mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 14:41:39 +00:00
4011921137
Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1435 lines
33 KiB
C
1435 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* The filters are packed to hash tables of key nodes
|
|
* with a set of 32bit key/mask pairs at every node.
|
|
* Nodes reference next level hash tables etc.
|
|
*
|
|
* This scheme is the best universal classifier I managed to
|
|
* invent; it is not super-fast, but it is not slow (provided you
|
|
* program it correctly), and general enough. And its relative
|
|
* speed grows as the number of rules becomes larger.
|
|
*
|
|
* It seems that it represents the best middle point between
|
|
* speed and manageability both by human and by machine.
|
|
*
|
|
* It is especially useful for link sharing combined with QoS;
|
|
* pure RSVP doesn't need such a general approach and can use
|
|
* much simpler (and faster) schemes, sort of cls_rsvp.c.
|
|
*
|
|
* nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/hash.h>
|
|
#include <net/netlink.h>
|
|
#include <net/act_api.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <linux/idr.h>
|
|
|
|
struct tc_u_knode {
|
|
struct tc_u_knode __rcu *next;
|
|
u32 handle;
|
|
struct tc_u_hnode __rcu *ht_up;
|
|
struct tcf_exts exts;
|
|
int ifindex;
|
|
u8 fshift;
|
|
struct tcf_result res;
|
|
struct tc_u_hnode __rcu *ht_down;
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
struct tc_u32_pcnt __percpu *pf;
|
|
#endif
|
|
u32 flags;
|
|
unsigned int in_hw_count;
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
u32 val;
|
|
u32 mask;
|
|
u32 __percpu *pcpu_success;
|
|
#endif
|
|
struct rcu_work rwork;
|
|
/* The 'sel' field MUST be the last field in structure to allow for
|
|
* tc_u32_keys allocated at end of structure.
|
|
*/
|
|
struct tc_u32_sel sel;
|
|
};
|
|
|
|
struct tc_u_hnode {
|
|
struct tc_u_hnode __rcu *next;
|
|
u32 handle;
|
|
u32 prio;
|
|
int refcnt;
|
|
unsigned int divisor;
|
|
struct idr handle_idr;
|
|
bool is_root;
|
|
struct rcu_head rcu;
|
|
u32 flags;
|
|
/* The 'ht' field MUST be the last field in structure to allow for
|
|
* more entries allocated at end of structure.
|
|
*/
|
|
struct tc_u_knode __rcu *ht[1];
|
|
};
|
|
|
|
struct tc_u_common {
|
|
struct tc_u_hnode __rcu *hlist;
|
|
void *ptr;
|
|
int refcnt;
|
|
struct idr handle_idr;
|
|
struct hlist_node hnode;
|
|
long knodes;
|
|
};
|
|
|
|
static inline unsigned int u32_hash_fold(__be32 key,
|
|
const struct tc_u32_sel *sel,
|
|
u8 fshift)
|
|
{
|
|
unsigned int h = ntohl(key & sel->hmask) >> fshift;
|
|
|
|
return h;
|
|
}
|
|
|
|
static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
|
|
struct tcf_result *res)
|
|
{
|
|
struct {
|
|
struct tc_u_knode *knode;
|
|
unsigned int off;
|
|
} stack[TC_U32_MAXDEPTH];
|
|
|
|
struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
|
|
unsigned int off = skb_network_offset(skb);
|
|
struct tc_u_knode *n;
|
|
int sdepth = 0;
|
|
int off2 = 0;
|
|
int sel = 0;
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
int j;
|
|
#endif
|
|
int i, r;
|
|
|
|
next_ht:
|
|
n = rcu_dereference_bh(ht->ht[sel]);
|
|
|
|
next_knode:
|
|
if (n) {
|
|
struct tc_u32_key *key = n->sel.keys;
|
|
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
__this_cpu_inc(n->pf->rcnt);
|
|
j = 0;
|
|
#endif
|
|
|
|
if (tc_skip_sw(n->flags)) {
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
}
|
|
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
if ((skb->mark & n->mask) != n->val) {
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
} else {
|
|
__this_cpu_inc(*n->pcpu_success);
|
|
}
|
|
#endif
|
|
|
|
for (i = n->sel.nkeys; i > 0; i--, key++) {
|
|
int toff = off + key->off + (off2 & key->offmask);
|
|
__be32 *data, hdata;
|
|
|
|
if (skb_headroom(skb) + toff > INT_MAX)
|
|
goto out;
|
|
|
|
data = skb_header_pointer(skb, toff, 4, &hdata);
