mirror of
https://github.com/torvalds/linux.git
synced 2024-12-06 11:01:43 +00:00
7ada90eb9c
msm-next: - OCMEM support for a3xx and a4xx GPUs. - a510 support + display support core: - mst payload deletion fix i915: - uapi alignment fix - fix for power usage regression due to security fixes - change default preemption timeout to 640ms from 100ms - EHL voltage level display fixes - TGL DGL PHY fix - gvt - MI_ATOMIC cmd parser fix, CFL non-priv warning - CI spotted deadlock fix - EHL port D programming fix amdgpu: - VRAM lost fixes on BACO for CI/VI - navi14 DC fixes - misc SR-IOV, gfx10 fixes - XGMI fixes for arcturus - SRIOV fixes amdkfd: - KFD on ppc64le enabled - page table optimisations radeon: - fix for r1xx/2xx register checker. tegra: - displayport regression fixes - DMA API regression fixes mgag200: - fix devices that can't scanout except at 0 addr omap: - fix dma_addr refcounting -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJd6cqnAAoJEAx081l5xIa+YR0P/A0LkilEbSnF/k7zKDjm0HN8 JGsf9ZfQRGA2y8URoLRtNdFjZfyuTSpiDSxsbDI0ShBhRimGHyCSxAJXO42vp8q3 jE57jBoaTSiGtagSO3nxrc1vQP7CfUpaggC2ilKSmcVvTrlqip6iPx7s2PoNyQYc GRVUhkcylnZK5UrMiE8Yz/iNcy3Mh0X8bJQKXMEYxpW2KA3SL4qxuRlYIxXEoMyB 4MlWEV09wHTduf1uYuKdusHjILgR5EiVOdmbvpM92obqZOTokt5/S20TEdhFqiy0 0IHxuEkgVx+trXzGFbmqgh2I7BZvZIbKVCSnBT4AXAvUEJ99kGTdEP0I6uOp2lsC 1DCm+7/hcI8BlwmwC9N6ogUwoAzKn7DNc1urcet/0QVbnZLZlueUK/6fSgUNnUYe miOeMNBmfHr83b75MpnNxYVoyz5S+/DFbtUplYKqxgjDYfiWWceSSE47NB+IHAiI RVpz3AxGpKaw4/w5l2q8VuToWZxdO85TNjgVCTmKfwlYjIbEuveWpZNFqO/GHMm9 x50f4ZYVOjU2TEPnLQNTIJOgv71JrTpoAdFzPVwCeWUf4h4Y4lVLgTLvdG1JLcw+ k9BrA5z2R0kjzPtabRhS6WfSjpgSbY3DgY9hfi+HIUmKvZq4fdtAbBlp1oGSXJ9N zkVrs9eE6Ahkcndi6ZV9 =3cs2 -----END PGP SIGNATURE----- Merge tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm Pull more drm updates from Dave Airlie: "Rob pointed out I missed his pull request for msm-next, it's been in next for a while outside of my tree so shouldn't cause any unexpected issues, it has some OCMEM support in drivers/soc that is acked by other maintainers as it's outside my tree. Otherwise it's a usual fixes pull, i915, amdgpu, the main ones, with some tegra, omap, mgag200 and one core fix. Summary: msm-next: - OCMEM support for a3xx and a4xx GPUs. - a510 support + display support core: - mst payload deletion fix i915: - uapi alignment fix - fix for power usage regression due to security fixes - change default preemption timeout to 640ms from 100ms - EHL voltage level display fixes - TGL DGL PHY fix - gvt - MI_ATOMIC cmd parser fix, CFL non-priv warning - CI spotted deadlock fix - EHL port D programming fix amdgpu: - VRAM lost fixes on BACO for CI/VI - navi14 DC fixes - misc SR-IOV, gfx10 fixes - XGMI fixes for arcturus - SRIOV fixes amdkfd: - KFD on ppc64le enabled - page table optimisations radeon: - fix for r1xx/2xx register checker. tegra: - displayport regression fixes - DMA API regression fixes mgag200: - fix devices that can't scanout except at 0 addr omap: - fix dma_addr refcounting" * tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm: (100 commits) drm/dp_mst: Correct the bug in drm_dp_update_payload_part1() drm/omap: fix dma_addr refcounting drm/tegra: Run hub cleanup on ->remove() drm/tegra: sor: Make the +5V HDMI supply optional drm/tegra: Silence expected errors on IOMMU attach drm/tegra: vic: Export module device table drm/tegra: sor: Implement system suspend/resume drm/tegra: Use proper IOVA address for cursor image drm/tegra: gem: Remove premature import restrictions drm/tegra: gem: Properly pin imported buffers drm/tegra: hub: Remove bogus connection mutex check ia64: agp: Replace empty define with do while agp: Add bridge parameter documentation agp: remove unused variable num_segments agp: move AGPGART_MINOR to include/linux/miscdevice.h agp: remove unused variable size in agp_generic_create_gatt_table drm/dp_mst: Fix build on systems with STACKTRACE_SUPPORT=n drm/radeon: fix r1xx/r2xx register checker for POT textures drm/amdgpu: fix GFX10 missing CSIB set(v3) drm/amdgpu: should stop GFX ring in hw_fini ...
