linux/net/wireless/util.c
Avraham Stern 503c1fb98b cfg80211/nl80211: add a port authorized event
Add an event that indicates that a connection is authorized
(i.e. the 4 way handshake was performed by the driver). This event
should be sent by the driver after sending a connect/roamed event.

This is useful for networks that require 802.1X authentication.
In cases that the driver supports 4 way handshake offload, but the
802.1X authentication is managed by user space, the driver needs to
inform user space right after the 802.11 association was completed
so user space can initialize its 802.1X state machine etc.
However, it is also possible that the AP will choose to skip the
802.1X authentication (e.g. when PMKSA caching is used) and proceed
with the 4 way handshake immediately. In this case the driver needs
to inform user space that 802.1X authentication is no longer required
(e.g. to prevent user space from disconnecting since it did not get
any EAPOLs from the AP).

This is also useful for roaming, in which case it is possible that
the driver used the Fast Transition protocol so 802.1X is not
required.

Since there will now be a dedicated notification indicating that the
connection is authorized, the authorized flag can be removed from the
roamed event. Drivers can send the new port authorized event right
after sending the roamed event to indicate the new AP is already
authorized. This therefore reserves the old PORT_AUTHORIZED attribute.

Signed-off-by: Avraham Stern <avraham.stern@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2017-10-02 14:08:27 +02:00

1798 lines
41 KiB
C

/*
* Wireless utility functions
*
* Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
*/
#include <linux/export.h>
#include <linux/bitops.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <net/cfg80211.h>
#include <net/ip.h>
#include <net/dsfield.h>
#include <linux/if_vlan.h>
#include <linux/mpls.h>
#include <linux/gcd.h>
#include "core.h"
#include "rdev-ops.h"
struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
u32 basic_rates, int bitrate)
{
struct ieee80211_rate *result = &sband->bitrates[0];
int i;
for (i = 0; i < sband->n_bitrates; i++) {
if (!(basic_rates & BIT(i)))
continue;
if (sband->bitrates[i].bitrate > bitrate)
continue;
result = &sband->bitrates[i];
}
return result;
}
EXPORT_SYMBOL(ieee80211_get_response_rate);
u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
enum nl80211_bss_scan_width scan_width)
{
struct ieee80211_rate *bitrates;
u32 mandatory_rates = 0;
enum ieee80211_rate_flags mandatory_flag;
int i;
if (WARN_ON(!sband))
return 1;
if (sband->band == NL80211_BAND_2GHZ) {
if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
scan_width == NL80211_BSS_CHAN_WIDTH_10)
mandatory_flag = IEEE80211_RATE_MANDATORY_G;
else
mandatory_flag = IEEE80211_RATE_MANDATORY_B;
} else {
mandatory_flag = IEEE80211_RATE_MANDATORY_A;
}
bitrates = sband->bitrates;
for (i = 0; i < sband->n_bitrates; i++)
if (bitrates[i].flags & mandatory_flag)
mandatory_rates |= BIT(i);
return mandatory_rates;
}
EXPORT_SYMBOL(ieee80211_mandatory_rates);
int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
{
/* see 802.11 17.3.8.3.2 and Annex J
* there are overlapping channel numbers in 5GHz and 2GHz bands */
if (chan <= 0)
return 0; /* not supported */
switch (band) {
case NL80211_BAND_2GHZ:
if (chan == 14)
return 2484;
else if (chan < 14)
return 2407 + chan * 5;
break;
case NL80211_BAND_5GHZ:
if (chan >= 182 && chan <= 196)
return 4000 + chan * 5;
else
return 5000 + chan * 5;
break;
case NL80211_BAND_60GHZ:
if (chan < 5)
return 56160 + chan * 2160;
break;
default:
;
}
return 0; /* not supported */
}
EXPORT_SYMBOL(ieee80211_channel_to_frequency);
int ieee80211_frequency_to_channel(int freq)
{
/* see 802.11 17.3.8.3.2 and Annex J */
if (freq == 2484)
return 14;
else if (freq < 2484)
return (freq - 2407) / 5;
else if (freq >= 4910 && freq <= 4980)
return (freq - 4000) / 5;
else if (freq <= 45000) /* DMG band lower limit */
return (freq - 5000) / 5;
else if (freq >= 58320 && freq <= 64800)
return (freq - 56160) / 2160;
else
return 0;
}
EXPORT_SYMBOL(ieee80211_frequency_to_channel);
struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
{
enum nl80211_band band;
struct ieee80211_supported_band *sband;
int i;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
if (sband->channels[i].center_freq == freq)
return &sband->channels[i];
}
}
return NULL;
}
EXPORT_SYMBOL(ieee80211_get_channel);
static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
{
int i, want;
switch (sband->band) {
case NL80211_BAND_5GHZ:
want = 3;
for (i = 0; i < sband->n_bitrates; i++) {
if (sband->bitrates[i].bitrate == 60 ||
sband->bitrates[i].bitrate == 120 ||
sband->bitrates[i].bitrate == 240) {
