags(skb, gfp_mask)) {
|
|
kfree(data);
|
|
return -ENOMEM;
|
|
}
|
|
shinfo = (struct skb_shared_info *)(data + size);
|
|
for (i = 0; i < nfrags; i++) {
|
|
int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (pos + fsize > off) {
|
|
shinfo->frags[k] = skb_shinfo(skb)->frags[i];
|
|
|
|
if (pos < off) {
|
|
/* Split frag.
|
|
* We have two variants in this case:
|
|
* 1. Move all the frag to the second
|
|
* part, if it is possible. F.e.
|
|
* this approach is mandatory for TUX,
|
|
* where splitting is expensive.
|
|
* 2. Split is accurately. We make this.
|
|
*/
|
|
shinfo->frags[0].page_offset += off - pos;
|
|
skb_frag_size_sub(&shinfo->frags[0], off - pos);
|
|
}
|
|
skb_frag_ref(skb, i);
|
|
k++;
|
|
}
|
|
pos += fsize;
|
|
}
|
|
shinfo->nr_frags = k;
|
|
if (skb_has_frag_list(skb))
|
|
skb_clone_fraglist(skb);
|
|
|
|
if (k == 0) {
|
|
/* split line is in frag list */
|
|
pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
|
|
}
|
|
skb_release_data(skb);
|
|
|
|
skb->head = data;
|
|
skb->head_frag = 0;
|
|
skb->data = data;
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
skb->end = size;
|
|
#else
|
|
skb->end = skb->head + size;
|
|
#endif
|
|
skb_reset_tail_pointer(skb);
|
|
skb_headers_offset_update(skb, 0);
|
|
skb->cloned = 0;
|
|
skb->hdr_len = 0;
|
|
skb->nohdr = 0;
|
|
skb->len -= off;
|
|
skb->data_len = skb->len;
|
|
atomic_set(&skb_shinfo(skb)->dataref, 1);
|
|
return 0;
|
|
}
|
|
|
|
/* remove len bytes from the beginning of the skb */
|
|
static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
|
|
{
|
|
int headlen = skb_headlen(skb);
|
|
|
|
if (len < headlen)
|
|
return pskb_carve_inside_header(skb, len, headlen, gfp);
|
|
else
|
|
return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
|
|
}
|
|
|
|
/* Extract to_copy bytes starting at off from skb, and return this in
|
|
* a new skb
|
|
*/
|
|
struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
|
|
int to_copy, gfp_t gfp)
|
|
{
|
|
struct sk_buff *clone = skb_clone(skb, gfp);
|
|
|
|
if (!clone)
|
|
return NULL;
|
|
|
|
if (pskb_carve(clone, off, gfp) < 0 ||
|
|
pskb_trim(clone, to_copy)) {
|
|
kfree_skb(clone);
|
|
return NULL;
|
|
}
|
|
return clone;
|
|
}
|
|
EXPORT_SYMBOL(pskb_extract);
|
|
|
|
/**
|
|
* skb_condense - try to get rid of fragments/frag_list if possible
|
|
* @skb: buffer
|
|
*
|
|
* Can be used to save memory before skb is added to a busy queue.
|
|
* If packet has bytes in frags and enough tail room in skb->head,
|
|
* pull all of them, so that we can free the frags right now and adjust
|
|
* truesize.
|
|
* Notes:
|
|
* We do not reallocate skb->head thus can not fail.
|
|
* Caller must re-evaluate skb->truesize if needed.
|
|
*/
|
|
void skb_condense(struct sk_buff *skb)
|
|
{
|
|
if (skb->data_len) {
|
|
if (skb->data_len > skb->end - skb->tail ||
|
|
skb_cloned(skb))
|
|
return;
|
|
|
|
/* Nice, we can free page frag(s) right now */
|
|
__pskb_pull_tail(skb, skb->data_len);
|
|
}
|
|
/* At this point, skb->truesize might be over estimated,
|
|
* because skb had a fragment, and fragments do not tell
|
|
* their truesize.
|
|
* When we pulled its content into skb->head, fragment
|
|
* was freed, but __pskb_pull_tail() could not possibly
|
|
* adjust skb->truesize, not knowing the frag truesize.
|
|
*/
|
|
skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
|
|
}
|