linux/fs/f2fs/recovery.c
Jaegeuk Kim 4d4c593893 f2fs: fix write pointers all the time
Even if the roll forward recovery stopped due to any error, we have to fix
the write pointers in order to mount the disk from the previous checkpoint.

Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2024-02-29 08:34:35 -08:00

959 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/recovery.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <asm/unaligned.h>
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/sched/mm.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
/*
* Roll forward recovery scenarios.
*
* [Term] F: fsync_mark, D: dentry_mark
*
* 1. inode(x) | CP | inode(x) | dnode(F)
* -> Update the latest inode(x).
*
* 2. inode(x) | CP | inode(F) | dnode(F)
* -> No problem.
*
* 3. inode(x) | CP | dnode(F) | inode(x)
* -> Recover to the latest dnode(F), and drop the last inode(x)
*
* 4. inode(x) | CP | dnode(F) | inode(F)
* -> No problem.
*
* 5. CP | inode(x) | dnode(F)
* -> The inode(DF) was missing. Should drop this dnode(F).
*
* 6. CP | inode(DF) | dnode(F)
* -> No problem.
*
* 7. CP | dnode(F) | inode(DF)
* -> If f2fs_iget fails, then goto next to find inode(DF).
*
* 8. CP | dnode(F) | inode(x)
* -> If f2fs_iget fails, then goto next to find inode(DF).
* But it will fail due to no inode(DF).
*/
static struct kmem_cache *fsync_entry_slab;
#if IS_ENABLED(CONFIG_UNICODE)
extern struct kmem_cache *f2fs_cf_name_slab;
#endif
bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi)
{
s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
return false;
if (NM_I(sbi)->max_rf_node_blocks &&
percpu_counter_sum_positive(&sbi->rf_node_block_count) >=
NM_I(sbi)->max_rf_node_blocks)
return false;
return true;
}
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
nid_t ino)
{
struct fsync_inode_entry *entry;
list_for_each_entry(entry, head, list)
if (entry->inode->i_ino == ino)
return entry;
return NULL;
}
static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
struct list_head *head, nid_t ino, bool quota_inode)
{
struct inode *inode;
struct fsync_inode_entry *entry;
int err;
inode = f2fs_iget_retry(sbi->sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
err = f2fs_dquot_initialize(inode);
if (err)
goto err_out;
if (quota_inode) {
err = dquot_alloc_inode(inode);
if (err)
goto err_out;
}
entry = f2fs_kmem_cache_alloc(fsync_entry_slab,
GFP_F2FS_ZERO, true, NULL);
entry->inode = inode;
list_add_tail(&entry->list, head);
return entry;
err_out:
iput(inode);
return ERR_PTR(err);
}
static void del_fsync_inode(struct fsync_inode_entry *entry, int drop)
{
if (drop) {
/* inode should not be recovered, drop it */
f2fs_inode_synced(entry->inode);
}
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
static int init_recovered_filename(const struct inode *dir,
struct f2fs_inode *raw_inode,
struct f2fs_filename *fname,
struct qstr *usr_fname)
{
int err;
memset(fname, 0, sizeof(*fname));
fname->disk_name.len = le32_to_cpu(raw_inode->i_namelen);
fname->disk_name.name = raw_inode->i_name;
if (WARN_ON(fname->disk_name.len > F2FS_NAME_LEN))
return -ENAMETOOLONG;
if (!IS_ENCRYPTED(dir)) {
usr_fname->name = fname->disk_name.name;
usr_fname->len = fname->disk_name.len;
fname->usr_fname = usr_fname;
}
/* Compute the hash of the filename */
if (IS_ENCRYPTED(dir) && IS_CASEFOLDED(dir)) {
/*
* In this case the hash isn't computable without the key, so it
* was saved on-disk.