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_A;
want--;
}
}
WARN_ON(want);
break;
case NL80211_BAND_2GHZ:
want = 7;
for (i = 0; i < sband->n_bitrates; i++) {
switch (sband->bitrates[i].bitrate) {
case 10:
case 20:
case 55:
case 110:
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_B |
IEEE80211_RATE_MANDATORY_G;
want--;
break;
case 60:
case 120:
case 240:
sband->bitrates[i].flags |=
IEEE80211_RATE_MANDATORY_G;
want--;
/* fall through */
default:
sband->bitrates[i].flags |=
IEEE80211_RATE_ERP_G;
break;
}
}
WARN_ON(want != 0 && want != 3);
break;
case NL80211_BAND_60GHZ:
/* check for mandatory HT MCS 1..4 */
WARN_ON(!sband->ht_cap.ht_supported);
WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
break;
case NUM_NL80211_BANDS:
default:
WARN_ON(1);
break;
}
}
void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
{
enum nl80211_band band;
for (band = 0; band < NUM_NL80211_BANDS; band++)
if (wiphy->bands[band])
set_mandatory_flags_band(wiphy->bands[band]);
}
bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
{
int i;
for (i = 0; i < wiphy->n_cipher_suites; i++)
if (cipher == wiphy->cipher_suites[i])
return true;
return false;
}
int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
struct key_params *params, int key_idx,
bool pairwise, const u8 *mac_addr)
{
if (key_idx < 0 || key_idx > 5)
return -EINVAL;
if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
return -EINVAL;
if (pairwise && !mac_addr)
return -EINVAL;
switch (params->cipher) {
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
/* Disallow pairwise keys with non-zero index unless it's WEP
* or a vendor specific cipher (because current deployments use
* pairwise WEP keys with non-zero indices and for vendor
* specific ciphers this should be validated in the driver or
* hardware level - but 802.11i clearly specifies to use zero)
*/
if (pairwise && key_idx)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
/* Disallow BIP (group-only) cipher as pairwise cipher */
if (pairwise)
return -EINVAL;
if (key_idx < 4)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
if (key_idx > 3)
return -EINVAL;
default:
break;
}
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
if (params->key_len != WLAN_KEY_LEN_WEP40)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_TKIP:
if (params->key_len != WLAN_KEY_LEN_TKIP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP:
if (params->key_len != WLAN_KEY_LEN_CCMP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP_256:
if (params->key_len != WLAN_KEY_LEN_CCMP_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_GCMP:
if (params->key_len != WLAN_KEY_LEN_GCMP)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_GCMP_256:
if (params->key_len != WLAN_KEY_LEN_GCMP_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_WEP104:
if (params->key_len != WLAN_KEY_LEN_WEP104)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
return -EINVAL;
break;
default:
/*
* We don't know anything about this algorithm,
* allow using it -- but the driver must check
* all parameters! We still check below whether
* or not the driver supports this algorithm,
* of course.
*/
break;
}
if (params->seq) {
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* These ciphers do not use key sequence */
return -EINVAL;
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (params->seq_len != 6)
return -EINVAL;
break;
}
}
if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
return -EINVAL;
return 0;
}
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
{
unsigned int hdrlen = 24;
if (ieee80211_is_data(fc)) {
if (ieee80211_has_a4(fc))
hdrlen = 30;
if (ieee80211_is_data_qos(fc)) {
hdrlen += IEEE80211_QOS_CTL_LEN;
if (ieee80211_has_order(fc))
hdrlen += IEEE80211_HT_CTL_LEN;
}
goto out;
}
if (ieee80211_is_mgmt(fc)) {
if (ieee80211_has_order(fc))
hdrlen += IEEE80211_HT_CTL_LEN;
goto out;
}
if (ieee80211_is_ctl(fc)) {
/*
* ACK and CTS are 10 bytes, all others 16. To see how
* to get this condition consider
* subtype mask: 0b0000000011110000 (0x00F0)
* ACK subtype: 0b0000000011010000 (0x00D0)
* CTS subtype: 0b0000000011000000 (0x00C0)
* bits that matter: ^^^ (0x00E0)
* value of those: 0b0000000011000000 (0x00C0)
*/
if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
hdrlen = 10;
else
hdrlen = 16;
}
out:
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_hdrlen);
unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr =
(const struct ieee80211_hdr *)skb->data;
unsigned int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (unlikely(hdrlen > skb->len))
return 0;
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
{
int ae = flags & MESH_FLAGS_AE;
/* 802.11-2012, 8.2.4.7.3 */
switch (ae) {
default:
case 0:
return 6;
case MESH_FLAGS_AE_A4:
return 12;
case MESH_FLAGS_AE_A5_A6:
return 18;
}
}
unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
{
return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
}
EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
const u8 *addr, enum nl80211_iftype iftype)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct {
u8 hdr[ETH_ALEN] __aligned(2);
__be16 proto;
} payload;
struct ethhdr tmp;
u16 hdrlen;
u8 mesh_flags = 0;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return -1;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (skb->len < hdrlen + 8)
return -1;
/* convert IEEE 802.11 header + possible LLC headers into Ethernet
* header
* IEEE 802.11 address fields:
* ToDS FromDS Addr1 Addr2 Addr3 Addr4
* 0 0 DA SA BSSID n/a
* 0 1 DA BSSID SA n/a
* 1 0 BSSID SA DA n/a
* 1 1 RA TA DA SA
*/
memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
if (iftype == NL80211_IFTYPE_MESH_POINT)
skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
mesh_flags &= MESH_FLAGS_AE;
switch (hdr->frame_control &
cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
case cpu_to_le16(IEEE80211_FCTL_TODS):
if (unlikely(iftype != NL80211_IFTYPE_AP &&
iftype != NL80211_IFTYPE_AP_VLAN &&
iftype != NL80211_IFTYPE_P2P_GO))
return -1;
break;
case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
if (unlikely(iftype != NL80211_IFTYPE_WDS &&
iftype != NL80211_IFTYPE_MESH_POINT &&
iftype != NL80211_IFTYPE_AP_VLAN &&
iftype != NL80211_IFTYPE_STATION))
return -1;
if (iftype == NL80211_IFTYPE_MESH_POINT) {
if (mesh_flags == MESH_FLAGS_AE_A4)
return -1;
if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
skb_copy_bits(skb, hdrlen +
offsetof(struct ieee80211s_hdr, eaddr1),
tmp.h_dest, 2 * ETH_ALEN);
}
hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
}
break;
case cpu_to_le16(IEEE80211_FCTL_FROMDS):
if ((iftype != NL80211_IFTYPE_STATION &&
iftype != NL80211_IFTYPE_P2P_CLIENT &&
iftype != NL80211_IFTYPE_MESH_POINT) ||
(is_multicast_ether_addr(tmp.h_dest) &&
ether_addr_equal(tmp.h_source, addr)))
return -1;
if (iftype == NL80211_IFTYPE_MESH_POINT) {
if (mesh_flags == MESH_FLAGS_AE_A5_A6)
return -1;
if (mesh_flags == MESH_FLAGS_AE_A4)
skb_copy_bits(skb, hdrlen +
offsetof(struct ieee80211s_hdr, eaddr1),
tmp.h_source, ETH_ALEN);
hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
}
break;
case cpu_to_le16(0):
if (iftype != NL80211_IFTYPE_ADHOC &&
iftype != NL80211_IFTYPE_STATION &&
iftype != NL80211_IFTYPE_OCB)
return -1;
break;
}
skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
tmp.h_proto = payload.proto;
if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
tmp.h_proto != htons(ETH_P_AARP) &&
tmp.h_proto != htons(ETH_P_IPX)) ||
ether_addr_equal(payload.hdr, bridge_tunnel_header)))
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
hdrlen += ETH_ALEN + 2;
else
tmp.h_proto = htons(skb->len - hdrlen);
pskb_pull(skb, hdrlen);
if (!ehdr)
ehdr = skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr, &tmp, sizeof(tmp));
return 0;
}
EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
static void
__frame_add_frag(struct sk_buff *skb, struct page *page,
void *ptr, int len, int size)
{
struct skb_shared_info *sh = skb_shinfo(skb);
int page_offset;
page_ref_inc(page);
page_offset = ptr - page_address(page);
skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
}
static void
__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
int offset, int len)
{
struct skb_shared_info *sh = skb_shinfo(skb);
const skb_frag_t *frag = &sh->frags[0];
struct page *frag_page;
void *frag_ptr;
int frag_len, frag_size;
int head_size = skb->len - skb->data_len;
int cur_len;
frag_page = virt_to_head_page(skb->head);
frag_ptr = skb->data;
frag_size = head_size;
while (offset >= frag_size) {
offset -= frag_size;
frag_page = skb_frag_page(frag);
frag_ptr = skb_frag_address(frag);
frag_size = skb_frag_size(frag);
frag++;
}
frag_ptr += offset;
frag_len = frag_size - offset;
cur_len = min(len, frag_len);
__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
len -= cur_len;
while (len > 0) {
frag_len = skb_frag_size(frag);
cur_len = min(len, frag_len);
__frame_add_frag(frame, skb_frag_page(frag),
skb_frag_address(frag), cur_len, frag_len);
len -= cur_len;
frag++;
}
}
static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
int offset, int len, bool reuse_frag)
{
struct sk_buff *frame;
int cur_len = len;
if (skb->len - offset < len)
return NULL;
/*
* When reusing framents, copy some data to the head to simplify
* ethernet header handling and speed up protocol header processing
* in the stack later.
*/
if (reuse_frag)
cur_len = min_t(int, len, 32);
/*
* Allocate and reserve two bytes more for payload
* alignment since sizeof(struct ethhdr) is 14.
