linux/drivers/usb/host/xhci-mtk.h
Chunfeng Yun b7d509a92b usb: xhci-mtk: allow bandwidth table rollover
xhci-mtk has 64 slots for periodic bandwidth calculations and each
slot represents byte budgets on a microframe. When an endpoint's
allocation sits on the boundary of the table, byte budgets' slot
can be rolled over but the current implementation doesn't.

This patch allows the microframe index rollover and prevent
out-of-bounds array access.

Signed-off-by: Ikjoon Jang <ikjn@chromium.org>
Signed-off-by: Chunfeng Yun <chunfeng.yun@mediatek.com>
Link: https://lore.kernel.org/r/20210827033105.26595-1-chunfeng.yun@mediatek.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-27 10:24:51 +02:00

181 lines
5.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2015 MediaTek Inc.
* Author:
* Zhigang.Wei <zhigang.wei@mediatek.com>
* Chunfeng.Yun <chunfeng.yun@mediatek.com>
*/
#ifndef _XHCI_MTK_H_
#define _XHCI_MTK_H_
#include <linux/clk.h>
#include <linux/hashtable.h>
#include "xhci.h"
#define BULK_CLKS_NUM 5
/* support at most 64 ep, use 32 size hash table */
#define SCH_EP_HASH_BITS 5
/**
* To simplify scheduler algorithm, set a upper limit for ESIT,
* if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT,
* round down to the limit value, that means allocating more
* bandwidth to it.
*/
#define XHCI_MTK_MAX_ESIT (1 << 6)
#define XHCI_MTK_BW_INDEX(x) ((x) & (XHCI_MTK_MAX_ESIT - 1))
/**
* @fs_bus_bw: array to keep track of bandwidth already used for FS
* @ep_list: Endpoints using this TT
*/
struct mu3h_sch_tt {
u32 fs_bus_bw[XHCI_MTK_MAX_ESIT];
struct list_head ep_list;
};
/**
* struct mu3h_sch_bw_info: schedule information for bandwidth domain
*
* @bus_bw: array to keep track of bandwidth already used at each uframes
*
* treat a HS root port as a bandwidth domain, but treat a SS root port as
* two bandwidth domains, one for IN eps and another for OUT eps.
*/
struct mu3h_sch_bw_info {
u32 bus_bw[XHCI_MTK_MAX_ESIT];
};
/**
* struct mu3h_sch_ep_info: schedule information for endpoint
*
* @esit: unit is 125us, equal to 2 << Interval field in ep-context
* @num_esit: number of @esit in a period
* @num_budget_microframes: number of continuous uframes
* (@repeat==1) scheduled within the interval
* @bw_cost_per_microframe: bandwidth cost per microframe
* @hentry: hash table entry
* @endpoint: linked into bandwidth domain which it belongs to
* @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to
* @bw_info: bandwidth domain which this endpoint belongs
* @sch_tt: mu3h_sch_tt linked into
* @ep_type: endpoint type
* @maxpkt: max packet size of endpoint
* @ep: address of usb_host_endpoint struct
* @allocated: the bandwidth is aready allocated from bus_bw
* @offset: which uframe of the interval that transfer should be
* scheduled first time within the interval
* @repeat: the time gap between two uframes that transfers are
* scheduled within a interval. in the simple algorithm, only
* assign 0 or 1 to it; 0 means using only one uframe in a
* interval, and 1 means using @num_budget_microframes
* continuous uframes
* @pkts: number of packets to be transferred in the scheduled uframes
* @cs_count: number of CS that host will trigger
* @burst_mode: burst mode for scheduling. 0: normal burst mode,
* distribute the bMaxBurst+1 packets for a single burst
* according to @pkts and @repeat, repeate the burst multiple
* times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets
* according to @pkts and @repeat. normal mode is used by
* default
* @bw_budget_table: table to record bandwidth budget per microframe
*/
struct mu3h_sch_ep_info {
u32 esit;
u32 num_esit;
u32 num_budget_microframes;
u32 bw_cost_per_microframe;
struct list_head endpoint;
struct hlist_node hentry;
struct list_head tt_endpoint;
struct mu3h_sch_bw_info *bw_info;
struct mu3h_sch_tt *sch_tt;
u32 ep_type;
u32 maxpkt;
struct usb_host_endpoint *ep;
enum usb_device_speed speed;
bool allocated;
/*
* mtk xHCI scheduling information put into reserved DWs
* in ep context
*/
u32 offset;
u32 repeat;
u32 pkts;
u32 cs_count;
u32 burst_mode;
u32 bw_budget_table[];
};
#define MU3C_U3_PORT_MAX 4
#define MU3C_U2_PORT_MAX 5
/**
* struct mu3c_ippc_regs: MTK ssusb ip port control registers
* @ip_pw_ctr0~3: ip power and clock control registers
* @ip_pw_sts1~2: ip power and clock status registers
* @ip_xhci_cap: ip xHCI capability register
* @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used
* @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used
* @u2_phy_pll: usb2 phy pll control register
*/
struct mu3c_ippc_regs {
__le32 ip_pw_ctr0;
__le32 ip_pw_ctr1;
__le32 ip_pw_ctr2;
__le32 ip_pw_ctr3;
__le32 ip_pw_sts1;
__le32 ip_pw_sts2;
__le32 reserved0[3];
__le32 ip_xhci_cap;
__le32 reserved1[2];
__le64 u3_ctrl_p[MU3C_U3_PORT_MAX];
__le64 u2_ctrl_p[MU3C_U2_PORT_MAX];
__le32 reserved2;
__le32 u2_phy_pll;
__le32 reserved3[33]; /* 0x80 ~ 0xff */
};
struct xhci_hcd_mtk {
struct device *dev;
struct usb_hcd *hcd;
struct mu3h_sch_bw_info *sch_array;
struct list_head bw_ep_chk_list;
DECLARE_HASHTABLE(sch_ep_hash, SCH_EP_HASH_BITS);
struct mu3c_ippc_regs __iomem *ippc_regs;
int num_u2_ports;
int num_u3_ports;
int u2p_dis_msk;
int u3p_dis_msk;
struct regulator *vusb33;
struct regulator *vbus;
struct clk_bulk_data clks[BULK_CLKS_NUM];
unsigned int has_ippc:1;
unsigned int lpm_support:1;
unsigned int u2_lpm_disable:1;
/* usb remote wakeup */
unsigned int uwk_en:1;
struct regmap *uwk;
u32 uwk_reg_base;
u32 uwk_vers;
};
static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd)
{
return dev_get_drvdata(hcd->self.controller);
}
int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk);
void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk);
int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
#endif /* _XHCI_MTK_H_ */