linux/arch/x86/entry/common.c
Andy Lutomirski 4e79e182b4 x86/entry/compat: Keep TS_COMPAT set during signal delivery
Signal delivery needs to know the sign of an interrupted syscall's
return value in order to detect -ERESTART variants.  Normally this
works independently of bitness because syscalls internally return
long.  Under ptrace, however, this can break, and syscall_get_error
is supposed to sign-extend regs->ax if needed.

We were clearing TS_COMPAT too early, though, and this prevented
sign extension, which subtly broke syscall restart under ptrace.

Reported-by: Robert O'Callahan <robert@ocallahan.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # 4.3.x-
Fixes: c5c46f59e4 ("x86/entry: Add new, comprehensible entry and exit handlers written in C")
Link: http://lkml.kernel.org/r/cbce3cf545522f64eb37f5478cb59746230db3b5.1455142412.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-17 09:51:06 +01:00

517 lines
14 KiB
C

/*
* common.c - C code for kernel entry and exit
* Copyright (c) 2015 Andrew Lutomirski
* GPL v2
*
* Based on asm and ptrace code by many authors. The code here originated
* in ptrace.c and signal.c.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/signal.h>
#include <linux/export.h>
#include <linux/context_tracking.h>
#include <linux/user-return-notifier.h>
#include <linux/uprobes.h>
#include <asm/desc.h>
#include <asm/traps.h>
#include <asm/vdso.h>
#include <asm/uaccess.h>
#include <asm/cpufeature.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
{
unsigned long top_of_stack =
(unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
return (struct thread_info *)(top_of_stack - THREAD_SIZE);
}
#ifdef CONFIG_CONTEXT_TRACKING
/* Called on entry from user mode with IRQs off. */
__visible void enter_from_user_mode(void)
{
CT_WARN_ON(ct_state() != CONTEXT_USER);
user_exit();
}
#endif
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
{
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
audit_syscall_entry(regs->orig_ax, regs->di,
regs->si, regs->dx, regs->r10);
} else
#endif
{
audit_syscall_entry(regs->orig_ax, regs->bx,
regs->cx, regs->dx, regs->si);
}
}
/*
* We can return 0 to resume the syscall or anything else to go to phase
* 2. If we resume the syscall, we need to put something appropriate in
* regs->orig_ax.
*
* NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
* are fully functional.
*
* For phase 2's benefit, our return value is:
* 0: resume the syscall
* 1: go to phase 2; no seccomp phase 2 needed
* anything else: go to phase 2; pass return value to seccomp
*/
unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
unsigned long ret = 0;
u32 work;
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
BUG_ON(regs != task_pt_regs(current));
work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
#ifdef CONFIG_CONTEXT_TRACKING
/*
* If TIF_NOHZ is set, we are required to call user_exit() before
* doing anything that could touch RCU.
*/
if (work & _TIF_NOHZ) {
enter_from_user_mode();
work &= ~_TIF_NOHZ;
}
#endif
#ifdef CONFIG_SECCOMP
/*
* Do seccomp first -- it should minimize exposure of other
* code, and keeping seccomp fast is probably more valuable
* than the rest of this.
*/
if (work & _TIF_SECCOMP) {
struct seccomp_data sd;
sd.arch = arch;
sd.nr = regs->orig_ax;
sd.instruction_pointer = regs->ip;
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
sd.args[0] = regs->di;
sd.args[1] = regs->si;
sd.args[2] = regs->dx;
sd.args[3] = regs->r10;
sd.args[4] = regs->r8;
sd.args[5] = regs->r9;
} else
#endif
{
sd.args[0] = regs->bx;
sd.args[1] = regs->cx;
sd.args[2] = regs->dx;
sd.args[3] = regs->si;
sd.args[4] = regs->di;
sd.args[5] = regs->bp;
}
BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
ret = seccomp_phase1(&sd);
if (ret == SECCOMP_PHASE1_SKIP) {
regs->orig_ax = -1;
ret = 0;
} else if (ret != SECCOMP_PHASE1_OK) {
return ret; /* Go directly to phase 2 */
}
work &= ~_TIF_SECCOMP;
}
#endif
/* Do our best to finish without phase 2. */
if (work == 0)
return ret; /* seccomp and/or nohz only (ret == 0 here) */
#ifdef CONFIG_AUDITSYSCALL
if (work == _TIF_SYSCALL_AUDIT) {
/*
* If there is no more work to be done except auditing,
* then audit in phase 1. Phase 2 always audits, so, if
* we audit here, then we can't go on to phase 2.