*/
frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
if (!frame)
return NULL;
skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
len -= cur_len;
if (!len)
return frame;
offset += cur_len;
__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
return frame;
}
void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
const u8 *addr, enum nl80211_iftype iftype,
const unsigned int extra_headroom,
const u8 *check_da, const u8 *check_sa)
{
unsigned int hlen = ALIGN(extra_headroom, 4);
struct sk_buff *frame = NULL;
u16 ethertype;
u8 *payload;
int offset = 0, remaining;
struct ethhdr eth;
bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
bool reuse_skb = false;
bool last = false;
while (!last) {
unsigned int subframe_len;
int len;
u8 padding;
skb_copy_bits(skb, offset, &eth, sizeof(eth));
len = ntohs(eth.h_proto);
subframe_len = sizeof(struct ethhdr) + len;
padding = (4 - subframe_len) & 0x3;
/* the last MSDU has no padding */
remaining = skb->len - offset;
if (subframe_len > remaining)
goto purge;
offset += sizeof(struct ethhdr);
last = remaining <= subframe_len + padding;
/* FIXME: should we really accept multicast DA? */
if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
!ether_addr_equal(check_da, eth.h_dest)) ||
(check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
offset += len + padding;
continue;
}
/* reuse skb for the last subframe */
if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
skb_pull(skb, offset);
frame = skb;
reuse_skb = true;
} else {
frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
reuse_frag);
if (!frame)
goto purge;
offset += len + padding;
}
skb_reset_network_header(frame);
frame->dev = skb->dev;
frame->priority = skb->priority;
payload = frame->data;
ethertype = (payload[6] << 8) | payload[7];
if (likely((ether_addr_equal(payload, rfc1042_header) &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
ether_addr_equal(payload, bridge_tunnel_header))) {
eth.h_proto = htons(ethertype);
skb_pull(frame, ETH_ALEN + 2);
}
memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
__skb_queue_tail(list, frame);
}
if (!reuse_skb)
dev_kfree_skb(skb);
return;
purge:
__skb_queue_purge(list);
dev_kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
/* Given a data frame determine the 802.1p/1d tag to use. */
unsigned int cfg80211_classify8021d(struct sk_buff *skb,
struct cfg80211_qos_map *qos_map)
{
unsigned int dscp;
unsigned char vlan_priority;
/* skb->priority values from 256->263 are magic values to
* directly indicate a specific 802.1d priority. This is used
* to allow 802.1d priority to be passed directly in from VLAN
* tags, etc.
*/
if (skb->priority >= 256 && skb->priority <= 263)
return skb->priority - 256;
if (skb_vlan_tag_present(skb)) {
vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
>> VLAN_PRIO_SHIFT;
if (vlan_priority > 0)
return vlan_priority;
}
switch (skb->protocol) {
case htons(ETH_P_IP):
dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
break;
case htons(ETH_P_IPV6):
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
break;
case htons(ETH_P_MPLS_UC):
case htons(ETH_P_MPLS_MC): {
struct mpls_label mpls_tmp, *mpls;
mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
sizeof(*mpls), &mpls_tmp);
if (!mpls)
return 0;
return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
>> MPLS_LS_TC_SHIFT;
}
case htons(ETH_P_80221):
/* 802.21 is always network control traffic */
return 7;
default:
return 0;
}
if (qos_map) {
unsigned int i, tmp_dscp = dscp >> 2;
for (i = 0; i < qos_map->num_des; i++) {
if (tmp_dscp == qos_map->dscp_exception[i].dscp)
return qos_map->dscp_exception[i].up;
}
for (i = 0; i < 8; i++) {
if (tmp_dscp >= qos_map->up[i].low &&
tmp_dscp <= qos_map->up[i].high)
return i;
}
}
return dscp >> 5;
}
EXPORT_SYMBOL(cfg80211_classify8021d);
const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
{
const struct cfg80211_bss_ies *ies;
ies = rcu_dereference(bss->ies);
if (!ies)
return NULL;
return cfg80211_find_ie(ie, ies->data, ies->len);
}
EXPORT_SYMBOL(ieee80211_bss_get_ie);
void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct net_device *dev = wdev->netdev;
int i;
if (!wdev->connect_keys)
return;
for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
if (!wdev->connect_keys->params[i].cipher)
continue;
if (rdev_add_key(rdev, dev, i, false, NULL,
&wdev->connect_keys->params[i])) {
netdev_err(dev, "failed to set key %d\n", i);
continue;
}
if (wdev->connect_keys->def == i &&
rdev_set_default_key(rdev, dev, i, true, true)) {
netdev_err(dev, "failed to set defkey %d\n", i);
continue;
}
}
kzfree(wdev->connect_keys);
wdev->connect_keys = NULL;
}
void cfg80211_process_wdev_events(struct wireless_dev *wdev)
{