672 lines
16 KiB
C
672 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2015 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/qcom_scm.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "qcom_scm.h"
|
|
|
|
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
|
|
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
|
|
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
|
|
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
|
|
|
|
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
|
|
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
|
|
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
|
|
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
|
|
|
|
struct qcom_scm_entry {
|
|
int flag;
|
|
void *entry;
|
|
};
|
|
|
|
static struct qcom_scm_entry qcom_scm_wb[] = {
|
|
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
|
|
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
|
|
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
|
|
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
|
|
};
|
|
|
|
static DEFINE_MUTEX(qcom_scm_lock);
|
|
|
|
/**
|
|
* struct qcom_scm_command - one SCM command buffer
|
|
* @len: total available memory for command and response
|
|
* @buf_offset: start of command buffer
|
|
* @resp_hdr_offset: start of response buffer
|
|
* @id: command to be executed
|
|
* @buf: buffer returned from qcom_scm_get_command_buffer()
|
|
*
|
|
* An SCM command is laid out in memory as follows:
|
|
*
|
|
* ------------------- <--- struct qcom_scm_command
|
|
* | command header |
|
|
* ------------------- <--- qcom_scm_get_command_buffer()
|
|
* | command buffer |
|
|
* ------------------- <--- struct qcom_scm_response and
|
|
* | response header | qcom_scm_command_to_response()
|
|
* ------------------- <--- qcom_scm_get_response_buffer()
|
|
* | response buffer |
|
|
* -------------------
|
|
*
|
|
* There can be arbitrary padding between the headers and buffers so
|
|
* you should always use the appropriate qcom_scm_get_*_buffer() routines
|
|
* to access the buffers in a safe manner.
|
|
*/
|
|
struct qcom_scm_command {
|
|
__le32 len;
|
|
__le32 buf_offset;
|
|
__le32 resp_hdr_offset;
|
|
__le32 id;
|
|
__le32 buf[0];
|
|
};
|
|
|
|
/**
|
|
* struct qcom_scm_response - one SCM response buffer
|
|
* @len: total available memory for response
|
|
* @buf_offset: start of response data relative to start of qcom_scm_response
|
|
* @is_complete: indicates if the command has finished processing
|
|
*/
|
|
struct qcom_scm_response {
|
|
__le32 len;
|
|
__le32 buf_offset;
|
|
__le32 is_complete;
|
|
};
|
|
|
|
/**
|
|
* qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
|
|
* @cmd: command
|
|
*
|
|
* Returns a pointer to a response for a command.
|
|
*/
|
|
static inline struct qcom_scm_response *qcom_scm_command_to_response(
|
|
const struct qcom_scm_command *cmd)
|
|
{
|
|
return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_get_command_buffer() - Get a pointer to a command buffer
|
|
* @cmd: command
|
|
*
|
|
* Returns a pointer to the command buffer of a command.
|
|
*/
|
|
static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
|
|
{
|
|
return (void *)cmd->buf;
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_get_response_buffer() - Get a pointer to a response buffer
|
|
* @rsp: response
|
|
*
|
|
* Returns a pointer to a response buffer of a response.
