mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 05:41:55 +00:00
08273c9f61
With the tokens for all implemented RTAS functions now available via rtas_function_token(), which is optimal and safe for arbitrary contexts, there is no need to use rtas_token() or cache its result. Most conversions are trivial, but a few are worth describing in more detail: * Error injection token comparisons for lockdown purposes are consolidated into a simple predicate: token_is_restricted_errinjct(). * A couple of special cases in block_rtas_call() do not use rtas_token() but perform string comparisons against names in the function table. These are converted to compare against token values instead, which is logically equivalent but less expensive. * The lookup for the ibm,os-term token can be deferred until needed, instead of caching it at boot to avoid device tree traversal during panic. * Since rtas_function_token() accesses a read-only data structure without taking any locks, xmon's lookup of set-indicator can be performed as needed instead of cached at startup. Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20230125-b4-powerpc-rtas-queue-v3-20-26929c8cce78@linux.ibm.com
699 lines
17 KiB
C
699 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2006 Jake Moilanen <moilanen@austin.ibm.com>, IBM Corp.
|
|
* Copyright 2006-2007 Michael Ellerman, IBM Corp.
|
|
*/
|
|
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/device.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/msi.h>
|
|
|
|
#include <asm/rtas.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/xive.h>
|
|
|
|
#include "pseries.h"
|
|
|
|
static int query_token, change_token;
|
|
|
|
#define RTAS_QUERY_FN 0
|
|
#define RTAS_CHANGE_FN 1
|
|
#define RTAS_RESET_FN 2
|
|
#define RTAS_CHANGE_MSI_FN 3
|
|
#define RTAS_CHANGE_MSIX_FN 4
|
|
#define RTAS_CHANGE_32MSI_FN 5
|
|
|
|
/* RTAS Helpers */
|
|
|
|
static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs)
|
|
{
|
|
u32 addr, seq_num, rtas_ret[3];
|
|
unsigned long buid;
|
|
int rc;
|
|
|
|
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
|
|
buid = pdn->phb->buid;
|
|
|
|
seq_num = 1;
|
|
do {
|
|
if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN ||
|
|
func == RTAS_CHANGE_32MSI_FN)
|
|
rc = rtas_call(change_token, 6, 4, rtas_ret, addr,
|
|
BUID_HI(buid), BUID_LO(buid),
|
|
func, num_irqs, seq_num);
|
|
else
|
|
rc = rtas_call(change_token, 6, 3, rtas_ret, addr,
|
|
BUID_HI(buid), BUID_LO(buid),
|
|
func, num_irqs, seq_num);
|
|
|
|
seq_num = rtas_ret[1];
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
/*
|
|
* If the RTAS call succeeded, return the number of irqs allocated.
|
|
* If not, make sure we return a negative error code.
|
|
*/
|
|
if (rc == 0)
|
|
rc = rtas_ret[0];
|
|
else if (rc > 0)
|
|
rc = -rc;
|
|
|
|
pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n",
|
|
func, num_irqs, rtas_ret[0], rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void rtas_disable_msi(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dn *pdn;
|
|
|
|
pdn = pci_get_pdn(pdev);
|
|
if (!pdn)
|
|
return;
|
|
|
|
/*
|
|
* disabling MSI with the explicit interface also disables MSI-X
|
|
*/
|
|
if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) {
|
|
/*
|
|
* may have failed because explicit interface is not
|
|
* present
|
|
*/
|
|
if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) {
|
|
pr_debug("rtas_msi: Setting MSIs to 0 failed!\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rtas_query_irq_number(struct pci_dn *pdn, int offset)