struct cfg80211_event *ev;
unsigned long flags;
spin_lock_irqsave(&wdev->event_lock, flags);
while (!list_empty(&wdev->event_list)) {
ev = list_first_entry(&wdev->event_list,
struct cfg80211_event, list);
list_del(&ev->list);
spin_unlock_irqrestore(&wdev->event_lock, flags);
wdev_lock(wdev);
switch (ev->type) {
case EVENT_CONNECT_RESULT:
__cfg80211_connect_result(
wdev->netdev,
&ev->cr,
ev->cr.status == WLAN_STATUS_SUCCESS);
break;
case EVENT_ROAMED:
__cfg80211_roamed(wdev, &ev->rm);
break;
case EVENT_DISCONNECTED:
__cfg80211_disconnected(wdev->netdev,
ev->dc.ie, ev->dc.ie_len,
ev->dc.reason,
!ev->dc.locally_generated);
break;
case EVENT_IBSS_JOINED:
__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
ev->ij.channel);
break;
case EVENT_STOPPED:
__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
break;
case EVENT_PORT_AUTHORIZED:
__cfg80211_port_authorized(wdev, ev->pa.bssid);
break;
}
wdev_unlock(wdev);
kfree(ev);
spin_lock_irqsave(&wdev->event_lock, flags);
}
spin_unlock_irqrestore(&wdev->event_lock, flags);
}
void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
{
struct wireless_dev *wdev;
ASSERT_RTNL();
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
cfg80211_process_wdev_events(wdev);
}
int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
struct net_device *dev, enum nl80211_iftype ntype,
struct vif_params *params)
{
int err;
enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
ASSERT_RTNL();
/* don't support changing VLANs, you just re-create them */
if (otype == NL80211_IFTYPE_AP_VLAN)
return -EOPNOTSUPP;
/* cannot change into P2P device or NAN */
if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
ntype == NL80211_IFTYPE_NAN)
return -EOPNOTSUPP;
if (!rdev->ops->change_virtual_intf ||
!(rdev->wiphy.interface_modes & (1 << ntype)))
return -EOPNOTSUPP;
/* if it's part of a bridge, reject changing type to station/ibss */
if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
(ntype == NL80211_IFTYPE_ADHOC ||
ntype == NL80211_IFTYPE_STATION ||
ntype == NL80211_IFTYPE_P2P_CLIENT))
return -EBUSY;
if (ntype != otype) {
dev->ieee80211_ptr->use_4addr = false;
dev->ieee80211_ptr->mesh_id_up_len = 0;
wdev_lock(dev->ieee80211_ptr);
rdev_set_qos_map(rdev, dev, NULL);
wdev_unlock(dev->ieee80211_ptr);
switch (otype) {
case NL80211_IFTYPE_AP:
cfg80211_stop_ap(rdev, dev, true);
break;
case NL80211_IFTYPE_ADHOC:
cfg80211_leave_ibss(rdev, dev, false);
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
wdev_lock(dev->ieee80211_ptr);
cfg80211_disconnect(rdev, dev,
WLAN_REASON_DEAUTH_LEAVING, true);
wdev_unlock(dev->ieee80211_ptr);
break;
case NL80211_IFTYPE_MESH_POINT:
/* mesh should be handled? */
break;
default:
break;
}
cfg80211_process_rdev_events(rdev);
}
err = rdev_change_virtual_intf(rdev, dev, ntype, params);
WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
if (!err && params && params->use_4addr != -1)
dev->ieee80211_ptr->use_4addr = params->use_4addr;
if (!err) {
dev->priv_flags &= ~IFF_DONT_BRIDGE;
switch (ntype) {
case NL80211_IFTYPE_STATION:
if (dev->ieee80211_ptr->use_4addr)
break;
/* fall through */
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_ADHOC:
dev->priv_flags |= IFF_DONT_BRIDGE;
break;
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MESH_POINT:
/* bridging OK */
break;
case NL80211_IFTYPE_MONITOR:
/* monitor can't bridge anyway */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
/* not happening */
break;
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_NAN:
WARN_ON(1);
break;
}
}
if (!err && ntype != otype && netif_running(dev)) {
cfg80211_update_iface_num(rdev, ntype, 1);
cfg80211_update_iface_num(rdev, otype, -1);
}
return err;
}
static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
{
int modulation, streams, bitrate;
/* the formula below does only work for MCS values smaller than 32 */
if (WARN_ON_ONCE(rate->mcs >= 32))
return 0;
modulation = rate->mcs & 7;
streams = (rate->mcs >> 3) + 1;
bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
if (modulation < 4)
bitrate *= (modulation + 1);
else if (modulation == 4)
bitrate *= (modulation + 2);
else
bitrate *= (modulation + 3);
bitrate *= streams;
if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
bitrate = (bitrate / 9) * 10;
/* do NOT round down here */
return (bitrate + 50000) / 100000;
}
static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
{
static const u32 __mcs2bitrate[] = {
/* control PHY */
[0] = 275,
/* SC PHY */
[1] = 3850,
[2] = 7700,
[3] = 9625,
[4] = 11550,
[5] = 12512, /* 1251.25 mbps */
[6] = 15400,
[7] = 19250,
[8] = 23100,
[9] = 25025,
[10] = 30800,
[11] = 38500,
[12] = 46200,
/* OFDM PHY */
[13] = 6930,
[14] = 8662, /* 866.25 mbps */