|
|
if (!data)
|
|
goto out;
|
|
if ((*data ^ key->val) & key->mask) {
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
}
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
__this_cpu_inc(n->pf->kcnts[j]);
|
|
j++;
|
|
#endif
|
|
}
|
|
|
|
ht = rcu_dereference_bh(n->ht_down);
|
|
if (!ht) {
|
|
check_terminal:
|
|
if (n->sel.flags & TC_U32_TERMINAL) {
|
|
|
|
*res = n->res;
|
|
if (!tcf_match_indev(skb, n->ifindex)) {
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
}
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
__this_cpu_inc(n->pf->rhit);
|
|
#endif
|
|
r = tcf_exts_exec(skb, &n->exts, res);
|
|
if (r < 0) {
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
n = rcu_dereference_bh(n->next);
|
|
goto next_knode;
|
|
}
|
|
|
|
/* PUSH */
|
|
if (sdepth >= TC_U32_MAXDEPTH)
|
|
goto deadloop;
|
|
stack[sdepth].knode = n;
|
|
stack[sdepth].off = off;
|
|
sdepth++;
|
|
|
|
ht = rcu_dereference_bh(n->ht_down);
|
|
sel = 0;
|
|
if (ht->divisor) {
|
|
__be32 *data, hdata;
|
|
|
|
data = skb_header_pointer(skb, off + n->sel.hoff, 4,
|
|
&hdata);
|
|
if (!data)
|
|
goto out;
|
|
sel = ht->divisor & u32_hash_fold(*data, &n->sel,
|
|
n->fshift);
|
|
}
|
|
if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
|
|
goto next_ht;
|
|
|
|
if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
|
|
off2 = n->sel.off + 3;
|
|
if (n->sel.flags & TC_U32_VAROFFSET) {
|
|
__be16 *data, hdata;
|
|
|
|
data = skb_header_pointer(skb,
|
|
off + n->sel.offoff,
|
|
2, &hdata);
|
|
if (!data)
|
|
goto out;
|
|
off2 += ntohs(n->sel.offmask & *data) >>
|
|
n->sel.offshift;
|
|
}
|
|
off2 &= ~3;
|
|
}
|
|
if (n->sel.flags & TC_U32_EAT) {
|
|
off += off2;
|
|
off2 = 0;
|
|
}
|
|
|
|
if (off < skb->len)
|
|
goto next_ht;
|
|
}
|
|
|
|
/* POP */
|
|
if (sdepth--) {
|
|
n = stack[sdepth].knode;
|
|
ht = rcu_dereference_bh(n->ht_up);
|
|
off = stack[sdepth].off;
|
|
goto check_terminal;
|
|
}
|
|
out:
|
|
return -1;
|
|
|
|
deadloop:
|
|
net_warn_ratelimited("cls_u32: dead loop\n");
|
|
return -1;
|
|
}
|
|
|
|
static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
|
|
{
|
|
struct tc_u_hnode *ht;
|
|
|
|
for (ht = rtnl_dereference(tp_c->hlist);
|
|
ht;
|
|
ht = rtnl_dereference(ht->next))
|
|
if (ht->handle == handle)
|
|
break;
|
|
|
|
return ht;
|
|
}
|
|
|
|
static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
|
|
{
|
|
unsigned int sel;
|
|
struct tc_u_knode *n = NULL;
|
|
|
|
sel = TC_U32_HASH(handle);
|
|
if (sel > ht->divisor)
|
|
goto out;
|
|
|
|
for (n = rtnl_dereference(ht->ht[sel]);
|
|
n;
|
|
n = rtnl_dereference(n->next))
|
|
if (n->handle == handle)
|
|
break;
|
|
out:
|
|
return n;
|
|
}
|
|
|
|
|
|
static void *u32_get(struct tcf_proto *tp, u32 handle)
|
|
{
|
|
struct tc_u_hnode *ht;
|
|
struct tc_u_common *tp_c = tp->data;
|
|
|
|
if (TC_U32_HTID(handle) == TC_U32_ROOT)
|
|
ht = rtnl_dereference(tp->root);
|
|
else
|
|
ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
|
|
|
|
if (!ht)
|
|
return NULL;
|
|
|
|
if (TC_U32_KEY(handle) == 0)
|
|
return ht;
|
|
|
|
return u32_lookup_key(ht, handle);
|
|
}
|
|
|
|
/* Protected by rtnl lock */
|
|
static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
|
|
{
|
|
int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
|
|
if (id < 0)
|
|
return 0;
|
|
return (id | 0x800U) << 20;
|
|
}
|
|
|
|
static struct hlist_head *tc_u_common_hash;
|
|
|
|
#define U32_HASH_SHIFT 10
|
|
#define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
|
|
|
|
static void *tc_u_common_ptr(const struct tcf_proto *tp)
|
|
{
|
|
struct tcf_block *block = tp->chain->block;
|
|
|
|
/* The block sharing is currently supported only
|
|
* for classless qdiscs. In that case we use block
|
|
* for tc_u_common identification. In case the
|
|
* block is not shared, block->q is a valid pointer
|
|
* and we can use that. That works for classful qdiscs.