*/
if (fname->disk_name.len + sizeof(f2fs_hash_t) > F2FS_NAME_LEN)
return -EINVAL;
fname->hash = get_unaligned((f2fs_hash_t *)
&raw_inode->i_name[fname->disk_name.len]);
} else if (IS_CASEFOLDED(dir)) {
err = f2fs_init_casefolded_name(dir, fname);
if (err)
return err;
f2fs_hash_filename(dir, fname);
#if IS_ENABLED(CONFIG_UNICODE)
/* Case-sensitive match is fine for recovery */
kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
fname->cf_name.name = NULL;
#endif
} else {
f2fs_hash_filename(dir, fname);
}
return 0;
}
static int recover_dentry(struct inode *inode, struct page *ipage,
struct list_head *dir_list)
{
struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
nid_t pino = le32_to_cpu(raw_inode->i_pino);
struct f2fs_dir_entry *de;
struct f2fs_filename fname;
struct qstr usr_fname;
struct page *page;
struct inode *dir, *einode;
struct fsync_inode_entry *entry;
int err = 0;
char *name;
entry = get_fsync_inode(dir_list, pino);
if (!entry) {
entry = add_fsync_inode(F2FS_I_SB(inode), dir_list,
pino, false);
if (IS_ERR(entry)) {
dir = ERR_CAST(entry);
err = PTR_ERR(entry);
goto out;
}
}
dir = entry->inode;
err = init_recovered_filename(dir, raw_inode, &fname, &usr_fname);
if (err)
goto out;
retry:
de = __f2fs_find_entry(dir, &fname, &page);
if (de && inode->i_ino == le32_to_cpu(de->ino))
goto out_put;
if (de) {
einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
if (IS_ERR(einode)) {
WARN_ON(1);
err = PTR_ERR(einode);
if (err == -ENOENT)
err = -EEXIST;
goto out_put;
}
err = f2fs_dquot_initialize(einode);
if (err) {
iput(einode);
goto out_put;
}
err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode));
if (err) {
iput(einode);
goto out_put;
}
f2fs_delete_entry(de, page, dir, einode);
iput(einode);
goto retry;
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
} else {
err = f2fs_add_dentry(dir, &fname, inode,
inode->i_ino, inode->i_mode);
}
if (err == -ENOMEM)
goto retry;
goto out;
out_put:
f2fs_put_page(page, 0);
out:
if (file_enc_name(inode))
name = "<encrypted>";
else
name = raw_inode->i_name;
f2fs_notice(F2FS_I_SB(inode), "%s: ino = %x, name = %s, dir = %lx, err = %d",
__func__, ino_of_node(ipage), name,
IS_ERR(dir) ? 0 : dir->i_ino, err);
return err;
}
static int recover_quota_data(struct inode *inode, struct page *page)
{
struct f2fs_inode *raw = F2FS_INODE(page);
struct iattr attr;
uid_t i_uid = le32_to_cpu(raw->i_uid);
gid_t i_gid = le32_to_cpu(raw->i_gid);
int err;
memset(&attr, 0, sizeof(attr));
attr.ia_vfsuid = VFSUIDT_INIT(make_kuid(inode->i_sb->s_user_ns, i_uid));
attr.ia_vfsgid = VFSGIDT_INIT(make_kgid(inode->i_sb->s_user_ns, i_gid));
if (!vfsuid_eq(attr.ia_vfsuid, i_uid_into_vfsuid(&nop_mnt_idmap, inode)))
attr.ia_valid |= ATTR_UID;
if (!vfsgid_eq(attr.ia_vfsgid, i_gid_into_vfsgid(&nop_mnt_idmap, inode)))
attr.ia_valid |= ATTR_GID;
if (!attr.ia_valid)
return 0;
err = dquot_transfer(&nop_mnt_idmap, inode, &attr);
if (err)
set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR);
return err;
}
static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri)
{
if (ri->i_inline & F2FS_PIN_FILE)
set_inode_flag(inode, FI_PIN_FILE);
else
clear_inode_flag(inode, FI_PIN_FILE);
if (ri->i_inline & F2FS_DATA_EXIST)
set_inode_flag(inode, FI_DATA_EXIST);
else
clear_inode_flag(inode, FI_DATA_EXIST);
}
static int recover_inode(struct inode *inode, struct page *page)
{
struct f2fs_inode *raw = F2FS_INODE(page);
char *name;
int err;
inode->i_mode = le16_to_cpu(raw->i_mode);
err = recover_quota_data(inode, page);
if (err)
return err;
i_uid_write(inode, le32_to_cpu(raw->i_uid));