|
|
{
|
|
u32 addr, rtas_ret[2];
|
|
unsigned long buid;
|
|
int rc;
|
|
|
|
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
|
|
buid = pdn->phb->buid;
|
|
|
|
do {
|
|
rc = rtas_call(query_token, 4, 3, rtas_ret, addr,
|
|
BUID_HI(buid), BUID_LO(buid), offset);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc) {
|
|
pr_debug("rtas_msi: error (%d) querying source number\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return rtas_ret[0];
|
|
}
|
|
|
|
static int check_req(struct pci_dev *pdev, int nvec, char *prop_name)
|
|
{
|
|
struct device_node *dn;
|
|
const __be32 *p;
|
|
u32 req_msi;
|
|
|
|
dn = pci_device_to_OF_node(pdev);
|
|
|
|
p = of_get_property(dn, prop_name, NULL);
|
|
if (!p) {
|
|
pr_debug("rtas_msi: No %s on %pOF\n", prop_name, dn);
|
|
return -ENOENT;
|
|
}
|
|
|
|
req_msi = be32_to_cpup(p);
|
|
if (req_msi < nvec) {
|
|
pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec);
|
|
|
|
if (req_msi == 0) /* Be paranoid */
|
|
return -ENOSPC;
|
|
|
|
return req_msi;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_req_msi(struct pci_dev *pdev, int nvec)
|
|
{
|
|
return check_req(pdev, nvec, "ibm,req#msi");
|
|
}
|
|
|
|
static int check_req_msix(struct pci_dev *pdev, int nvec)
|
|
{
|
|
return check_req(pdev, nvec, "ibm,req#msi-x");
|
|
}
|
|
|
|
/* Quota calculation */
|
|
|
|
static struct device_node *__find_pe_total_msi(struct device_node *node, int *total)
|
|
{
|
|
struct device_node *dn;
|
|
const __be32 *p;
|
|
|
|
dn = of_node_get(node);
|
|
while (dn) {
|
|
p = of_get_property(dn, "ibm,pe-total-#msi", NULL);
|
|
if (p) {
|
|
pr_debug("rtas_msi: found prop on dn %pOF\n",
|
|
dn);
|
|
*total = be32_to_cpup(p);
|
|
return dn;
|
|
}
|
|
|
|
dn = of_get_next_parent(dn);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total)
|
|
{
|
|
return __find_pe_total_msi(pci_device_to_OF_node(dev), total);
|
|
}
|
|
|
|
static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
|
|
{
|
|
struct device_node *dn;
|
|
struct eeh_dev *edev;
|
|
|
|
/* Found our PE and assume 8 at that point. */
|
|
|
|
dn = pci_device_to_OF_node(dev);
|
|
if (!dn)
|
|
return NULL;
|
|
|
|
/* Get the top level device in the PE */
|
|
edev = pdn_to_eeh_dev(PCI_DN(dn));
|
|
if (edev->pe)
|
|
edev = list_first_entry(&edev->pe->edevs, struct eeh_dev,
|
|
entry);
|
|
dn = pci_device_to_OF_node(edev->pdev);
|
|
if (!dn)
|
|
return NULL;
|
|
|
|
/* We actually want the parent */
|
|
dn = of_get_parent(dn);
|
|
if (!dn)
|
|
return NULL;
|
|
|
|
/* Hardcode of 8 for old firmwares */
|
|
*total = 8;
|
|
pr_debug("rtas_msi: using PE dn %pOF\n", dn);
|
|
|
|
return dn;
|
|
}
|
|
|
|
struct msi_counts {
|
|
struct device_node *requestor;
|
|
int num_devices;
|
|
int request;
|
|
int quota;
|
|
int spare;
|
|
int over_quota;
|
|
};
|
|
|
|
static void *count_non_bridge_devices(struct device_node *dn, void *data)
|
|
{
|
|
struct msi_counts *counts = data;
|
|
const __be32 *p;
|
|
u32 class;
|
|
|
|
pr_debug("rtas_msi: counting %pOF\n", dn);
|
|
|
|
p = of_get_property(dn, "class-code", NULL);
|
|
class = p ? be32_to_cpup(p) : 0;
|
|
|
|
if ((class >> 8) != PCI_CLASS_BRIDGE_PCI)
|
|
counts->num_devices++;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *count_spare_msis(struct device_node *dn, void *data)
|
|
{
|
|
struct msi_counts *counts = data;
|
|
const __be32 *p;
|
|
int req;
|
|
|
|
if (dn == counts->requestor)
|
|
req = counts->request;
|
|
else {
|