*/
do_audit_syscall_entry(regs, arch);
return 0;
}
#endif
return 1; /* Something is enabled that we can't handle in phase 1 */
}
/* Returns the syscall nr to run (which should match regs->orig_ax). */
long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
unsigned long phase1_result)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
long ret = 0;
u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
BUG_ON(regs != task_pt_regs(current));
/*
* If we stepped into a sysenter/syscall insn, it trapped in
* kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP.
* If user-mode had set TF itself, then it's still clear from
* do_debug() and we need to set it again to restore the user
* state. If we entered on the slow path, TF was already set.
*/
if (work & _TIF_SINGLESTEP)
regs->flags |= X86_EFLAGS_TF;
#ifdef CONFIG_SECCOMP
/*
* Call seccomp_phase2 before running the other hooks so that
* they can see any changes made by a seccomp tracer.
*/
if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
/* seccomp failures shouldn't expose any additional code. */
return -1;
}
#endif
if (unlikely(work & _TIF_SYSCALL_EMU))
ret = -1L;
if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
tracehook_report_syscall_entry(regs))
ret = -1L;
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->orig_ax);
do_audit_syscall_entry(regs, arch);
return ret ?: regs->orig_ax;
}
long syscall_trace_enter(struct pt_regs *regs)
{
u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
if (phase1_result == 0)
return regs->orig_ax;
else
return syscall_trace_enter_phase2(regs, arch, phase1_result);
}
#define EXIT_TO_USERMODE_LOOP_FLAGS \
(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
_TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
{
/*
* In order to return to user mode, we need to have IRQs off with
* none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
* _TIF_UPROBE, or _TIF_NEED_RESCHED set. Several of these flags
* can be set at any time on preemptable kernels if we have IRQs on,
* so we need to loop. Disabling preemption wouldn't help: doing the
* work to clear some of the flags can sleep.
*/
while (true) {
/* We have work to do. */
local_irq_enable();
if (cached_flags & _TIF_NEED_RESCHED)
schedule();
if (cached_flags & _TIF_UPROBE)
uprobe_notify_resume(regs);
/* deal with pending signal delivery */
if (cached_flags & _TIF_SIGPENDING)
do_signal(regs);
if (cached_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
}
if (cached_flags & _TIF_USER_RETURN_NOTIFY)
fire_user_return_notifiers();
/* Disable IRQs and retry */
local_irq_disable();
cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
break;
}
}
/* Called with IRQs disabled. */
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
u32 cached_flags;
if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
local_irq_disable();
lockdep_sys_exit();
cached_flags = READ_ONCE(ti->flags);
if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
exit_to_usermode_loop(regs, cached_flags);
#ifdef CONFIG_COMPAT
/*
* Compat syscalls set TS_COMPAT. Make sure we clear it before
* returning to user mode. We need to clear it *after* signal
* handling, because syscall restart has a fixup for compat
* syscalls. The fixup is exercised by the ptrace_syscall_32
* selftest.
*/
ti->status &= ~TS_COMPAT;
#endif
user_enter();
}
#define SYSCALL_EXIT_WORK_FLAGS \
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
_TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
{
bool step;
audit_syscall_exit(regs);
if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
trace_sys_exit(regs, regs->ax);
/*
* If TIF_SYSCALL_EMU is set, we only get here because of
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
* We already reported this syscall instruction in
* syscall_trace_enter().
*/
step = unlikely(
(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
== _TIF_SINGLESTEP);
if (step || cached_flags & _TIF_SYSCALL_TRACE)
tracehook_report_syscall_exit(regs, step);
}
/*
* Called with IRQs on and fully valid regs. Returns with IRQs off in a
* state such that we can immediately switch to user mode.
*/
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
u32 cached_flags = READ_ONCE(ti->flags);
CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
local_irq_enable();
/*
* First do one-time work. If these work items are enabled, we
* want to run them exactly once per syscall exit with IRQs on.