i_gid_write(inode, le32_to_cpu(raw->i_gid));
if (raw->i_inline & F2FS_EXTRA_ATTR) {
if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize),
i_projid)) {
projid_t i_projid;
kprojid_t kprojid;
i_projid = (projid_t)le32_to_cpu(raw->i_projid);
kprojid = make_kprojid(&init_user_ns, i_projid);
if (!projid_eq(kprojid, F2FS_I(inode)->i_projid)) {
err = f2fs_transfer_project_quota(inode,
kprojid);
if (err)
return err;
F2FS_I(inode)->i_projid = kprojid;
}
}
}
f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
inode_set_atime(inode, le64_to_cpu(raw->i_atime),
le32_to_cpu(raw->i_atime_nsec));
inode_set_ctime(inode, le64_to_cpu(raw->i_ctime),
le32_to_cpu(raw->i_ctime_nsec));
inode_set_mtime(inode, le64_to_cpu(raw->i_mtime),
le32_to_cpu(raw->i_mtime_nsec));
F2FS_I(inode)->i_advise = raw->i_advise;
F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags);
f2fs_set_inode_flags(inode);
F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] =
le16_to_cpu(raw->i_gc_failures);
recover_inline_flags(inode, raw);
f2fs_mark_inode_dirty_sync(inode, true);
if (file_enc_name(inode))
name = "<encrypted>";
else
name = F2FS_INODE(page)->i_name;
f2fs_notice(F2FS_I_SB(inode), "recover_inode: ino = %x, name = %s, inline = %x",
ino_of_node(page), name, raw->i_inline);
return 0;
}
static unsigned int adjust_por_ra_blocks(struct f2fs_sb_info *sbi,
unsigned int ra_blocks, unsigned int blkaddr,
unsigned int next_blkaddr)
{
if (blkaddr + 1 == next_blkaddr)
ra_blocks = min_t(unsigned int, RECOVERY_MAX_RA_BLOCKS,
ra_blocks * 2);
else if (next_blkaddr % BLKS_PER_SEG(sbi))
ra_blocks = max_t(unsigned int, RECOVERY_MIN_RA_BLOCKS,
ra_blocks / 2);
return ra_blocks;
}
/* Detect looped node chain with Floyd's cycle detection algorithm. */
static int sanity_check_node_chain(struct f2fs_sb_info *sbi, block_t blkaddr,
block_t *blkaddr_fast, bool *is_detecting)
{
unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS;
struct page *page = NULL;
int i;
if (!*is_detecting)
return 0;
for (i = 0; i < 2; i++) {
if (!f2fs_is_valid_blkaddr(sbi, *blkaddr_fast, META_POR)) {
*is_detecting = false;
return 0;
}
page = f2fs_get_tmp_page(sbi, *blkaddr_fast);
if (IS_ERR(page))
return PTR_ERR(page);
if (!is_recoverable_dnode(page)) {
f2fs_put_page(page, 1);
*is_detecting = false;
return 0;
}
ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, *blkaddr_fast,
next_blkaddr_of_node(page));
*blkaddr_fast = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
f2fs_ra_meta_pages_cond(sbi, *blkaddr_fast, ra_blocks);
}
if (*blkaddr_fast == blkaddr) {
f2fs_notice(sbi, "%s: Detect looped node chain on blkaddr:%u."
" Run fsck to fix it.", __func__, blkaddr);
return -EINVAL;
}
return 0;
}
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
bool check_only)
{
struct curseg_info *curseg;
struct page *page = NULL;
block_t blkaddr, blkaddr_fast;
bool is_detecting = true;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
blkaddr_fast = blkaddr;
while (1) {
struct fsync_inode_entry *entry;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
return 0;
page = f2fs_get_tmp_page(sbi, blkaddr);
if (IS_ERR(page)) {
err = PTR_ERR(page);
break;
}
if (!is_recoverable_dnode(page)) {
f2fs_put_page(page, 1);
break;
}
if (!is_fsync_dnode(page))
goto next;
entry = get_fsync_inode(head, ino_of_node(page));
if (!entry) {
bool quota_inode = false;
if (!check_only &&
IS_INODE(page) && is_dent_dnode(page)) {
err = f2fs_recover_inode_page(sbi, page);
if (err) {
f2fs_put_page(page, 1);
break;
}
quota_inode = true;
}
/*
* CP | dnode(F) | inode(DF)
* For this case, we should not give up now.