|
|
*/
|
|
static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
|
|
{
|
|
return (void *)rsp + le32_to_cpu(rsp->buf_offset);
|
|
}
|
|
|
|
static u32 smc(u32 cmd_addr)
|
|
{
|
|
int context_id;
|
|
register u32 r0 asm("r0") = 1;
|
|
register u32 r1 asm("r1") = (u32)&context_id;
|
|
register u32 r2 asm("r2") = cmd_addr;
|
|
do {
|
|
asm volatile(
|
|
__asmeq("%0", "r0")
|
|
__asmeq("%1", "r0")
|
|
__asmeq("%2", "r1")
|
|
__asmeq("%3", "r2")
|
|
#ifdef REQUIRES_SEC
|
|
".arch_extension sec\n"
|
|
#endif
|
|
"smc #0 @ switch to secure world\n"
|
|
: "=r" (r0)
|
|
: "r" (r0), "r" (r1), "r" (r2)
|
|
: "r3", "r12");
|
|
} while (r0 == QCOM_SCM_INTERRUPTED);
|
|
|
|
return r0;
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_call() - Send an SCM command
|
|
* @dev: struct device
|
|
* @svc_id: service identifier
|
|
* @cmd_id: command identifier
|
|
* @cmd_buf: command buffer
|
|
* @cmd_len: length of the command buffer
|
|
* @resp_buf: response buffer
|
|
* @resp_len: length of the response buffer
|
|
*
|
|
* Sends a command to the SCM and waits for the command to finish processing.
|
|
*
|
|
* A note on cache maintenance:
|
|
* Note that any buffers that are expected to be accessed by the secure world
|
|
* must be flushed before invoking qcom_scm_call and invalidated in the cache
|
|
* immediately after qcom_scm_call returns. Cache maintenance on the command
|
|
* and response buffers is taken care of by qcom_scm_call; however, callers are
|
|
* responsible for any other cached buffers passed over to the secure world.
|
|
*/
|
|
static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
|
|
const void *cmd_buf, size_t cmd_len, void *resp_buf,
|
|
size_t resp_len)
|
|
{
|
|
int ret;
|
|
struct qcom_scm_command *cmd;
|
|
struct qcom_scm_response *rsp;
|
|
size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
|
|
dma_addr_t cmd_phys;
|
|
|
|
cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
|
|
if (!cmd)
|
|
return -ENOMEM;
|
|
|
|
cmd->len = cpu_to_le32(alloc_len);
|
|
cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
|
|
cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
|
|
|
|
cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
|
|
if (cmd_buf)
|
|
memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
|
|
|
|
rsp = qcom_scm_command_to_response(cmd);
|
|
|
|
cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, cmd_phys)) {
|
|
kfree(cmd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mutex_lock(&qcom_scm_lock);
|
|
ret = smc(cmd_phys);
|
|
if (ret < 0)
|
|
ret = qcom_scm_remap_error(ret);
|
|
mutex_unlock(&qcom_scm_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
do {
|
|
dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
|
|
sizeof(*rsp), DMA_FROM_DEVICE);
|
|
} while (!rsp->is_complete);
|
|
|
|
if (resp_buf) {
|
|
dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
|
|
le32_to_cpu(rsp->buf_offset),
|
|
resp_len, DMA_FROM_DEVICE);
|
|
memcpy(resp_buf, qcom_scm_get_response_buffer(rsp),
|
|
resp_len);
|
|
}
|
|
out:
|
|
dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
|
|
kfree(cmd);
|
|
return ret;
|
|
}
|
|
|
|
#define SCM_CLASS_REGISTER (0x2 << 8)
|
|
#define SCM_MASK_IRQS BIT(5)
|
|
#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
|
|
SCM_CLASS_REGISTER | \
|
|
SCM_MASK_IRQS | \
|
|
(n & 0xf))
|
|
|
|
/**
|
|
* qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
|
|
* @svc_id: service identifier
|
|
* @cmd_id: command identifier
|
|
* @arg1: first argument
|
|
*
|
|
* This shall only be used with commands that are guaranteed to be
|
|
* uninterruptable, atomic and SMP safe.