|
|
*/
|
|
if (tcf_block_shared(block))
|
|
return block;
|
|
else
|
|
return block->q;
|
|
}
|
|
|
|
static struct hlist_head *tc_u_hash(void *key)
|
|
{
|
|
return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
|
|
}
|
|
|
|
static struct tc_u_common *tc_u_common_find(void *key)
|
|
{
|
|
struct tc_u_common *tc;
|
|
hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
|
|
if (tc->ptr == key)
|
|
return tc;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int u32_init(struct tcf_proto *tp)
|
|
{
|
|
struct tc_u_hnode *root_ht;
|
|
void *key = tc_u_common_ptr(tp);
|
|
struct tc_u_common *tp_c = tc_u_common_find(key);
|
|
|
|
root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
|
|
if (root_ht == NULL)
|
|
return -ENOBUFS;
|
|
|
|
root_ht->refcnt++;
|
|
root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
|
|
root_ht->prio = tp->prio;
|
|
root_ht->is_root = true;
|
|
idr_init(&root_ht->handle_idr);
|
|
|
|
if (tp_c == NULL) {
|
|
tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
|
|
if (tp_c == NULL) {
|
|
kfree(root_ht);
|
|
return -ENOBUFS;
|
|
}
|
|
tp_c->ptr = key;
|
|
INIT_HLIST_NODE(&tp_c->hnode);
|
|
idr_init(&tp_c->handle_idr);
|
|
|
|
hlist_add_head(&tp_c->hnode, tc_u_hash(key));
|
|
}
|
|
|
|
tp_c->refcnt++;
|
|
RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
|
|
rcu_assign_pointer(tp_c->hlist, root_ht);
|
|
|
|
root_ht->refcnt++;
|
|
rcu_assign_pointer(tp->root, root_ht);
|
|
tp->data = tp_c;
|
|
return 0;
|
|
}
|
|
|
|
static int u32_destroy_key(struct tc_u_knode *n, bool free_pf)
|
|
{
|
|
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
|
|
|
|
tcf_exts_destroy(&n->exts);
|
|
tcf_exts_put_net(&n->exts);
|
|
if (ht && --ht->refcnt == 0)
|
|
kfree(ht);
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
if (free_pf)
|
|
free_percpu(n->pf);
|
|
#endif
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
if (free_pf)
|
|
free_percpu(n->pcpu_success);
|
|
#endif
|
|
kfree(n);
|
|
return 0;
|
|
}
|
|
|
|
/* u32_delete_key_rcu should be called when free'ing a copied
|
|
* version of a tc_u_knode obtained from u32_init_knode(). When
|
|
* copies are obtained from u32_init_knode() the statistics are
|
|
* shared between the old and new copies to allow readers to
|
|
* continue to update the statistics during the copy. To support
|
|
* this the u32_delete_key_rcu variant does not free the percpu
|
|
* statistics.
|
|
*/
|
|
static void u32_delete_key_work(struct work_struct *work)
|
|
{
|
|
struct tc_u_knode *key = container_of(to_rcu_work(work),
|
|
struct tc_u_knode,
|
|
rwork);
|
|
rtnl_lock();
|
|
u32_destroy_key(key, false);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
/* u32_delete_key_freepf_rcu is the rcu callback variant
|
|
* that free's the entire structure including the statistics
|
|
* percpu variables. Only use this if the key is not a copy
|
|
* returned by u32_init_knode(). See u32_delete_key_rcu()
|
|
* for the variant that should be used with keys return from
|
|
* u32_init_knode()
|
|
*/
|
|
static void u32_delete_key_freepf_work(struct work_struct *work)
|
|
{
|
|
struct tc_u_knode *key = container_of(to_rcu_work(work),
|
|
struct tc_u_knode,
|
|
rwork);
|
|
rtnl_lock();
|
|
u32_destroy_key(key, true);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_knode __rcu **kp;
|
|
struct tc_u_knode *pkp;
|
|
struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
|
|
|
|
if (ht) {
|
|
kp = &ht->ht[TC_U32_HASH(key->handle)];
|
|
for (pkp = rtnl_dereference(*kp); pkp;
|
|
kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
|
|
if (pkp == key) {
|
|
RCU_INIT_POINTER(*kp, key->next);
|
|
tp_c->knodes--;
|
|
|
|
tcf_unbind_filter(tp, &key->res);
|
|
idr_remove(&ht->handle_idr, key->handle);
|
|
tcf_exts_get_net(&key->exts);
|
|
tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tcf_block *block = tp->chain->block;
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
|
|
cls_u32.command = TC_CLSU32_DELETE_HNODE;
|
|
cls_u32.hnode.divisor = h->divisor;
|
|
cls_u32.hnode.handle = h->handle;
|
|
cls_u32.hnode.prio = h->prio;
|
|
|
|
tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
|
|
}
|
|
|
|