*/
entry = add_fsync_inode(sbi, head, ino_of_node(page),
quota_inode);
if (IS_ERR(entry)) {
err = PTR_ERR(entry);
if (err == -ENOENT)
goto next;
f2fs_put_page(page, 1);
break;
}
}
entry->blkaddr = blkaddr;
if (IS_INODE(page) && is_dent_dnode(page))
entry->last_dentry = blkaddr;
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
err = sanity_check_node_chain(sbi, blkaddr, &blkaddr_fast,
&is_detecting);
if (err)
break;
}
return err;
}
static void destroy_fsync_dnodes(struct list_head *head, int drop)
{
struct fsync_inode_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, head, list)
del_fsync_inode(entry, drop);
}
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
block_t blkaddr, struct dnode_of_data *dn)
{
struct seg_entry *sentry;
unsigned int segno = GET_SEGNO(sbi, blkaddr);
unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
struct f2fs_summary_block *sum_node;
struct f2fs_summary sum;
struct page *sum_page, *node_page;
struct dnode_of_data tdn = *dn;
nid_t ino, nid;
struct inode *inode;
unsigned int offset, ofs_in_node, max_addrs;
block_t bidx;
int i;
sentry = get_seg_entry(sbi, segno);
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
return 0;
/* Get the previous summary */
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (curseg->segno == segno) {
sum = curseg->sum_blk->entries[blkoff];
goto got_it;
}
}
sum_page = f2fs_get_sum_page(sbi, segno);
if (IS_ERR(sum_page))
return PTR_ERR(sum_page);
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
sum = sum_node->entries[blkoff];
f2fs_put_page(sum_page, 1);
got_it:
/* Use the locked dnode page and inode */
nid = le32_to_cpu(sum.nid);
ofs_in_node = le16_to_cpu(sum.ofs_in_node);
max_addrs = ADDRS_PER_PAGE(dn->node_page, dn->inode);
if (ofs_in_node >= max_addrs) {
f2fs_err(sbi, "Inconsistent ofs_in_node:%u in summary, ino:%lu, nid:%u, max:%u",
ofs_in_node, dn->inode->i_ino, nid, max_addrs);
f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUMMARY);
return -EFSCORRUPTED;
}
if (dn->inode->i_ino == nid) {
tdn.nid = nid;
if (!dn->inode_page_locked)
lock_page(dn->inode_page);
tdn.node_page = dn->inode_page;
tdn.ofs_in_node = ofs_in_node;
goto truncate_out;
} else if (dn->nid == nid) {
tdn.ofs_in_node = ofs_in_node;
goto truncate_out;
}
/* Get the node page */
node_page = f2fs_get_node_page(sbi, nid);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
offset = ofs_of_node(node_page);
ino = ino_of_node(node_page);
f2fs_put_page(node_page, 1);
if (ino != dn->inode->i_ino) {
int ret;
/* Deallocate previous index in the node page */
inode = f2fs_iget_retry(sbi->sb, ino);
if (IS_ERR(inode))
return PTR_ERR(inode);
ret = f2fs_dquot_initialize(inode);
if (ret) {
iput(inode);
return ret;
}
} else {
inode = dn->inode;
}
bidx = f2fs_start_bidx_of_node(offset, inode) +
le16_to_cpu(sum.ofs_in_node);
/*
* if inode page is locked, unlock temporarily, but its reference
* count keeps alive.