|
|
*/
|
|
static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
|
|
{
|
|
int context_id;
|
|
|
|
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
|
|
register u32 r1 asm("r1") = (u32)&context_id;
|
|
register u32 r2 asm("r2") = arg1;
|
|
|
|
asm volatile(
|
|
__asmeq("%0", "r0")
|
|
__asmeq("%1", "r0")
|
|
__asmeq("%2", "r1")
|
|
__asmeq("%3", "r2")
|
|
#ifdef REQUIRES_SEC
|
|
".arch_extension sec\n"
|
|
#endif
|
|
"smc #0 @ switch to secure world\n"
|
|
: "=r" (r0)
|
|
: "r" (r0), "r" (r1), "r" (r2)
|
|
: "r3", "r12");
|
|
return r0;
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments
|
|
* @svc_id: service identifier
|
|
* @cmd_id: command identifier
|
|
* @arg1: first argument
|
|
* @arg2: second argument
|
|
*
|
|
* This shall only be used with commands that are guaranteed to be
|
|
* uninterruptable, atomic and SMP safe.
|
|
*/
|
|
static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
|
|
{
|
|
int context_id;
|
|
|
|
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2);
|
|
register u32 r1 asm("r1") = (u32)&context_id;
|
|
register u32 r2 asm("r2") = arg1;
|
|
register u32 r3 asm("r3") = arg2;
|
|
|
|
asm volatile(
|
|
__asmeq("%0", "r0")
|
|
__asmeq("%1", "r0")
|
|
__asmeq("%2", "r1")
|
|
__asmeq("%3", "r2")
|
|
__asmeq("%4", "r3")
|
|
#ifdef REQUIRES_SEC
|
|
".arch_extension sec\n"
|
|
#endif
|
|
"smc #0 @ switch to secure world\n"
|
|
: "=r" (r0)
|
|
: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
|
|
: "r12");
|
|
return r0;
|
|
}
|
|
|
|
u32 qcom_scm_get_version(void)
|
|
{
|
|
int context_id;
|
|
static u32 version = -1;
|
|
register u32 r0 asm("r0");
|
|
register u32 r1 asm("r1");
|
|
|
|
if (version != -1)
|
|
return version;
|
|
|
|
mutex_lock(&qcom_scm_lock);
|
|
|
|
r0 = 0x1 << 8;
|
|
r1 = (u32)&context_id;
|
|
do {
|
|
asm volatile(
|
|
__asmeq("%0", "r0")
|
|
__asmeq("%1", "r1")
|
|
__asmeq("%2", "r0")
|
|
__asmeq("%3", "r1")
|
|
#ifdef REQUIRES_SEC
|
|
".arch_extension sec\n"
|
|
#endif
|
|
"smc #0 @ switch to secure world\n"
|
|
: "=r" (r0), "=r" (r1)
|
|
: "r" (r0), "r" (r1)
|
|
: "r2", "r3", "r12");
|
|
} while (r0 == QCOM_SCM_INTERRUPTED);
|
|
|
|
version = r1;
|
|
mutex_unlock(&qcom_scm_lock);
|
|
|
|
return version;
|
|
}
|
|
EXPORT_SYMBOL(qcom_scm_get_version);
|
|
|
|
/**
|
|
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
|
|
* @entry: Entry point function for the cpus
|
|
* @cpus: The cpumask of cpus that will use the entry point
|
|
*
|
|
* Set the cold boot address of the cpus. Any cpu outside the supported
|
|
* range would be removed from the cpu present mask.
|
|
*/
|
|
int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
|
|
{
|
|
int flags = 0;
|
|
int cpu;
|
|
int scm_cb_flags[] = {
|
|
QCOM_SCM_FLAG_COLDBOOT_CPU0,
|
|
QCOM_SCM_FLAG_COLDBOOT_CPU1,
|
|
QCOM_SCM_FLAG_COLDBOOT_CPU2,
|
|
QCOM_SCM_FLAG_COLDBOOT_CPU3,
|
|
};
|
|
|
|
if (!cpus || (cpus && cpumask_empty(cpus)))
|
|
return -EINVAL;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
if (cpu < ARRAY_SIZE(scm_cb_flags))
|
|
flags |= scm_cb_flags[cpu];
|
|
else
|
|
set_cpu_present(cpu, false);
|
|
}
|
|
|
|
return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
|
|
flags, virt_to_phys(entry));
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
|
|
* @entry: Entry point function for the cpus
|
|
* @cpus: The cpumask of cpus that will use the entry point
|
|
*
|
|
* Set the Linux entry point for the SCM to transfer control to when coming
|
|
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
|
|
*/
|
|
int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
|
|
const cpumask_t *cpus)
|
|
{
|
|
int ret;
|
|
int flags = 0;
|
|
int cpu;
|
|
struct {
|
|
__le32 flags;
|
|
__le32 addr;
|
|
} cmd;
|
|
|
|
/*
|
|
* Reassign only if we are switching from hotplug entry point
|
|
* to cpuidle entry point or vice versa.