static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
|
|
u32 flags, struct netlink_ext_ack *extack)
|
|
{
|
|
struct tcf_block *block = tp->chain->block;
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
bool skip_sw = tc_skip_sw(flags);
|
|
bool offloaded = false;
|
|
int err;
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
|
|
cls_u32.command = TC_CLSU32_NEW_HNODE;
|
|
cls_u32.hnode.divisor = h->divisor;
|
|
cls_u32.hnode.handle = h->handle;
|
|
cls_u32.hnode.prio = h->prio;
|
|
|
|
err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
|
|
if (err < 0) {
|
|
u32_clear_hw_hnode(tp, h, NULL);
|
|
return err;
|
|
} else if (err > 0) {
|
|
offloaded = true;
|
|
}
|
|
|
|
if (skip_sw && !offloaded)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tcf_block *block = tp->chain->block;
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
|
|
cls_u32.command = TC_CLSU32_DELETE_KNODE;
|
|
cls_u32.knode.handle = n->handle;
|
|
|
|
tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
|
|
&n->flags, &n->in_hw_count, true);
|
|
}
|
|
|
|
static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
|
|
u32 flags, struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
|
|
struct tcf_block *block = tp->chain->block;
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
bool skip_sw = tc_skip_sw(flags);
|
|
int err;
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
|
|
cls_u32.command = TC_CLSU32_REPLACE_KNODE;
|
|
cls_u32.knode.handle = n->handle;
|
|
cls_u32.knode.fshift = n->fshift;
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
cls_u32.knode.val = n->val;
|
|
cls_u32.knode.mask = n->mask;
|
|
#else
|
|
cls_u32.knode.val = 0;
|
|
cls_u32.knode.mask = 0;
|
|
#endif
|
|
cls_u32.knode.sel = &n->sel;
|
|
cls_u32.knode.res = &n->res;
|
|
cls_u32.knode.exts = &n->exts;
|
|
if (n->ht_down)
|
|
cls_u32.knode.link_handle = ht->handle;
|
|
|
|
err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
|
|
&n->flags, &n->in_hw_count, true);
|
|
if (err) {
|
|
u32_remove_hw_knode(tp, n, NULL);
|
|
return err;
|
|
}
|
|
|
|
if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_knode *n;
|
|
unsigned int h;
|
|
|
|
for (h = 0; h <= ht->divisor; h++) {
|
|
while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
|
|
RCU_INIT_POINTER(ht->ht[h],
|
|
rtnl_dereference(n->next));
|
|
tp_c->knodes--;
|
|
tcf_unbind_filter(tp, &n->res);
|
|
u32_remove_hw_knode(tp, n, extack);
|
|
idr_remove(&ht->handle_idr, n->handle);
|
|
if (tcf_exts_get_net(&n->exts))
|
|
tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
|
|
else
|
|
u32_destroy_key(n, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_hnode __rcu **hn;
|
|
struct tc_u_hnode *phn;
|
|
|
|
WARN_ON(--ht->refcnt);
|
|
|
|
u32_clear_hnode(tp, ht, extack);
|
|
|
|
hn = &tp_c->hlist;
|
|
for (phn = rtnl_dereference(*hn);
|
|
phn;
|
|
hn = &phn->next, phn = rtnl_dereference(*hn)) {
|
|
if (phn == ht) {
|
|
u32_clear_hw_hnode(tp, ht, extack);
|
|
idr_destroy(&ht->handle_idr);
|
|
idr_remove(&tp_c->handle_idr, ht->handle);
|
|
RCU_INIT_POINTER(*hn, ht->next);
|
|
kfree_rcu(ht, rcu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
|
|
|
|
WARN_ON(root_ht == NULL);
|
|
|
|
if (root_ht && --root_ht->refcnt == 1)
|
|
u32_destroy_hnode(tp, root_ht, extack);
|
|
|
|
if (--tp_c->refcnt == 0) {
|
|
struct tc_u_hnode *ht;
|
|
|
|
hlist_del(&tp_c->hnode);
|
|
|
|
while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
|
|
u32_clear_hnode(tp, ht, extack);
|
|
RCU_INIT_POINTER(tp_c->hlist, ht->next);
|
|
|
|
/* u32_destroy_key() will later free ht for us, if it's
|
|
* still referenced by some knode
|
|
*/
|
|
if (--ht->refcnt == 0)
|
|
kfree_rcu(ht, rcu);
|
|
}
|
|
|
|
idr_destroy(&tp_c->handle_idr);
|
|
kfree(tp_c);
|
|
}
|
|
|
|
tp->data = NULL;
|
|
}
|
|
|
|
static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
|
|
bool rtnl_held, struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_hnode *ht = arg;
|
|
struct tc_u_common *tp_c = tp->data;
|
|
int ret = 0;
|
|
|
|
if (TC_U32_KEY(ht->handle)) {
|
|
u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
|
|
ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
|
|