|
/* We don't know if a driver will try to use MSI or MSI-X,
|
|
* so we just have to punt and use the larger of the two. */
|
|
req = 0;
|
|
p = of_get_property(dn, "ibm,req#msi", NULL);
|
|
if (p)
|
|
req = be32_to_cpup(p);
|
|
|
|
p = of_get_property(dn, "ibm,req#msi-x", NULL);
|
|
if (p)
|
|
req = max(req, (int)be32_to_cpup(p));
|
|
}
|
|
|
|
if (req < counts->quota)
|
|
counts->spare += counts->quota - req;
|
|
else if (req > counts->quota)
|
|
counts->over_quota++;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int msi_quota_for_device(struct pci_dev *dev, int request)
|
|
{
|
|
struct device_node *pe_dn;
|
|
struct msi_counts counts;
|
|
int total;
|
|
|
|
pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev),
|
|
request);
|
|
|
|
pe_dn = find_pe_total_msi(dev, &total);
|
|
if (!pe_dn)
|
|
pe_dn = find_pe_dn(dev, &total);
|
|
|
|
if (!pe_dn) {
|
|
pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev));
|
|
goto out;
|
|
}
|
|
|
|
pr_debug("rtas_msi: found PE %pOF\n", pe_dn);
|
|
|
|
memset(&counts, 0, sizeof(struct msi_counts));
|
|
|
|
/* Work out how many devices we have below this PE */
|
|
pci_traverse_device_nodes(pe_dn, count_non_bridge_devices, &counts);
|
|
|
|
if (counts.num_devices == 0) {
|
|
pr_err("rtas_msi: found 0 devices under PE for %s\n",
|
|
pci_name(dev));
|
|
goto out;
|
|
}
|
|
|
|
counts.quota = total / counts.num_devices;
|
|
if (request <= counts.quota)
|
|
goto out;
|
|
|
|
/* else, we have some more calculating to do */
|
|
counts.requestor = pci_device_to_OF_node(dev);
|
|
counts.request = request;
|
|
pci_traverse_device_nodes(pe_dn, count_spare_msis, &counts);
|
|
|
|
/* If the quota isn't an integer multiple of the total, we can
|
|
* use the remainder as spare MSIs for anyone that wants them. */
|
|
counts.spare += total % counts.num_devices;
|
|
|
|
/* Divide any spare by the number of over-quota requestors */
|
|
if (counts.over_quota)
|
|
counts.quota += counts.spare / counts.over_quota;
|
|
|
|
/* And finally clamp the request to the possibly adjusted quota */
|
|
request = min(counts.quota, request);
|
|
|
|
pr_debug("rtas_msi: request clamped to quota %d\n", request);
|
|
out:
|
|
of_node_put(pe_dn);
|
|
|
|
return request;
|
|
}
|
|
|
|
static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev)
|
|
{
|
|
u32 addr_hi, addr_lo;
|
|
|
|
/*
|
|
* We should only get in here for IODA1 configs. This is based on the
|
|
* fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS
|
|
* support, and we are in a PCIe Gen2 slot.
|
|
*/
|
|
dev_info(&pdev->dev,
|
|
"rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n");
|
|
pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi);
|
|
addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4);
|
|
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo);
|
|
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0);
|
|
}
|
|
|
|
static int rtas_prepare_msi_irqs(struct pci_dev *pdev, int nvec_in, int type,
|
|
msi_alloc_info_t *arg)
|
|
{
|
|
struct pci_dn *pdn;
|
|
int quota, rc;
|
|
int nvec = nvec_in;
|
|
int use_32bit_msi_hack = 0;
|
|
|
|
if (type == PCI_CAP_ID_MSIX)
|
|
rc = check_req_msix(pdev, nvec);
|
|
else
|
|
rc = check_req_msi(pdev, nvec);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
quota = msi_quota_for_device(pdev, nvec);
|
|
|
|
if (quota && quota < nvec)
|
|
return quota;
|
|
|
|
/*
|
|
* Firmware currently refuse any non power of two allocation
|
|
* so we round up if the quota will allow it.