[15] = 13860,
[16] = 17325,
[17] = 20790,
[18] = 27720,
[19] = 34650,
[20] = 41580,
[21] = 45045,
[22] = 51975,
[23] = 62370,
[24] = 67568, /* 6756.75 mbps */
/* LP-SC PHY */
[25] = 6260,
[26] = 8340,
[27] = 11120,
[28] = 12510,
[29] = 16680,
[30] = 22240,
[31] = 25030,
};
if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
return 0;
return __mcs2bitrate[rate->mcs];
}
static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
{
static const u32 base[4][10] = {
{ 6500000,
13000000,
19500000,
26000000,
39000000,
52000000,
58500000,
65000000,
78000000,
/* not in the spec, but some devices use this: */
86500000,
},
{ 13500000,
27000000,
40500000,
54000000,
81000000,
108000000,
121500000,
135000000,
162000000,
180000000,
},
{ 29300000,
58500000,
87800000,
117000000,
175500000,
234000000,
263300000,
292500000,
351000000,
390000000,
},
{ 58500000,
117000000,
175500000,
234000000,
351000000,
468000000,
526500000,
585000000,
702000000,
780000000,
},
};
u32 bitrate;
int idx;
if (rate->mcs > 9)
goto warn;
switch (rate->bw) {
case RATE_INFO_BW_160:
idx = 3;
break;
case RATE_INFO_BW_80:
idx = 2;
break;
case RATE_INFO_BW_40:
idx = 1;
break;
case RATE_INFO_BW_5:
case RATE_INFO_BW_10:
default:
goto warn;
case RATE_INFO_BW_20:
idx = 0;
}
bitrate = base[idx][rate->mcs];
bitrate *= rate->nss;
if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
bitrate = (bitrate / 9) * 10;
/* do NOT round down here */
return (bitrate + 50000) / 100000;
warn:
WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
rate->bw, rate->mcs, rate->nss);
return 0;
}
u32 cfg80211_calculate_bitrate(struct rate_info *rate)
{
if (rate->flags & RATE_INFO_FLAGS_MCS)
return cfg80211_calculate_bitrate_ht(rate);
if (rate->flags & RATE_INFO_FLAGS_60G)
return cfg80211_calculate_bitrate_60g(rate);
if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
return cfg80211_calculate_bitrate_vht(rate);
return rate->legacy;
}
EXPORT_SYMBOL(cfg80211_calculate_bitrate);
int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
enum ieee80211_p2p_attr_id attr,
u8 *buf, unsigned int bufsize)
{
u8 *out = buf;
u16 attr_remaining = 0;
bool desired_attr = false;
u16 desired_len = 0;
while (len > 0) {
unsigned int iedatalen;
unsigned int copy;
const u8 *iedata;
if (len < 2)
return -EILSEQ;
iedatalen = ies[1];
if (iedatalen + 2 > len)
return -EILSEQ;
if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
goto cont;
if (iedatalen < 4)
goto cont;
iedata = ies + 2;
/* check WFA OUI, P2P subtype */
if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
iedata[2] != 0x9a || iedata[3] != 0x09)
goto cont;
iedatalen -= 4;
iedata += 4;
/* check attribute continuation into this IE */
copy = min_t(unsigned int, attr_remaining, iedatalen);
if (copy && desired_attr) {
desired_len += copy;
if (out) {
memcpy(out, iedata, min(bufsize, copy));
out += min(bufsize, copy);
bufsize -= min(bufsize, copy);
}
if (copy == attr_remaining)
return desired_len;
}
attr_remaining -= copy;
if (attr_remaining)
goto cont;
iedatalen -= copy;
iedata += copy;
while (iedatalen > 0) {
u16 attr_len;
/* P2P attribute ID & size must fit */
if (iedatalen < 3)
return -EILSEQ;
desired_attr = iedata[0] == attr;
attr_len = get_unaligned_le16(iedata + 1);
iedatalen -= 3;
iedata += 3;
copy = min_t(unsigned int, attr_len, iedatalen);
if (desired_attr) {
desired_len += copy;
if (out) {
memcpy(out, iedata, min(bufsize, copy));
out += min(bufsize, copy);
bufsize -= min(bufsize, copy);
}
if (copy == attr_len)
return desired_len;
}
iedata += copy;
iedatalen -= copy;
attr_remaining = attr_len - copy;
}
cont:
len -= ies[1] + 2;
ies += ies[1] + 2;
}
if (attr_remaining && desired_attr)
return -EILSEQ;
return -ENOENT;
}
EXPORT_SYMBOL(cfg80211_get_p2p_attr);
static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
{
int i;
/* Make sure array values are legal */
if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
return false;
i = 0;
while (i < n_ids) {
if (ids[i] == WLAN_EID_EXTENSION) {
if (id_ext && (ids[i + 1] == id))
return true;
i += 2;
continue;
}
if (ids[i] == id && !id_ext)
return true;
i++;
}
return false;
}
static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
{
/* we assume a validly formed IEs buffer */
u8 len = ies[pos + 1];
pos += 2 + len;
/* the IE itself must have 255 bytes for fragments to follow */
if (len < 255)
return pos;
while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
len = ies[pos + 1];
pos += 2 + len;
}
return pos;
}
size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
const u8 *ids, int n_ids,
const u8 *after_ric, int n_after_ric,
size_t offset)
{
size_t pos = offset;
while (pos < ielen) {
u8 ext = 0;
if (ies[pos] == WLAN_EID_EXTENSION)
ext = 2;
if ((pos + ext) >= ielen)