goto out;
|
|
}
|
|
|
|
if (ht->is_root) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ht->refcnt == 1) {
|
|
u32_destroy_hnode(tp, ht, extack);
|
|
} else {
|
|
NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
|
|
return -EBUSY;
|
|
}
|
|
|
|
out:
|
|
*last = tp_c->refcnt == 1 && tp_c->knodes == 0;
|
|
return ret;
|
|
}
|
|
|
|
static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
|
|
{
|
|
u32 index = htid | 0x800;
|
|
u32 max = htid | 0xFFF;
|
|
|
|
if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
|
|
index = htid + 1;
|
|
if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
|
|
GFP_KERNEL))
|
|
index = max;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
|
|
[TCA_U32_CLASSID] = { .type = NLA_U32 },
|
|
[TCA_U32_HASH] = { .type = NLA_U32 },
|
|
[TCA_U32_LINK] = { .type = NLA_U32 },
|
|
[TCA_U32_DIVISOR] = { .type = NLA_U32 },
|
|
[TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
|
|
[TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
|
|
[TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
|
|
[TCA_U32_FLAGS] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static int u32_set_parms(struct net *net, struct tcf_proto *tp,
|
|
unsigned long base,
|
|
struct tc_u_knode *n, struct nlattr **tb,
|
|
struct nlattr *est, bool ovr,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
int err;
|
|
|
|
err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr, true, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_U32_LINK]) {
|
|
u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
|
|
struct tc_u_hnode *ht_down = NULL, *ht_old;
|
|
|
|
if (TC_U32_KEY(handle)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (handle) {
|
|
ht_down = u32_lookup_ht(tp->data, handle);
|
|
|
|
if (!ht_down) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
|
|
return -EINVAL;
|
|
}
|
|
if (ht_down->is_root) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
|
|
return -EINVAL;
|
|
}
|
|
ht_down->refcnt++;
|
|
}
|
|
|
|
ht_old = rtnl_dereference(n->ht_down);
|
|
rcu_assign_pointer(n->ht_down, ht_down);
|
|
|
|
if (ht_old)
|
|
ht_old->refcnt--;
|
|
}
|
|
if (tb[TCA_U32_CLASSID]) {
|
|
n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
|
|
tcf_bind_filter(tp, &n->res, base);
|
|
}
|
|
|
|
if (tb[TCA_U32_INDEV]) {
|
|
int ret;
|
|
ret = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
n->ifindex = ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
|
|
struct tc_u_knode *n)
|
|
{
|
|
struct tc_u_knode __rcu **ins;
|
|
struct tc_u_knode *pins;
|
|
struct tc_u_hnode *ht;
|
|
|
|
if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
|
|
ht = rtnl_dereference(tp->root);
|
|
else
|
|
ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
|
|
|
|
ins = &ht->ht[TC_U32_HASH(n->handle)];
|
|
|
|
/* The node must always exist for it to be replaced if this is not the
|
|
* case then something went very wrong elsewhere.
|
|
*/
|
|
for (pins = rtnl_dereference(*ins); ;
|
|
ins = &pins->next, pins = rtnl_dereference(*ins))
|
|
if (pins->handle == n->handle)
|
|
break;
|
|
|
|
idr_replace(&ht->handle_idr, n, n->handle);
|
|
RCU_INIT_POINTER(n->next, pins->next);
|
|
rcu_assign_pointer(*ins, n);
|
|
}
|
|
|
|
static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
|
|
struct tc_u_knode *n)
|
|
{
|
|
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
|
|
struct tc_u32_sel *s = &n->sel;
|
|
struct tc_u_knode *new;
|
|
|
|
new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
|
|
GFP_KERNEL);
|
|
|
|
if (!new)
|
|
return NULL;
|
|
|
|
RCU_INIT_POINTER(new->next, n->next);
|
|
new->handle = n->handle;
|
|
RCU_INIT_POINTER(new->ht_up, n->ht_up);
|
|
|
|
new->ifindex = n->ifindex;
|
|
new->fshift = n->fshift;
|
|
new->res = n->res;
|
|
new->flags = n->flags;
|
|
RCU_INIT_POINTER(new->ht_down, ht);
|
|
|
|
/* bump reference count as long as we hold pointer to structure */
|
|
if (ht)
|
|
ht->refcnt++;
|
|
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
/* Statistics may be incremented by readers during update
|
|
* so we must keep them in tact. When the node is later destroyed
|
|
* a special destroy call must be made to not free the pf memory.
