mirror of
https://github.com/torvalds/linux.git
synced 2024-12-19 17:41:29 +00:00
31e5e64694
Hyper-V clock/timer code in hyperv_timer.c is mostly independent from other VMbus drivers, but building for ARM64 without hyperv_timer.c shows some remaining entanglements. A default implementation of hv_read_reference_counter can just read a Hyper-V synthetic register and be independent of hyperv_timer.c, so move this code out and into hv_common.c. Then it can be used by the timesync driver even if hyperv_timer.c isn't built on a particular architecture. If hyperv_timer.c *is* built, it can override with a faster implementation. Also provide stubs for stimer functions called by the VMbus driver when hyperv_timer.c isn't built. No functional changes. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Link: https://lore.kernel.org/r/1626220906-22629-1-git-send-email-mikelley@microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org>
569 lines
15 KiB
C
569 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Clocksource driver for the synthetic counter and timers
|
|
* provided by the Hyper-V hypervisor to guest VMs, as described
|
|
* in the Hyper-V Top Level Functional Spec (TLFS). This driver
|
|
* is instruction set architecture independent.
|
|
*
|
|
* Copyright (C) 2019, Microsoft, Inc.
|
|
*
|
|
* Author: Michael Kelley <mikelley@microsoft.com>
|
|
*/
|
|
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/acpi.h>
|
|
#include <clocksource/hyperv_timer.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
#include <asm/mshyperv.h>
|
|
|
|
static struct clock_event_device __percpu *hv_clock_event;
|
|
static u64 hv_sched_clock_offset __ro_after_init;
|
|
|
|
/*
|
|
* If false, we're using the old mechanism for stimer0 interrupts
|
|
* where it sends a VMbus message when it expires. The old
|
|
* mechanism is used when running on older versions of Hyper-V
|
|
* that don't support Direct Mode. While Hyper-V provides
|
|
* four stimer's per CPU, Linux uses only stimer0.
|
|
*
|
|
* Because Direct Mode does not require processing a VMbus
|
|
* message, stimer interrupts can be enabled earlier in the
|
|
* process of booting a CPU, and consistent with when timer
|
|
* interrupts are enabled for other clocksource drivers.
|
|
* However, for legacy versions of Hyper-V when Direct Mode
|
|
* is not enabled, setting up stimer interrupts must be
|
|
* delayed until VMbus is initialized and can process the
|
|
* interrupt message.
|
|
*/
|
|
static bool direct_mode_enabled;
|
|
|
|
static int stimer0_irq = -1;
|
|
static int stimer0_message_sint;
|
|
static DEFINE_PER_CPU(long, stimer0_evt);
|
|
|
|
/*
|
|
* Common code for stimer0 interrupts coming via Direct Mode or
|
|
* as a VMbus message.
|
|
*/
|
|
void hv_stimer0_isr(void)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
ce = this_cpu_ptr(hv_clock_event);
|
|
ce->event_handler(ce);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer0_isr);
|
|
|
|
/*
|
|
* stimer0 interrupt handler for architectures that support
|
|
* per-cpu interrupts, which also implies Direct Mode.
|
|
*/
|
|
static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
|
|
{
|
|
hv_stimer0_isr();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int hv_ce_set_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
u64 current_tick;
|
|
|
|
current_tick = hv_read_reference_counter();
|
|
current_tick += delta;
|
|
hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_shutdown(struct clock_event_device *evt)
|
|
{
|
|
hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
|
|
hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
|
|
if (direct_mode_enabled && stimer0_irq >= 0)
|
|
disable_percpu_irq(stimer0_irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_set_oneshot(struct clock_event_device *evt)
|
|
{
|
|
union hv_stimer_config timer_cfg;
|
|
|
|
timer_cfg.as_uint64 = 0;
|
|
timer_cfg.enable = 1;
|
|
timer_cfg.auto_enable = 1;
|
|
if (direct_mode_enabled) {
|
|
/*
|
|
* When it expires, the timer will directly interrupt
|
|
* on the specified hardware vector/IRQ.
|
|
*/
|
|
timer_cfg.direct_mode = 1;
|
|
timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
|
|
if (stimer0_irq >= 0)
|
|
enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
|
|
} else {
|
|
/*
|
|
* When it expires, the timer will generate a VMbus message,
|
|
* to be handled by the normal VMbus interrupt handler.