break;
if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
ies[pos] == WLAN_EID_EXTENSION))
break;
if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
pos = skip_ie(ies, ielen, pos);
while (pos < ielen) {
if (ies[pos] == WLAN_EID_EXTENSION)
ext = 2;
else
ext = 0;
if ((pos + ext) >= ielen)
break;
if (!ieee80211_id_in_list(after_ric,
n_after_ric,
ies[pos + ext],
ext == 2))
pos = skip_ie(ies, ielen, pos);
}
} else {
pos = skip_ie(ies, ielen, pos);
}
}
return pos;
}
EXPORT_SYMBOL(ieee80211_ie_split_ric);
bool ieee80211_operating_class_to_band(u8 operating_class,
enum nl80211_band *band)
{
switch (operating_class) {
case 112:
case 115 ... 127:
case 128 ... 130:
*band = NL80211_BAND_5GHZ;
return true;
case 81:
case 82:
case 83:
case 84:
*band = NL80211_BAND_2GHZ;
return true;
case 180:
*band = NL80211_BAND_60GHZ;
return true;
}
return false;
}
EXPORT_SYMBOL(ieee80211_operating_class_to_band);
bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
u8 *op_class)
{
u8 vht_opclass;
u16 freq = chandef->center_freq1;
if (freq >= 2412 && freq <= 2472) {
if (chandef->width > NL80211_CHAN_WIDTH_40)
return false;
/* 2.407 GHz, channels 1..13 */
if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 83; /* HT40+ */
else
*op_class = 84; /* HT40- */
} else {
*op_class = 81;
}
return true;
}
if (freq == 2484) {
if (chandef->width > NL80211_CHAN_WIDTH_40)
return false;
*op_class = 82; /* channel 14 */
return true;
}
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80:
vht_opclass = 128;
break;
case NL80211_CHAN_WIDTH_160:
vht_opclass = 129;
break;
case NL80211_CHAN_WIDTH_80P80:
vht_opclass = 130;
break;
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_5:
return false; /* unsupported for now */
default:
vht_opclass = 0;
break;
}
/* 5 GHz, channels 36..48 */
if (freq >= 5180 && freq <= 5240) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 116;
else
*op_class = 117;
} else {
*op_class = 115;
}
return true;
}
/* 5 GHz, channels 52..64 */
if (freq >= 5260 && freq <= 5320) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 119;
else
*op_class = 120;
} else {
*op_class = 118;
}
return true;
}
/* 5 GHz, channels 100..144 */
if (freq >= 5500 && freq <= 5720) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 122;
else
*op_class = 123;
} else {
*op_class = 121;
}
return true;
}
/* 5 GHz, channels 149..169 */
if (freq >= 5745 && freq <= 5845) {
if (vht_opclass) {
*op_class = vht_opclass;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
if (freq > chandef->chan->center_freq)
*op_class = 126;
else
*op_class = 127;
} else if (freq <= 5805) {
*op_class = 124;
} else {
*op_class = 125;
}
return true;
}
/* 56.16 GHz, channel 1..4 */
if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
if (chandef->width >= NL80211_CHAN_WIDTH_40)
return false;
*op_class = 180;
return true;
}
/* not supported yet */
return false;
}
EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
u32 *beacon_int_gcd,
bool *beacon_int_different)
{
struct wireless_dev *wdev;
*beacon_int_gcd = 0;
*beacon_int_different = false;
list_for_each_entry(wdev, &wiphy->wdev_list, list) {
if (!wdev->beacon_interval)
continue;
if (!*beacon_int_gcd) {
*beacon_int_gcd = wdev->beacon_interval;
continue;
}
if (wdev->beacon_interval == *beacon_int_gcd)
continue;
*beacon_int_different = true;
*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
}
if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
if (*beacon_int_gcd)
*beacon_int_different = true;
*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
}
}
int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
enum nl80211_iftype iftype, u32 beacon_int)
{
/*
* This is just a basic pre-condition check; if interface combinations
* are possible the driver must already be checking those with a call
* to cfg80211_check_combinations(), in which case we'll validate more
* through the cfg80211_calculate_bi_data() call and code in
* cfg80211_iter_combinations().
*/
if (beacon_int < 10 || beacon_int > 10000)
return -EINVAL;
return 0;
}
int cfg80211_iter_combinations(struct wiphy *wiphy,
struct iface_combination_params *params,
void (*iter)(const struct ieee80211_iface_combination *c,
void *data),
void *data)
{
const struct ieee80211_regdomain *regdom;
enum nl80211_dfs_regions region = 0;
int i, j, iftype;
int num_interfaces = 0;
u32 used_iftypes = 0;
u32 beacon_int_gcd;
bool beacon_int_different;
/*
* This is a bit strange, since the iteration used to rely only on
* the data given by the driver, but here it now relies on context,
* in form of the currently operating interfaces.
* This is OK for all current users, and saves us from having to
* push the GCD calculations into all the drivers.