|
|
*/
|
|
new->pf = n->pf;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
new->val = n->val;
|
|
new->mask = n->mask;
|
|
/* Similarly success statistics must be moved as pointers */
|
|
new->pcpu_success = n->pcpu_success;
|
|
#endif
|
|
memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
|
|
|
|
if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
|
|
kfree(new);
|
|
return NULL;
|
|
}
|
|
|
|
return new;
|
|
}
|
|
|
|
static int u32_change(struct net *net, struct sk_buff *in_skb,
|
|
struct tcf_proto *tp, unsigned long base, u32 handle,
|
|
struct nlattr **tca, void **arg, bool ovr, bool rtnl_held,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_hnode *ht;
|
|
struct tc_u_knode *n;
|
|
struct tc_u32_sel *s;
|
|
struct nlattr *opt = tca[TCA_OPTIONS];
|
|
struct nlattr *tb[TCA_U32_MAX + 1];
|
|
u32 htid, flags = 0;
|
|
size_t sel_size;
|
|
int err;
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
size_t size;
|
|
#endif
|
|
|
|
if (!opt) {
|
|
if (handle) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
|
|
return -EINVAL;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
|
|
extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_U32_FLAGS]) {
|
|
flags = nla_get_u32(tb[TCA_U32_FLAGS]);
|
|
if (!tc_flags_valid(flags)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
n = *arg;
|
|
if (n) {
|
|
struct tc_u_knode *new;
|
|
|
|
if (TC_U32_KEY(n->handle) == 0) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((n->flags ^ flags) &
|
|
~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
|
|
return -EINVAL;
|
|
}
|
|
|
|
new = u32_init_knode(net, tp, n);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
err = u32_set_parms(net, tp, base, new, tb,
|
|
tca[TCA_RATE], ovr, extack);
|
|
|
|
if (err) {
|
|
u32_destroy_key(new, false);
|
|
return err;
|
|
}
|
|
|
|
err = u32_replace_hw_knode(tp, new, flags, extack);
|
|
if (err) {
|
|
u32_destroy_key(new, false);
|
|
return err;
|
|
}
|
|
|
|
if (!tc_in_hw(new->flags))
|
|
new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
|
|
|
|
u32_replace_knode(tp, tp_c, new);
|
|
tcf_unbind_filter(tp, &n->res);
|
|
tcf_exts_get_net(&n->exts);
|
|
tcf_queue_work(&n->rwork, u32_delete_key_work);
|
|
return 0;
|
|
}
|
|
|
|
if (tb[TCA_U32_DIVISOR]) {
|
|
unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
|
|
|
|
if (!is_power_of_2(divisor)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
|
|
return -EINVAL;
|
|
}
|
|
if (divisor-- > 0x100) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
|
|
return -EINVAL;
|
|
}
|
|
if (TC_U32_KEY(handle)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
|
|
return -EINVAL;
|
|
}
|
|
ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
|
|
if (ht == NULL)
|
|
return -ENOBUFS;
|
|
if (handle == 0) {
|
|
handle = gen_new_htid(tp->data, ht);
|
|
if (handle == 0) {
|
|
kfree(ht);
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
|
|
handle, GFP_KERNEL);
|
|
if (err) {
|
|
kfree(ht);
|
|
return err;
|
|
}
|
|
}
|
|
ht->refcnt = 1;
|
|
ht->divisor = divisor;
|
|
ht->handle = handle;
|
|
ht->prio = tp->prio;
|
|
idr_init(&ht->handle_idr);
|
|
ht->flags = flags;
|
|
|
|
err = u32_replace_hw_hnode(tp, ht, flags, extack);
|
|
if (err) {
|
|
idr_remove(&tp_c->handle_idr, handle);
|
|
kfree(ht);
|
|
return err;
|
|
}
|
|
|
|
RCU_INIT_POINTER(ht->next, tp_c->hlist);
|
|
rcu_assign_pointer(tp_c->hlist, ht);
|
|
*arg = ht;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (tb[TCA_U32_HASH]) {
|
|
htid = nla_get_u32(tb[TCA_U32_HASH]);
|
|
if (TC_U32_HTID(htid) == TC_U32_ROOT) {
|
|
ht = rtnl_dereference(tp->root);
|
|
htid = ht->handle;
|
|
} else {
|
|
ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
|
|
if (!ht) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
} else {
|
|
ht = rtnl_dereference(tp->root);
|
|
htid = ht->handle;
|
|
}
|
|
|
|
if (ht->divisor < TC_U32_HASH(htid)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (handle) {
|
|
if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
|
|
return -EINVAL;
|
|
}
|
|
handle = htid | TC_U32_NODE(handle);
|
|
err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, handle,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
} else
|
|
handle = gen_new_kid(ht, htid);
|
|
|
|
if (tb[TCA_U32_SEL] == NULL) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
|
|
err = -EINVAL;
|
|
goto erridr;
|
|
}
|
|
|
|
s = nla_data(tb[TCA_U32_SEL]);
|
|
sel_size = struct_size(s, keys, s->nkeys);
|
|
if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
|
|
err = -EINVAL;
|
|
goto erridr;
|
|
}
|
|
|
|
n = kzalloc(offsetof(typeof(*n), sel) + sel_size, GFP_KERNEL);
|
|
if (n == NULL) {
|
|