|
|
*/
|
|
if (type == PCI_CAP_ID_MSIX) {
|
|
int m = roundup_pow_of_two(nvec);
|
|
quota = msi_quota_for_device(pdev, m);
|
|
|
|
if (quota >= m)
|
|
nvec = m;
|
|
}
|
|
|
|
pdn = pci_get_pdn(pdev);
|
|
|
|
/*
|
|
* Try the new more explicit firmware interface, if that fails fall
|
|
* back to the old interface. The old interface is known to never
|
|
* return MSI-Xs.
|
|
*/
|
|
again:
|
|
if (type == PCI_CAP_ID_MSI) {
|
|
if (pdev->no_64bit_msi) {
|
|
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec);
|
|
if (rc < 0) {
|
|
/*
|
|
* We only want to run the 32 bit MSI hack below if
|
|
* the max bus speed is Gen2 speed
|
|
*/
|
|
if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT)
|
|
return rc;
|
|
|
|
use_32bit_msi_hack = 1;
|
|
}
|
|
} else
|
|
rc = -1;
|
|
|
|
if (rc < 0)
|
|
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec);
|
|
|
|
if (rc < 0) {
|
|
pr_debug("rtas_msi: trying the old firmware call.\n");
|
|
rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec);
|
|
}
|
|
|
|
if (use_32bit_msi_hack && rc > 0)
|
|
rtas_hack_32bit_msi_gen2(pdev);
|
|
} else
|
|
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec);
|
|
|
|
if (rc != nvec) {
|
|
if (nvec != nvec_in) {
|
|
nvec = nvec_in;
|
|
goto again;
|
|
}
|
|
pr_debug("rtas_msi: rtas_change_msi() failed\n");
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pseries_msi_ops_prepare(struct irq_domain *domain, struct device *dev,
|
|
int nvec, msi_alloc_info_t *arg)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
int type = pdev->msix_enabled ? PCI_CAP_ID_MSIX : PCI_CAP_ID_MSI;
|
|
|
|
return rtas_prepare_msi_irqs(pdev, nvec, type, arg);
|
|
}
|
|
|
|
/*
|
|
* ->msi_free() is called before irq_domain_free_irqs_top() when the
|
|
* handler data is still available. Use that to clear the XIVE
|
|
* controller data.
|
|
*/
|
|
static void pseries_msi_ops_msi_free(struct irq_domain *domain,
|
|
struct msi_domain_info *info,
|
|
unsigned int irq)
|
|
{
|
|
if (xive_enabled())
|
|
xive_irq_free_data(irq);
|
|
}
|
|
|
|
/*
|
|
* RTAS can not disable one MSI at a time. It's all or nothing. Do it
|
|
* at the end after all IRQs have been freed.
|
|
*/
|
|
static void pseries_msi_post_free(struct irq_domain *domain, struct device *dev)
|
|
{
|
|
if (WARN_ON_ONCE(!dev_is_pci(dev)))
|
|
return;
|
|
|
|
rtas_disable_msi(to_pci_dev(dev));
|
|
}
|
|
|
|
static struct msi_domain_ops pseries_pci_msi_domain_ops = {
|
|
.msi_prepare = pseries_msi_ops_prepare,
|
|
.msi_free = pseries_msi_ops_msi_free,
|
|
.msi_post_free = pseries_msi_post_free,
|
|
};
|
|
|
|
static void pseries_msi_shutdown(struct irq_data *d)
|
|
{
|
|
d = d->parent_data;
|
|
if (d->chip->irq_shutdown)
|
|
d->chip->irq_shutdown(d);
|
|
}
|
|
|
|
static void pseries_msi_mask(struct irq_data *d)
|
|
{
|
|
pci_msi_mask_irq(d);
|
|
irq_chip_mask_parent(d);
|
|
}
|
|
|
|
static void pseries_msi_unmask(struct irq_data *d)
|
|
{
|
|
pci_msi_unmask_irq(d);
|
|
irq_chip_unmask_parent(d);
|
|
}
|
|
|
|
static void pseries_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
|
|
{
|
|
struct msi_desc *entry = irq_data_get_msi_desc(data);
|
|
|
|
/*
|
|
* Do not update the MSIx vector table. It's not strictly necessary
|
|
* because the table is initialized by the underlying hypervisor, PowerVM
|
|
* or QEMU/KVM. However, if the MSIx vector entry is cleared, any further
|
|
* activation will fail. This can happen in some drivers (eg. IPR) which
|
|
* deactivate an IRQ used for testing MSI support.