*/
if (ino == dn->inode->i_ino && dn->inode_page_locked)
unlock_page(dn->inode_page);
set_new_dnode(&tdn, inode, NULL, NULL, 0);
if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
goto out;
if (tdn.data_blkaddr == blkaddr)
f2fs_truncate_data_blocks_range(&tdn, 1);
f2fs_put_dnode(&tdn);
out:
if (ino != dn->inode->i_ino)
iput(inode);
else if (dn->inode_page_locked)
lock_page(dn->inode_page);
return 0;
truncate_out:
if (f2fs_data_blkaddr(&tdn) == blkaddr)
f2fs_truncate_data_blocks_range(&tdn, 1);
if (dn->inode->i_ino == nid && !dn->inode_page_locked)
unlock_page(dn->inode_page);
return 0;
}
static int f2fs_reserve_new_block_retry(struct dnode_of_data *dn)
{
int i, err = 0;
for (i = DEFAULT_FAILURE_RETRY_COUNT; i > 0; i--) {
err = f2fs_reserve_new_block(dn);
if (!err)
break;
}
return err;
}
static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page)
{
struct dnode_of_data dn;
struct node_info ni;
unsigned int start, end;
int err = 0, recovered = 0;
/* step 1: recover xattr */
if (IS_INODE(page)) {
err = f2fs_recover_inline_xattr(inode, page);
if (err)
goto out;
} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
err = f2fs_recover_xattr_data(inode, page);
if (!err)
recovered++;
goto out;
}
/* step 2: recover inline data */
err = f2fs_recover_inline_data(inode, page);
if (err) {
if (err == 1)
err = 0;
goto out;
}
/* step 3: recover data indices */
start = f2fs_start_bidx_of_node(ofs_of_node(page), inode);
end = start + ADDRS_PER_PAGE(page, inode);
set_new_dnode(&dn, inode, NULL, NULL, 0);
retry_dn:
err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE);
if (err) {
if (err == -ENOMEM) {
memalloc_retry_wait(GFP_NOFS);
goto retry_dn;
}
goto out;
}
f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true);
err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
if (err)
goto err;
f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
if (ofs_of_node(dn.node_page) != ofs_of_node(page)) {
f2fs_warn(sbi, "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u",
inode->i_ino, ofs_of_node(dn.node_page),
ofs_of_node(page));
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
goto err;
}
for (; start < end; start++, dn.ofs_in_node++) {
block_t src, dest;
src = f2fs_data_blkaddr(&dn);
dest = data_blkaddr(dn.inode, page, dn.ofs_in_node);
if (__is_valid_data_blkaddr(src) &&
!f2fs_is_valid_blkaddr(sbi, src, META_POR)) {
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
goto err;
}
if (__is_valid_data_blkaddr(dest) &&
!f2fs_is_valid_blkaddr(sbi, dest, META_POR)) {
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
goto err;
}
/* skip recovering if dest is the same as src */
if (src == dest)
continue;
/* dest is invalid, just invalidate src block */
if (dest == NULL_ADDR) {
f2fs_truncate_data_blocks_range(&dn, 1);
continue;
}
if (!file_keep_isize(inode) &&
(i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
f2fs_i_size_write(inode,
(loff_t)(start + 1) << PAGE_SHIFT);
/*
* dest is reserved block, invalidate src block
* and then reserve one new block in dnode page.
*/
if (dest == NEW_ADDR) {
f2fs_truncate_data_blocks_range(&dn, 1);
err = f2fs_reserve_new_block_retry(&dn);
if (err)
goto err;
continue;
}
/* dest is valid block, try to recover from src to dest */
if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) {
if (src == NULL_ADDR) {
err = f2fs_reserve_new_block_retry(&dn);
if (err)
goto err;
}
retry_prev:
/* Check the previous node page having this index */
err = check_index_in_prev_nodes(sbi, dest, &dn);
if (err) {
if (err == -ENOMEM) {
memalloc_retry_wait(GFP_NOFS);
goto retry_prev;
}
goto err;
}
if (f2fs_is_valid_blkaddr(sbi, dest,
DATA_GENERIC_ENHANCE_UPDATE)) {
f2fs_err(sbi, "Inconsistent dest blkaddr:%u, ino:%lu, ofs:%u",
dest, inode->i_ino, dn.ofs_in_node);
err = -EFSCORRUPTED;
f2fs_handle_error(sbi,
ERROR_INVALID_BLKADDR);
goto err;
}
/* write dummy data page */
f2fs_replace_block(sbi, &dn, src, dest,
ni.version, false, false);
recovered++;
}
}
copy_node_footer(dn.node_page, page);
fill_node_footer(dn.node_page, dn.nid, ni.ino,
ofs_of_node(page), false);
set_page_dirty(dn.node_page);
err:
f2fs_put_dnode(&dn);
out:
f2fs_notice(sbi, "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
inode->i_ino, file_keep_isize(inode) ? "keep" : "recover",
recovered, err);
return err;
}
static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
struct list_head *tmp_inode_list, struct list_head *dir_list)
{
struct curseg_info *curseg;
struct page *page = NULL;
int err = 0;
block_t blkaddr;
unsigned int ra_blocks = RECOVERY_MAX_RA_BLOCKS;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
while (1) {
struct fsync_inode_entry *entry;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
break;
page = f2fs_get_tmp_page(sbi, blkaddr);
if (IS_ERR(page)) {
err = PTR_ERR(page);
break;
}
if (!is_recoverable_dnode(page)) {
f2fs_put_page(page, 1);
break;
}
entry = get_fsync_inode(inode_list, ino_of_node(page));
if (!entry)
goto next;
/*
* inode(x) | CP | inode(x) | dnode(F)
* In this case, we can lose the latest inode(x).