|
|
*/
|
|
for_each_cpu(cpu, cpus) {
|
|
if (entry == qcom_scm_wb[cpu].entry)
|
|
continue;
|
|
flags |= qcom_scm_wb[cpu].flag;
|
|
}
|
|
|
|
/* No change in entry function */
|
|
if (!flags)
|
|
return 0;
|
|
|
|
cmd.addr = cpu_to_le32(virt_to_phys(entry));
|
|
cmd.flags = cpu_to_le32(flags);
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
|
|
&cmd, sizeof(cmd), NULL, 0);
|
|
if (!ret) {
|
|
for_each_cpu(cpu, cpus)
|
|
qcom_scm_wb[cpu].entry = entry;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* qcom_scm_cpu_power_down() - Power down the cpu
|
|
* @flags - Flags to flush cache
|
|
*
|
|
* This is an end point to power down cpu. If there was a pending interrupt,
|
|
* the control would return from this function, otherwise, the cpu jumps to the
|
|
* warm boot entry point set for this cpu upon reset.
|
|
*/
|
|
void __qcom_scm_cpu_power_down(u32 flags)
|
|
{
|
|
qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC,
|
|
flags & QCOM_SCM_FLUSH_FLAG_MASK);
|
|
}
|
|
|
|
int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
|
|
{
|
|
int ret;
|
|
__le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id);
|
|
__le32 ret_val = 0;
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD,
|
|
&svc_cmd, sizeof(svc_cmd), &ret_val,
|
|
sizeof(ret_val));
|
|
if (ret)
|
|
return ret;
|
|
|
|
return le32_to_cpu(ret_val);
|
|
}
|
|
|
|
int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
|
|
u32 req_cnt, u32 *resp)
|
|
{
|
|
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
|
|
return -ERANGE;
|
|
|
|
return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
|
|
req, req_cnt * sizeof(*req), resp, sizeof(*resp));
|
|
}
|
|
|
|
int __qcom_scm_ocmem_lock(struct device *dev, u32 id, u32 offset, u32 size,
|
|
u32 mode)
|
|
{
|
|
struct ocmem_tz_lock {
|
|
__le32 id;
|
|
__le32 offset;
|
|
__le32 size;
|
|
__le32 mode;
|
|
} request;
|
|
|
|
request.id = cpu_to_le32(id);
|
|
request.offset = cpu_to_le32(offset);
|
|
request.size = cpu_to_le32(size);
|
|
request.mode = cpu_to_le32(mode);
|
|
|
|
return qcom_scm_call(dev, QCOM_SCM_OCMEM_SVC, QCOM_SCM_OCMEM_LOCK_CMD,
|
|
&request, sizeof(request), NULL, 0);
|
|
}
|
|
|
|
int __qcom_scm_ocmem_unlock(struct device *dev, u32 id, u32 offset, u32 size)
|
|
{
|
|
struct ocmem_tz_unlock {
|
|
__le32 id;
|
|
__le32 offset;
|
|
__le32 size;
|
|
} request;
|
|
|
|
request.id = cpu_to_le32(id);
|
|
request.offset = cpu_to_le32(offset);
|
|
request.size = cpu_to_le32(size);
|
|
|
|
return qcom_scm_call(dev, QCOM_SCM_OCMEM_SVC, QCOM_SCM_OCMEM_UNLOCK_CMD,
|
|
&request, sizeof(request), NULL, 0);
|
|
}
|
|
|
|
void __qcom_scm_init(void)
|
|
{
|
|
}
|
|
|
|
bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
|
|
{
|
|
__le32 out;
|
|
__le32 in;
|
|
int ret;
|
|
|
|
in = cpu_to_le32(peripheral);
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
|
|
QCOM_SCM_PAS_IS_SUPPORTED_CMD,
|
|
&in, sizeof(in),
|
|
&out, sizeof(out));
|
|
|
|
return ret ? false : !!out;
|
|
}
|
|
|
|
int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
|
|
dma_addr_t metadata_phys)
|
|
{
|
|
__le32 scm_ret;
|
|
int ret;
|
|
struct {
|
|
__le32 proc;
|
|
__le32 image_addr;
|
|
} request;
|
|
|
|
request.proc = cpu_to_le32(peripheral);
|
|
request.image_addr = cpu_to_le32(metadata_phys);
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
|
|
QCOM_SCM_PAS_INIT_IMAGE_CMD,
|
|