|
|
*/
|
|
entry->msg = *msg;
|
|
}
|
|
|
|
static struct irq_chip pseries_pci_msi_irq_chip = {
|
|
.name = "pSeries-PCI-MSI",
|
|
.irq_shutdown = pseries_msi_shutdown,
|
|
.irq_mask = pseries_msi_mask,
|
|
.irq_unmask = pseries_msi_unmask,
|
|
.irq_eoi = irq_chip_eoi_parent,
|
|
.irq_write_msi_msg = pseries_msi_write_msg,
|
|
};
|
|
|
|
|
|
/*
|
|
* Set MSI_FLAG_MSIX_CONTIGUOUS as there is no way to express to
|
|
* firmware to request a discontiguous or non-zero based range of
|
|
* MSI-X entries. Core code will reject such setup attempts.
|
|
*/
|
|
static struct msi_domain_info pseries_msi_domain_info = {
|
|
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
|
|
MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX |
|
|
MSI_FLAG_MSIX_CONTIGUOUS),
|
|
.ops = &pseries_pci_msi_domain_ops,
|
|
.chip = &pseries_pci_msi_irq_chip,
|
|
};
|
|
|
|
static void pseries_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
|
|
{
|
|
__pci_read_msi_msg(irq_data_get_msi_desc(data), msg);
|
|
}
|
|
|
|
static struct irq_chip pseries_msi_irq_chip = {
|
|
.name = "pSeries-MSI",
|
|
.irq_shutdown = pseries_msi_shutdown,
|
|
.irq_mask = irq_chip_mask_parent,
|
|
.irq_unmask = irq_chip_unmask_parent,
|
|
.irq_eoi = irq_chip_eoi_parent,
|
|
.irq_set_affinity = irq_chip_set_affinity_parent,
|
|
.irq_compose_msi_msg = pseries_msi_compose_msg,
|
|
};
|
|
|
|
static int pseries_irq_parent_domain_alloc(struct irq_domain *domain, unsigned int virq,
|
|
irq_hw_number_t hwirq)
|
|
{
|
|
struct irq_fwspec parent_fwspec;
|
|
int ret;
|
|
|
|
parent_fwspec.fwnode = domain->parent->fwnode;
|
|
parent_fwspec.param_count = 2;
|
|
parent_fwspec.param[0] = hwirq;
|
|
parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pseries_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct pci_controller *phb = domain->host_data;
|
|
msi_alloc_info_t *info = arg;
|
|
struct msi_desc *desc = info->desc;
|
|
struct pci_dev *pdev = msi_desc_to_pci_dev(desc);
|
|
int hwirq;
|
|
int i, ret;
|
|
|
|
hwirq = rtas_query_irq_number(pci_get_pdn(pdev), desc->msi_index);
|
|
if (hwirq < 0) {
|
|
dev_err(&pdev->dev, "Failed to query HW IRQ: %d\n", hwirq);
|
|
return hwirq;
|
|
}
|
|
|
|
dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
|
|
phb->dn, virq, hwirq, nr_irqs);
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
ret = pseries_irq_parent_domain_alloc(domain, virq + i, hwirq + i);
|
|
if (ret)
|
|
goto out;
|
|
|
|
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
|
|
&pseries_msi_irq_chip, domain->host_data);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
/* TODO: handle RTAS cleanup in ->msi_finish() ? */
|
|
irq_domain_free_irqs_parent(domain, virq, i - 1);
|
|
return ret;
|
|
}
|
|
|
|
static void pseries_irq_domain_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
|
|
struct pci_controller *phb = irq_data_get_irq_chip_data(d);
|
|
|
|
pr_debug("%s bridge %pOF %d #%d\n", __func__, phb->dn, virq, nr_irqs);
|
|
|
|