err = -ENOBUFS;
|
|
goto erridr;
|
|
}
|
|
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
|
|
n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
|
|
if (!n->pf) {
|
|
err = -ENOBUFS;
|
|
goto errfree;
|
|
}
|
|
#endif
|
|
|
|
memcpy(&n->sel, s, sel_size);
|
|
RCU_INIT_POINTER(n->ht_up, ht);
|
|
n->handle = handle;
|
|
n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
|
|
n->flags = flags;
|
|
|
|
err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
|
|
if (err < 0)
|
|
goto errout;
|
|
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
n->pcpu_success = alloc_percpu(u32);
|
|
if (!n->pcpu_success) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
|
|
if (tb[TCA_U32_MARK]) {
|
|
struct tc_u32_mark *mark;
|
|
|
|
mark = nla_data(tb[TCA_U32_MARK]);
|
|
n->val = mark->val;
|
|
n->mask = mark->mask;
|
|
}
|
|
#endif
|
|
|
|
err = u32_set_parms(net, tp, base, n, tb, tca[TCA_RATE], ovr,
|
|
extack);
|
|
if (err == 0) {
|
|
struct tc_u_knode __rcu **ins;
|
|
struct tc_u_knode *pins;
|
|
|
|
err = u32_replace_hw_knode(tp, n, flags, extack);
|
|
if (err)
|
|
goto errhw;
|
|
|
|
if (!tc_in_hw(n->flags))
|
|
n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
|
|
|
|
ins = &ht->ht[TC_U32_HASH(handle)];
|
|
for (pins = rtnl_dereference(*ins); pins;
|
|
ins = &pins->next, pins = rtnl_dereference(*ins))
|
|
if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
|
|
break;
|
|
|
|
RCU_INIT_POINTER(n->next, pins);
|
|
rcu_assign_pointer(*ins, n);
|
|
tp_c->knodes++;
|
|
*arg = n;
|
|
return 0;
|
|
}
|
|
|
|
errhw:
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
free_percpu(n->pcpu_success);
|
|
#endif
|
|
|
|
errout:
|
|
tcf_exts_destroy(&n->exts);
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
errfree:
|
|
free_percpu(n->pf);
|
|
#endif
|
|
kfree(n);
|
|
erridr:
|
|
idr_remove(&ht->handle_idr, handle);
|
|
return err;
|
|
}
|
|
|
|
static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
|
|
bool rtnl_held)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_hnode *ht;
|
|
struct tc_u_knode *n;
|
|
unsigned int h;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (ht = rtnl_dereference(tp_c->hlist);
|
|
ht;
|
|
ht = rtnl_dereference(ht->next)) {
|
|
if (ht->prio != tp->prio)
|
|
continue;
|
|
if (arg->count >= arg->skip) {
|
|
if (arg->fn(tp, ht, arg) < 0) {
|
|
arg->stop = 1;
|
|
return;
|
|
}
|
|
}
|
|
arg->count++;
|
|
for (h = 0; h <= ht->divisor; h++) {
|
|
for (n = rtnl_dereference(ht->ht[h]);
|
|
n;
|
|
n = rtnl_dereference(n->next)) {
|
|
if (arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(tp, n, arg) < 0) {
|
|
arg->stop = 1;
|
|
return;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
|
|
bool add, flow_setup_cb_t *cb, void *cb_priv,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
int err;
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
|
|
cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
|
|
cls_u32.hnode.divisor = ht->divisor;
|
|
cls_u32.hnode.handle = ht->handle;
|
|
cls_u32.hnode.prio = ht->prio;
|
|
|
|
err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
|
|
if (err && add && tc_skip_sw(ht->flags))
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
|
|
bool add, flow_setup_cb_t *cb, void *cb_priv,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
|
|
struct tcf_block *block = tp->chain->block;
|
|
struct tc_cls_u32_offload cls_u32 = {};
|
|
int err;
|
|
|
|
tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
|
|
cls_u32.command = add ?
|
|
TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
|
|
cls_u32.knode.handle = n->handle;
|
|
|
|
if (add) {
|
|
cls_u32.knode.fshift = n->fshift;
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
cls_u32.knode.val = n->val;
|
|
cls_u32.knode.mask = n->mask;
|
|
#else
|
|
cls_u32.knode.val = 0;
|
|
cls_u32.knode.mask = 0;
|
|
#endif
|
|
cls_u32.knode.sel = &n->sel;
|
|
cls_u32.knode.res = &n->res;
|
|
cls_u32.knode.exts = &n->exts;
|
|
if (n->ht_down)
|
|
cls_u32.knode.link_handle = ht->handle;
|
|
}
|
|
|
|
err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
|
|
&cls_u32, cb_priv, &n->flags,
|
|
&n->in_hw_count);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
|
|
void *cb_priv, struct netlink_ext_ack *extack)
|
|
{
|
|
struct tc_u_common *tp_c = tp->data;
|
|
struct tc_u_hnode *ht;
|
|
struct tc_u_knode *n;
|
|
unsigned int h;
|
|
int err;
|
|
|
|
for (ht = rtnl_dereference(tp_c->hlist);
|
|
ht;
|
|
ht = rtnl_dereference(ht->next)) {
|
|
if (ht->prio != tp->prio)
|
|
continue;
|
|
|
|
/* When adding filters to a new dev, try to offload the
|
|
* hashtable first. When removing, do the filters before the
|
|
* hashtable.