|
|
*/
|
|
timer_cfg.direct_mode = 0;
|
|
timer_cfg.sintx = stimer0_message_sint;
|
|
}
|
|
hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_stimer_init - Per-cpu initialization of the clockevent
|
|
*/
|
|
static int hv_stimer_init(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
if (!hv_clock_event)
|
|
return 0;
|
|
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
ce->name = "Hyper-V clockevent";
|
|
ce->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
ce->cpumask = cpumask_of(cpu);
|
|
ce->rating = 1000;
|
|
ce->set_state_shutdown = hv_ce_shutdown;
|
|
ce->set_state_oneshot = hv_ce_set_oneshot;
|
|
ce->set_next_event = hv_ce_set_next_event;
|
|
|
|
clockevents_config_and_register(ce,
|
|
HV_CLOCK_HZ,
|
|
HV_MIN_DELTA_TICKS,
|
|
HV_MAX_MAX_DELTA_TICKS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_stimer_cleanup - Per-cpu cleanup of the clockevent
|
|
*/
|
|
int hv_stimer_cleanup(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
if (!hv_clock_event)
|
|
return 0;
|
|
|
|
/*
|
|
* In the legacy case where Direct Mode is not enabled
|
|
* (which can only be on x86/64), stimer cleanup happens
|
|
* relatively early in the CPU offlining process. We
|
|
* must unbind the stimer-based clockevent device so
|
|
* that the LAPIC timer can take over until clockevents
|
|
* are no longer needed in the offlining process. Note
|
|
* that clockevents_unbind_device() eventually calls
|
|
* hv_ce_shutdown().
|
|
*
|
|
* The unbind should not be done when Direct Mode is
|
|
* enabled because we may be on an architecture where
|
|
* there are no other clockevent devices to fallback to.
|
|
*/
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
if (direct_mode_enabled)
|
|
hv_ce_shutdown(ce);
|
|
else
|
|
clockevents_unbind_device(ce, cpu);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
|
|
|
|
/*
|
|
* These placeholders are overridden by arch specific code on
|
|
* architectures that need special setup of the stimer0 IRQ because
|
|
* they don't support per-cpu IRQs (such as x86/x64).
|
|
*/
|
|
void __weak hv_setup_stimer0_handler(void (*handler)(void))
|
|
{
|
|
};
|
|
|
|
void __weak hv_remove_stimer0_handler(void)
|
|
{
|
|
};
|
|
|
|
/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
|
|
static int hv_setup_stimer0_irq(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
|
|
ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
|
|
if (ret < 0) {
|
|
pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
|
|
return ret;
|
|
}
|
|
stimer0_irq = ret;
|
|
|
|
ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
|
|
"Hyper-V stimer0", &stimer0_evt);
|
|
if (ret) {
|
|
pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
|
|
stimer0_irq, ret);
|
|
acpi_unregister_gsi(stimer0_irq);
|
|
stimer0_irq = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void hv_remove_stimer0_irq(void)
|
|
{
|
|
if (stimer0_irq == -1) {
|
|
hv_remove_stimer0_handler();
|
|
} else {
|
|
free_percpu_irq(stimer0_irq, &stimer0_evt);
|
|
acpi_unregister_gsi(stimer0_irq);
|
|
stimer0_irq = -1;
|
|
}
|
|
}
|
|
|
|
/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
|
|
int hv_stimer_alloc(bool have_percpu_irqs)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Synthetic timers are always available except on old versions of
|
|
* Hyper-V on x86. In that case, return as error as Linux will use a
|
|
* clockevent based on emulated LAPIC timer hardware.
|
|
*/
|
|
if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
|
|
return -EINVAL;
|
|
|
|
hv_clock_event = alloc_percpu(struct clock_event_device);
|
|
if (!hv_clock_event)
|
|
return -ENOMEM;
|
|
|
|
direct_mode_enabled = ms_hyperv.misc_features &
|
|
HV_STIMER_DIRECT_MODE_AVAILABLE;
|
|
|
|
/*
|
|
* If Direct Mode isn't enabled, the remainder of the initialization
|
|
* is done later by hv_stimer_legacy_init()
|
|
*/
|
|
if (!direct_mode_enabled)
|
|
return 0;
|
|
|
|
if (have_percpu_irqs) {
|
|
ret = hv_setup_stimer0_irq();
|
|
if (ret)
|
|
goto free_clock_event;
|
|
} else {
|
|
hv_setup_stimer0_handler(hv_stimer0_isr);
|
|
}
|
|
|
|
/*
|
|
* Since we are in Direct Mode, stimer initialization
|
|
* can be done now with a CPUHP value in the same range
|
|
* as other clockevent devices.