* So, call recover_inode for the inode update.
*/
if (IS_INODE(page)) {
err = recover_inode(entry->inode, page);
if (err) {
f2fs_put_page(page, 1);
break;
}
}
if (entry->last_dentry == blkaddr) {
err = recover_dentry(entry->inode, page, dir_list);
if (err) {
f2fs_put_page(page, 1);
break;
}
}
err = do_recover_data(sbi, entry->inode, page);
if (err) {
f2fs_put_page(page, 1);
break;
}
if (entry->blkaddr == blkaddr)
list_move_tail(&entry->list, tmp_inode_list);
next:
ra_blocks = adjust_por_ra_blocks(sbi, ra_blocks, blkaddr,
next_blkaddr_of_node(page));
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
f2fs_put_page(page, 1);
f2fs_ra_meta_pages_cond(sbi, blkaddr, ra_blocks);
}
if (!err)
f2fs_allocate_new_segments(sbi);
return err;
}
int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
{
struct list_head inode_list, tmp_inode_list;
struct list_head dir_list;
int err;
int ret = 0;
unsigned long s_flags = sbi->sb->s_flags;
bool need_writecp = false;
if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
f2fs_info(sbi, "recover fsync data on readonly fs");
INIT_LIST_HEAD(&inode_list);
INIT_LIST_HEAD(&tmp_inode_list);
INIT_LIST_HEAD(&dir_list);
/* prevent checkpoint */
f2fs_down_write(&sbi->cp_global_sem);
/* step #1: find fsynced inode numbers */
err = find_fsync_dnodes(sbi, &inode_list, check_only);
if (err || list_empty(&inode_list))
goto skip;
if (check_only) {
ret = 1;
goto skip;
}
need_writecp = true;
/* step #2: recover data */
err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list);
if (!err)
f2fs_bug_on(sbi, !list_empty(&inode_list));
else
f2fs_bug_on(sbi, sbi->sb->s_flags & SB_ACTIVE);
skip:
destroy_fsync_dnodes(&inode_list, err);
destroy_fsync_dnodes(&tmp_inode_list, err);
/* truncate meta pages to be used by the recovery */
truncate_inode_pages_range(META_MAPPING(sbi),
(loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
if (err) {
truncate_inode_pages_final(NODE_MAPPING(sbi));
truncate_inode_pages_final(META_MAPPING(sbi));
}
/*
* If fsync data succeeds or there is no fsync data to recover,
* and the f2fs is not read only, check and fix zoned block devices'
* write pointer consistency.
*/
if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sbi->sb)) {
int err2 = f2fs_fix_curseg_write_pointer(sbi);
if (!err2)
err2 = f2fs_check_write_pointer(sbi);
if (err2)
err = err2;
ret = err;
}
if (!err)
clear_sbi_flag(sbi, SBI_POR_DOING);
f2fs_up_write(&sbi->cp_global_sem);
/* let's drop all the directory inodes for clean checkpoint */
destroy_fsync_dnodes(&dir_list, err);
if (need_writecp) {
set_sbi_flag(sbi, SBI_IS_RECOVERED);
if (!err) {
struct cp_control cpc = {
.reason = CP_RECOVERY,
};
stat_inc_cp_call_count(sbi, TOTAL_CALL);
err = f2fs_write_checkpoint(sbi, &cpc);
}
}
sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
return ret ? ret : err;
}
int __init f2fs_create_recovery_cache(void)
{
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
sizeof(struct fsync_inode_entry));
return fsync_entry_slab ? 0 : -ENOMEM;
}
void f2fs_destroy_recovery_cache(void)
{
kmem_cache_destroy(fsync_entry_slab);
}