/* XIVE domain data is cleared through ->msi_free() */
|
|
}
|
|
|
|
static const struct irq_domain_ops pseries_irq_domain_ops = {
|
|
.alloc = pseries_irq_domain_alloc,
|
|
.free = pseries_irq_domain_free,
|
|
};
|
|
|
|
static int __pseries_msi_allocate_domains(struct pci_controller *phb,
|
|
unsigned int count)
|
|
{
|
|
struct irq_domain *parent = irq_get_default_host();
|
|
|
|
phb->fwnode = irq_domain_alloc_named_id_fwnode("pSeries-MSI",
|
|
phb->global_number);
|
|
if (!phb->fwnode)
|
|
return -ENOMEM;
|
|
|
|
phb->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
|
|
phb->fwnode,
|
|
&pseries_irq_domain_ops, phb);
|
|
if (!phb->dev_domain) {
|
|
pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
|
|
phb->dn, phb->global_number);
|
|
irq_domain_free_fwnode(phb->fwnode);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
phb->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(phb->dn),
|
|
&pseries_msi_domain_info,
|
|
phb->dev_domain);
|
|
if (!phb->msi_domain) {
|
|
pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
|
|
phb->dn, phb->global_number);
|
|
irq_domain_free_fwnode(phb->fwnode);
|
|
irq_domain_remove(phb->dev_domain);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pseries_msi_allocate_domains(struct pci_controller *phb)
|
|
{
|
|
int count;
|
|
|
|
if (!__find_pe_total_msi(phb->dn, &count)) {
|
|
pr_err("PCI: failed to find MSIs for bridge %pOF (domain %d)\n",
|
|
phb->dn, phb->global_number);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return __pseries_msi_allocate_domains(phb, count);
|
|
}
|
|
|
|
void pseries_msi_free_domains(struct pci_controller *phb)
|
|
{
|
|
if (phb->msi_domain)
|
|
irq_domain_remove(phb->msi_domain);
|
|
if (phb->dev_domain)
|
|
irq_domain_remove(phb->dev_domain);
|
|
if (phb->fwnode)
|
|
irq_domain_free_fwnode(phb->fwnode);
|
|
}
|
|
|
|
static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev)
|
|
{
|
|
/* No LSI -> leave MSIs (if any) configured */
|
|
if (!pdev->irq) {
|
|
dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n");
|
|
return;
|
|
}
|
|
|
|
/* No MSI -> MSIs can't have been assigned by fw, leave LSI */
|
|
if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) {
|
|
dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n");
|
|
return;
|
|
}
|
|
|
|
dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n");
|
|
rtas_disable_msi(pdev);
|
|
}
|
|
|
|
static int rtas_msi_init(void)
|
|
{
|
|
query_token = rtas_function_token(RTAS_FN_IBM_QUERY_INTERRUPT_SOURCE_NUMBER);
|
|
change_token = rtas_function_token(RTAS_FN_IBM_CHANGE_MSI);
|
|
|
|
if ((query_token == RTAS_UNKNOWN_SERVICE) ||
|
|
(change_token == RTAS_UNKNOWN_SERVICE)) {
|
|
pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n");
|
|
return -1;
|
|
}
|
|
|
|
pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n");
|
|
|
|
WARN_ON(ppc_md.pci_irq_fixup);
|
|
ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup;
|
|
|
|
return 0;
|
|
}
|
|
machine_arch_initcall(pseries, rtas_msi_init);
|