&request, sizeof(request),
|
|
&scm_ret, sizeof(scm_ret));
|
|
|
|
return ret ? : le32_to_cpu(scm_ret);
|
|
}
|
|
|
|
int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
|
|
phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
__le32 scm_ret;
|
|
int ret;
|
|
struct {
|
|
__le32 proc;
|
|
__le32 addr;
|
|
__le32 len;
|
|
} request;
|
|
|
|
request.proc = cpu_to_le32(peripheral);
|
|
request.addr = cpu_to_le32(addr);
|
|
request.len = cpu_to_le32(size);
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
|
|
QCOM_SCM_PAS_MEM_SETUP_CMD,
|
|
&request, sizeof(request),
|
|
&scm_ret, sizeof(scm_ret));
|
|
|
|
return ret ? : le32_to_cpu(scm_ret);
|
|
}
|
|
|
|
int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
|
|
{
|
|
__le32 out;
|
|
__le32 in;
|
|
int ret;
|
|
|
|
in = cpu_to_le32(peripheral);
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
|
|
QCOM_SCM_PAS_AUTH_AND_RESET_CMD,
|
|
&in, sizeof(in),
|
|
&out, sizeof(out));
|
|
|
|
return ret ? : le32_to_cpu(out);
|
|
}
|
|
|
|
int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
|
|
{
|
|
__le32 out;
|
|
__le32 in;
|
|
int ret;
|
|
|
|
in = cpu_to_le32(peripheral);
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
|
|
QCOM_SCM_PAS_SHUTDOWN_CMD,
|
|
&in, sizeof(in),
|
|
&out, sizeof(out));
|
|
|
|
return ret ? : le32_to_cpu(out);
|
|
}
|
|
|
|
int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
|
|
{
|
|
__le32 out;
|
|
__le32 in = cpu_to_le32(reset);
|
|
int ret;
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET,
|
|
&in, sizeof(in),
|
|
&out, sizeof(out));
|
|
|
|
return ret ? : le32_to_cpu(out);
|
|
}
|
|
|
|
int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
|
|
{
|
|
return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE,
|
|
enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0);
|
|
}
|
|
|
|
int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
|
|
{
|
|
struct {
|
|
__le32 state;
|
|
__le32 id;
|
|
} req;
|
|
__le32 scm_ret = 0;
|
|
int ret;
|
|
|
|
req.state = cpu_to_le32(state);
|
|
req.id = cpu_to_le32(id);
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE,
|
|
&req, sizeof(req), &scm_ret, sizeof(scm_ret));
|
|
|
|
return ret ? : le32_to_cpu(scm_ret);
|
|
}
|
|
|
|
int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
|
|
size_t mem_sz, phys_addr_t src, size_t src_sz,
|
|
phys_addr_t dest, size_t dest_sz)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
|
|
u32 spare)
|
|
{
|
|
struct msm_scm_sec_cfg {
|
|
__le32 id;
|
|
__le32 ctx_bank_num;
|
|
} cfg;
|
|
int ret, scm_ret = 0;
|
|
|
|
cfg.id = cpu_to_le32(device_id);
|
|
cfg.ctx_bank_num = cpu_to_le32(spare);
|
|
|
|
ret = qcom_scm_call(dev, QCOM_SCM_SVC_MP, QCOM_SCM_RESTORE_SEC_CFG,
|
|
&cfg, sizeof(cfg), &scm_ret, sizeof(scm_ret));
|
|
|
|
if (ret || scm_ret)
|
|
return ret ? ret : -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
|
|
size_t *size)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
|
|
u32 spare)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
|
|
unsigned int *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr);
|
|
if (ret >= 0)
|
|
*val = ret;
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
|
|
{
|
|
return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE,
|
|
addr, val);
|
|
}
|
|
|
|
int __qcom_scm_qsmmu500_wait_safe_toggle(struct device *dev, bool enable)
|
|
{
|
|
return -ENODEV;
|
|
}
|