|
|
*/
|
|
if (add && !tc_skip_hw(ht->flags)) {
|
|
err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
|
|
extack);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for (h = 0; h <= ht->divisor; h++) {
|
|
for (n = rtnl_dereference(ht->ht[h]);
|
|
n;
|
|
n = rtnl_dereference(n->next)) {
|
|
if (tc_skip_hw(n->flags))
|
|
continue;
|
|
|
|
err = u32_reoffload_knode(tp, n, add, cb,
|
|
cb_priv, extack);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (!add && !tc_skip_hw(ht->flags))
|
|
u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void u32_bind_class(void *fh, u32 classid, unsigned long cl)
|
|
{
|
|
struct tc_u_knode *n = fh;
|
|
|
|
if (n && n->res.classid == classid)
|
|
n->res.class = cl;
|
|
}
|
|
|
|
static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
|
|
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
|
|
{
|
|
struct tc_u_knode *n = fh;
|
|
struct tc_u_hnode *ht_up, *ht_down;
|
|
struct nlattr *nest;
|
|
|
|
if (n == NULL)
|
|
return skb->len;
|
|
|
|
t->tcm_handle = n->handle;
|
|
|
|
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (nest == NULL)
|
|
goto nla_put_failure;
|
|
|
|
if (TC_U32_KEY(n->handle) == 0) {
|
|
struct tc_u_hnode *ht = fh;
|
|
u32 divisor = ht->divisor + 1;
|
|
|
|
if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
|
|
goto nla_put_failure;
|
|
} else {
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
struct tc_u32_pcnt *gpf;
|
|
int cpu;
|
|
#endif
|
|
|
|
if (nla_put(skb, TCA_U32_SEL,
|
|
sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
|
|
&n->sel))
|
|
goto nla_put_failure;
|
|
|
|
ht_up = rtnl_dereference(n->ht_up);
|
|
if (ht_up) {
|
|
u32 htid = n->handle & 0xFFFFF000;
|
|
if (nla_put_u32(skb, TCA_U32_HASH, htid))
|
|
goto nla_put_failure;
|
|
}
|
|
if (n->res.classid &&
|
|
nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
|
|
goto nla_put_failure;
|
|
|
|
ht_down = rtnl_dereference(n->ht_down);
|
|
if (ht_down &&
|
|
nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
|
|
goto nla_put_failure;
|
|
|
|
if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
|
|
goto nla_put_failure;
|
|
|
|
#ifdef CONFIG_CLS_U32_MARK
|
|
if ((n->val || n->mask)) {
|
|
struct tc_u32_mark mark = {.val = n->val,
|
|
.mask = n->mask,
|
|
.success = 0};
|
|
int cpum;
|
|
|
|
for_each_possible_cpu(cpum) {
|
|
__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
|
|
|
|
mark.success += cnt;
|
|
}
|
|
|
|
if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
|
|
goto nla_put_failure;
|
|
}
|
|
#endif
|
|
|
|
if (tcf_exts_dump(skb, &n->exts) < 0)
|
|
goto nla_put_failure;
|
|
|
|
if (n->ifindex) {
|
|
struct net_device *dev;
|
|
dev = __dev_get_by_index(net, n->ifindex);
|
|
if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
|
|
goto nla_put_failure;
|
|
}
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
|
|
n->sel.nkeys * sizeof(u64),
|
|
GFP_KERNEL);
|
|
if (!gpf)
|
|
goto nla_put_failure;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int i;
|
|
struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
|
|
|
|
gpf->rcnt += pf->rcnt;
|
|
gpf->rhit += pf->rhit;
|
|
for (i = 0; i < n->sel.nkeys; i++)
|
|
gpf->kcnts[i] += pf->kcnts[i];
|
|
}
|
|
|
|
if (nla_put_64bit(skb, TCA_U32_PCNT,
|
|
sizeof(struct tc_u32_pcnt) +
|
|
n->sel.nkeys * sizeof(u64),
|
|
gpf, TCA_U32_PAD)) {
|
|
kfree(gpf);
|
|
goto nla_put_failure;
|
|
}
|
|
kfree(gpf);
|
|
#endif
|
|
}
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
if (TC_U32_KEY(n->handle))
|
|
if (tcf_exts_dump_stats(skb, &n->exts) < 0)
|
|
goto nla_put_failure;
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, nest);
|
|
return -1;
|
|
}
|
|
|
|
static struct tcf_proto_ops cls_u32_ops __read_mostly = {
|
|
.kind = "u32",
|
|
.classify = u32_classify,
|
|
.init = u32_init,
|
|
.destroy = u32_destroy,
|
|
.get = u32_get,
|
|
.change = u32_change,
|
|
.delete = u32_delete,
|
|
.walk = u32_walk,
|
|
.reoffload = u32_reoffload,
|
|
.dump = u32_dump,
|
|
.bind_class = u32_bind_class,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init init_u32(void)
|
|
{
|
|
int i, ret;
|
|
|
|
pr_info("u32 classifier\n");
|
|
#ifdef CONFIG_CLS_U32_PERF
|
|
pr_info(" Performance counters on\n");
|
|
#endif
|
|
pr_info(" input device check on\n");
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
pr_info(" Actions configured\n");
|
|
#endif
|
|
tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
|
|
sizeof(struct hlist_head),
|
|
GFP_KERNEL);
|
|
if (!tc_u_common_hash)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < U32_HASH_SIZE; i++)
|
|
INIT_HLIST_HEAD(&tc_u_common_hash[i]);
|
|
|
|
ret = register_tcf_proto_ops(&cls_u32_ops);
|
|
if (ret)
|
|
kvfree(tc_u_common_hash);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit exit_u32(void)
|
|
{
|
|
unregister_tcf_proto_ops(&cls_u32_ops);
|
|
kvfree(tc_u_common_hash);
|
|
}
|
|
|
|
module_init(init_u32)
|
|
module_exit(exit_u32)
|
|
MODULE_LICENSE("GPL");
|