|
|
*/
|
|
ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
|
|
"clockevents/hyperv/stimer:starting",
|
|
hv_stimer_init, hv_stimer_cleanup);
|
|
if (ret < 0) {
|
|
hv_remove_stimer0_irq();
|
|
goto free_clock_event;
|
|
}
|
|
return ret;
|
|
|
|
free_clock_event:
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_alloc);
|
|
|
|
/*
|
|
* hv_stimer_legacy_init -- Called from the VMbus driver to handle
|
|
* the case when Direct Mode is not enabled, and the stimer
|
|
* must be initialized late in the CPU onlining process.
|
|
*
|
|
*/
|
|
void hv_stimer_legacy_init(unsigned int cpu, int sint)
|
|
{
|
|
if (direct_mode_enabled)
|
|
return;
|
|
|
|
/*
|
|
* This function gets called by each vCPU, so setting the
|
|
* global stimer_message_sint value each time is conceptually
|
|
* not ideal, but the value passed in is always the same and
|
|
* it avoids introducing yet another interface into this
|
|
* clocksource driver just to set the sint in the legacy case.
|
|
*/
|
|
stimer0_message_sint = sint;
|
|
(void)hv_stimer_init(cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
|
|
|
|
/*
|
|
* hv_stimer_legacy_cleanup -- Called from the VMbus driver to
|
|
* handle the case when Direct Mode is not enabled, and the
|
|
* stimer must be cleaned up early in the CPU offlining
|
|
* process.
|
|
*/
|
|
void hv_stimer_legacy_cleanup(unsigned int cpu)
|
|
{
|
|
if (direct_mode_enabled)
|
|
return;
|
|
(void)hv_stimer_cleanup(cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
|
|
|
|
/*
|
|
* Do a global cleanup of clockevents for the cases of kexec and
|
|
* vmbus exit
|
|
*/
|
|
void hv_stimer_global_cleanup(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* hv_stime_legacy_cleanup() will stop the stimer if Direct
|
|
* Mode is not enabled, and fallback to the LAPIC timer.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
hv_stimer_legacy_cleanup(cpu);
|
|
}
|
|
|
|
if (!hv_clock_event)
|
|
return;
|
|
|
|
if (direct_mode_enabled) {
|
|
cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
|
|
hv_remove_stimer0_irq();
|
|
stimer0_irq = -1;
|
|
}
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
|
|
|
|
/*
|
|
* Code and definitions for the Hyper-V clocksources. Two
|
|
* clocksources are defined: one that reads the Hyper-V defined MSR, and
|
|
* the other that uses the TSC reference page feature as defined in the
|
|
* TLFS. The MSR version is for compatibility with old versions of
|
|
* Hyper-V and 32-bit x86. The TSC reference page version is preferred.
|
|
*/
|
|
|
|
static union {
|
|
struct ms_hyperv_tsc_page page;
|
|
u8 reserved[PAGE_SIZE];
|
|
} tsc_pg __aligned(PAGE_SIZE);
|
|
|
|
struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
|
|
{
|
|
return &tsc_pg.page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_get_tsc_page);
|
|
|
|
static u64 notrace read_hv_clock_tsc(void)
|
|
{
|
|
u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
|
|
|
|
if (current_tick == U64_MAX)
|
|
current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
|
|
|
|
return current_tick;
|
|
}
|
|
|
|
static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
|
|
{
|
|
return read_hv_clock_tsc();
|
|
}
|
|
|
|
static u64 notrace read_hv_sched_clock_tsc(void)
|
|
{
|
|
return (read_hv_clock_tsc() - hv_sched_clock_offset) *
|
|
(NSEC_PER_SEC / HV_CLOCK_HZ);
|
|
}
|
|
|
|
static void suspend_hv_clock_tsc(struct clocksource *arg)
|
|
{
|
|
u64 tsc_msr;
|
|
|
|
/* Disable the TSC page */
|
|
tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
tsc_msr &= ~BIT_ULL(0);
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
|
|
}
|
|
|
|
|
|
static void resume_hv_clock_tsc(struct clocksource *arg)
|
|
{
|
|
phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
|
|
u64 tsc_msr;
|
|
|
|
/* Re-enable the TSC page */
|
|
tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
tsc_msr &= GENMASK_ULL(11, 0);
|
|
tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
|
|
}
|
|
|
|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
|
|
static int hv_cs_enable(struct clocksource *cs)
|
|
{
|
|
vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct clocksource hyperv_cs_tsc = {
|
|
.name = "hyperv_clocksource_tsc_page",
|
|
.rating = 500,
|
|
.read = read_hv_clock_tsc_cs,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
.suspend= suspend_hv_clock_tsc,
|
|
.resume = resume_hv_clock_tsc,
|
|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
|
|
.enable = hv_cs_enable,
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
|
|
#else
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
|
|
#endif
|
|
};
|
|
|
|
static u64 notrace read_hv_clock_msr(void)
|
|
{
|
|
/*
|
|
* Read the partition counter to get the current tick count. This count
|
|
* is set to 0 when the partition is created and is incremented in
|
|
* 100 nanosecond units.