* In the future, this should probably rely more on data that's in
* cfg80211 already - the only thing not would appear to be any new
* interfaces (while being brought up) and channel/radar data.
*/
cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
&beacon_int_gcd, &beacon_int_different);
if (params->radar_detect) {
rcu_read_lock();
regdom = rcu_dereference(cfg80211_regdomain);
if (regdom)
region = regdom->dfs_region;
rcu_read_unlock();
}
for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
num_interfaces += params->iftype_num[iftype];
if (params->iftype_num[iftype] > 0 &&
!(wiphy->software_iftypes & BIT(iftype)))
used_iftypes |= BIT(iftype);
}
for (i = 0; i < wiphy->n_iface_combinations; i++) {
const struct ieee80211_iface_combination *c;
struct ieee80211_iface_limit *limits;
u32 all_iftypes = 0;
c = &wiphy->iface_combinations[i];
if (num_interfaces > c->max_interfaces)
continue;
if (params->num_different_channels > c->num_different_channels)
continue;
limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
GFP_KERNEL);
if (!limits)
return -ENOMEM;
for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
if (wiphy->software_iftypes & BIT(iftype))
continue;
for (j = 0; j < c->n_limits; j++) {
all_iftypes |= limits[j].types;
if (!(limits[j].types & BIT(iftype)))
continue;
if (limits[j].max < params->iftype_num[iftype])
goto cont;
limits[j].max -= params->iftype_num[iftype];
}
}
if (params->radar_detect !=
(c->radar_detect_widths & params->radar_detect))
goto cont;
if (params->radar_detect && c->radar_detect_regions &&
!(c->radar_detect_regions & BIT(region)))
goto cont;
/* Finally check that all iftypes that we're currently
* using are actually part of this combination. If they
* aren't then we can't use this combination and have
* to continue to the next.
*/
if ((all_iftypes & used_iftypes) != used_iftypes)
goto cont;
if (beacon_int_gcd) {
if (c->beacon_int_min_gcd &&
beacon_int_gcd < c->beacon_int_min_gcd)
goto cont;
if (!c->beacon_int_min_gcd && beacon_int_different)
goto cont;
}
/* This combination covered all interface types and
* supported the requested numbers, so we're good.
*/
(*iter)(c, data);
cont:
kfree(limits);
}
return 0;
}
EXPORT_SYMBOL(cfg80211_iter_combinations);
static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
void *data)
{
int *num = data;
(*num)++;
}
int cfg80211_check_combinations(struct wiphy *wiphy,
struct iface_combination_params *params)
{
int err, num = 0;
err = cfg80211_iter_combinations(wiphy, params,
cfg80211_iter_sum_ifcombs, &num);
if (err)
return err;
if (num == 0)
return -EBUSY;
return 0;
}
EXPORT_SYMBOL(cfg80211_check_combinations);
int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
const u8 *rates, unsigned int n_rates,
u32 *mask)
{
int i, j;
if (!sband)
return -EINVAL;
if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
return -EINVAL;
*mask = 0;
for (i = 0; i < n_rates; i++) {
int rate = (rates[i] & 0x7f) * 5;
bool found = false;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate) {
found = true;
*mask |= BIT(j);
break;
}
}
if (!found)
return -EINVAL;
}
/*
* mask must have at least one bit set here since we
* didn't accept a 0-length rates array nor allowed
* entries in the array that didn't exist
*/
return 0;
}
unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
{
enum nl80211_band band;
unsigned int n_channels = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++)
if (wiphy->bands[band])
n_channels += wiphy->bands[band]->n_channels;
return n_channels;
}
EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo)
{
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
wdev = dev->ieee80211_ptr;
if (!wdev)
return -EOPNOTSUPP;
rdev = wiphy_to_rdev(wdev->wiphy);
if (!rdev->ops->get_station)
return -EOPNOTSUPP;
return rdev_get_station(rdev, dev, mac_addr, sinfo);
}
EXPORT_SYMBOL(cfg80211_get_station);
void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
{
int i;
if (!f)
return;
kfree(f->serv_spec_info);
kfree(f->srf_bf);
kfree(f->srf_macs);
for (i = 0; i < f->num_rx_filters; i++)
kfree(f->rx_filters[i].filter);
for (i = 0; i < f->num_tx_filters; i++)
kfree(f->tx_filters[i].filter);
kfree(f->rx_filters);
kfree(f->tx_filters);
kfree(f);
}
EXPORT_SYMBOL(cfg80211_free_nan_func);
bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
u32 center_freq_khz, u32 bw_khz)
{
u32 start_freq_khz, end_freq_khz;
start_freq_khz = center_freq_khz - (bw_khz / 2);
end_freq_khz = center_freq_khz + (bw_khz / 2);
if (start_freq_khz >= freq_range->start_freq_khz &&
end_freq_khz <= freq_range->end_freq_khz)
return true;
return false;
}
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
const unsigned char rfc1042_header[] __aligned(2) =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
EXPORT_SYMBOL(rfc1042_header);
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
const unsigned char bridge_tunnel_header[] __aligned(2) =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
EXPORT_SYMBOL(bridge_tunnel_header);