*/
if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
syscall_slow_exit_work(regs, cached_flags);
local_irq_disable();
prepare_exit_to_usermode(regs);
}
#ifdef CONFIG_X86_64
__visible void do_syscall_64(struct pt_regs *regs)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
unsigned long nr = regs->orig_ax;
local_irq_enable();
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
nr = syscall_trace_enter(regs);
/*
* NB: Native and x32 syscalls are dispatched from the same
* table. The only functional difference is the x32 bit in
* regs->orig_ax, which changes the behavior of some syscalls.
*/
if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
regs->ax = sys_call_table[nr & __SYSCALL_MASK](
regs->di, regs->si, regs->dx,
regs->r10, regs->r8, regs->r9);
}
syscall_return_slowpath(regs);
}
#endif
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
/*
* Does a 32-bit syscall. Called with IRQs on and does all entry and
* exit work and returns with IRQs off. This function is extremely hot
* in workloads that use it, and it's usually called from
* do_fast_syscall_32, so forcibly inline it to improve performance.
*/
#ifdef CONFIG_X86_32
/* 32-bit kernels use a trap gate for INT80, and the asm code calls here. */
__visible
#else
/* 64-bit kernels use do_syscall_32_irqs_off() instead. */
static
#endif
__always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
{
struct thread_info *ti = pt_regs_to_thread_info(regs);
unsigned int nr = (unsigned int)regs->orig_ax;
#ifdef CONFIG_IA32_EMULATION
ti->status |= TS_COMPAT;
#endif
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
/*
* Subtlety here: if ptrace pokes something larger than
* 2^32-1 into orig_ax, this truncates it. This may or
* may not be necessary, but it matches the old asm
* behavior.
*/
nr = syscall_trace_enter(regs);
}
if (likely(nr < IA32_NR_syscalls)) {
/*
* It's possible that a 32-bit syscall implementation
* takes a 64-bit parameter but nonetheless assumes that
* the high bits are zero. Make sure we zero-extend all
* of the args.
*/
regs->ax = ia32_sys_call_table[nr](
(unsigned int)regs->bx, (unsigned int)regs->cx,
(unsigned int)regs->dx, (unsigned int)regs->si,
(unsigned int)regs->di, (unsigned int)regs->bp);
}
syscall_return_slowpath(regs);
}
#ifdef CONFIG_X86_64
/* Handles INT80 on 64-bit kernels */
__visible void do_syscall_32_irqs_off(struct pt_regs *regs)
{
local_irq_enable();
do_syscall_32_irqs_on(regs);
}
#endif
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
__visible long do_fast_syscall_32(struct pt_regs *regs)
{
/*
* Called using the internal vDSO SYSENTER/SYSCALL32 calling
* convention. Adjust regs so it looks like we entered using int80.
*/
unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
vdso_image_32.sym_int80_landing_pad;
/*
* SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
* so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
* Fix it up.
*/
regs->ip = landing_pad;
/*
* Fetch EBP from where the vDSO stashed it.
*
* WARNING: We are in CONTEXT_USER and RCU isn't paying attention!
*/
local_irq_enable();
if (
#ifdef CONFIG_X86_64
/*
* Micro-optimization: the pointer we're following is explicitly
* 32 bits, so it can't be out of range.
*/
__get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp)
#else
get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp)
#endif
) {
/* User code screwed up. */
local_irq_disable();
regs->ax = -EFAULT;
#ifdef CONFIG_CONTEXT_TRACKING
enter_from_user_mode();
#endif
prepare_exit_to_usermode(regs);
return 0; /* Keep it simple: use IRET. */
}
/* Now this is just like a normal syscall. */
do_syscall_32_irqs_on(regs);
#ifdef CONFIG_X86_64
/*
* Opportunistic SYSRETL: if possible, try to return using SYSRETL.
* SYSRETL is available on all 64-bit CPUs, so we don't need to
* bother with SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*/
return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
#else
/*
* Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*
* We don't allow syscalls at all from VM86 mode, but we still
* need to check VM, because we might be returning from sys_vm86.
*/
return static_cpu_has(X86_FEATURE_SEP) &&
regs->cs == __USER_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
#endif
}
#endif