|
|
*/
|
|
return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
|
|
}
|
|
|
|
static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
|
|
{
|
|
return read_hv_clock_msr();
|
|
}
|
|
|
|
static u64 notrace read_hv_sched_clock_msr(void)
|
|
{
|
|
return (read_hv_clock_msr() - hv_sched_clock_offset) *
|
|
(NSEC_PER_SEC / HV_CLOCK_HZ);
|
|
}
|
|
|
|
static struct clocksource hyperv_cs_msr = {
|
|
.name = "hyperv_clocksource_msr",
|
|
.rating = 500,
|
|
.read = read_hv_clock_msr_cs,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
/*
|
|
* Reference to pv_ops must be inline so objtool
|
|
* detection of noinstr violations can work correctly.
|
|
*/
|
|
#ifdef CONFIG_GENERIC_SCHED_CLOCK
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
|
|
{
|
|
/*
|
|
* We're on an architecture with generic sched clock (not x86/x64).
|
|
* The Hyper-V sched clock read function returns nanoseconds, not
|
|
* the normal 100ns units of the Hyper-V synthetic clock.
|
|
*/
|
|
sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
|
|
}
|
|
#elif defined CONFIG_PARAVIRT
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
|
|
{
|
|
/* We're on x86/x64 *and* using PV ops */
|
|
paravirt_set_sched_clock(sched_clock);
|
|
}
|
|
#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
|
|
#endif /* CONFIG_GENERIC_SCHED_CLOCK */
|
|
|
|
static bool __init hv_init_tsc_clocksource(void)
|
|
{
|
|
u64 tsc_msr;
|
|
phys_addr_t phys_addr;
|
|
|
|
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
|
|
return false;
|
|
|
|
if (hv_root_partition)
|
|
return false;
|
|
|
|
/*
|
|
* If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
|
|
* handles frequency and offset changes due to live migration,
|
|
* pause/resume, and other VM management operations. So lower the
|
|
* Hyper-V Reference TSC rating, causing the generic TSC to be used.
|
|
* TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
|
|
* TSC will be preferred over the virtualized ARM64 arch counter.
|
|
* While the Hyper-V MSR clocksource won't be used since the
|
|
* Reference TSC clocksource is present, change its rating as
|
|
* well for consistency.
|
|
*/
|
|
if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
|
|
hyperv_cs_tsc.rating = 250;
|
|
hyperv_cs_msr.rating = 250;
|
|
}
|
|
|
|
hv_read_reference_counter = read_hv_clock_tsc;
|
|
phys_addr = virt_to_phys(hv_get_tsc_page());
|
|
|
|
/*
|
|
* The Hyper-V TLFS specifies to preserve the value of reserved
|
|
* bits in registers. So read the existing value, preserve the
|
|
* low order 12 bits, and add in the guest physical address
|
|
* (which already has at least the low 12 bits set to zero since
|
|
* it is page aligned). Also set the "enable" bit, which is bit 0.
|
|
*/
|
|
tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
tsc_msr &= GENMASK_ULL(11, 0);
|
|
tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
|
|
|
|
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
|
|
|
|
hv_sched_clock_offset = hv_read_reference_counter();
|
|
hv_setup_sched_clock(read_hv_sched_clock_tsc);
|
|
|
|
return true;
|
|
}
|
|
|
|
void __init hv_init_clocksource(void)
|
|
{
|
|
/*
|
|
* Try to set up the TSC page clocksource. If it succeeds, we're
|
|
* done. Otherwise, set up the MSR clocksource. At least one of
|
|
* these will always be available except on very old versions of
|
|
* Hyper-V on x86. In that case we won't have a Hyper-V
|
|
* clocksource, but Linux will still run with a clocksource based
|
|
* on the emulated PIT or LAPIC timer.
|
|
*/
|
|
if (hv_init_tsc_clocksource())
|
|
return;
|
|
|
|
if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
|
|
return;
|
|
|
|
hv_read_reference_counter = read_hv_clock_msr;
|
|
clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
|
|
|
|
hv_sched_clock_offset = hv_read_reference_counter();
|
|
hv_setup_sched_clock(read_hv_sched_clock_msr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_init_clocksource);
|