mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 08:31:37 +00:00
6082b6c328
rY = addr_space_cast(rX, 0, 1) tells the verifier that rY->type = PTR_TO_ARENA. Any further operations on PTR_TO_ARENA register have to be in 32-bit domain. The verifier will mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate them as kern_vm_start + 32bit_addr memory accesses. rY = addr_space_cast(rX, 1, 0) tells the verifier that rY->type = unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set then convert cast_user to mov32 as well. Otherwise JIT will convert it to: rY = (u32)rX; if (rY) rY |= arena->user_vm_start & ~(u64)~0U; Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240308010812.89848-6-alexei.starovoitov@gmail.com
877 lines
24 KiB
C
877 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2016 Facebook
|
|
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
|
|
*/
|
|
#include <uapi/linux/btf.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/string.h>
|
|
|
|
#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args)
|
|
|
|
static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
|
|
{
|
|
/* ubuf and len_total should both be specified (or not) together */
|
|
if (!!log->ubuf != !!log->len_total)
|
|
return false;
|
|
/* log buf without log_level is meaningless */
|
|
if (log->ubuf && log->level == 0)
|
|
return false;
|
|
if (log->level & ~BPF_LOG_MASK)
|
|
return false;
|
|
if (log->len_total > UINT_MAX >> 2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
|
|
char __user *log_buf, u32 log_size)
|
|
{
|
|
log->level = log_level;
|
|
log->ubuf = log_buf;
|
|
log->len_total = log_size;
|
|
|
|
/* log attributes have to be sane */
|
|
if (!bpf_verifier_log_attr_valid(log))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len)
|
|
{
|
|
/* add_len includes terminal \0, so no need for +1. */
|
|
u64 len = log->end_pos + add_len;
|
|
|
|
/* log->len_max could be larger than our current len due to
|
|
* bpf_vlog_reset() calls, so we maintain the max of any length at any
|
|
* previous point
|
|
*/
|
|
if (len > UINT_MAX)
|
|
log->len_max = UINT_MAX;
|
|
else if (len > log->len_max)
|
|
log->len_max = len;
|
|
}
|
|
|
|
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
|
|
va_list args)
|
|
{
|
|
u64 cur_pos;
|
|
u32 new_n, n;
|
|
|
|
n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
|
|
|
|
if (log->level == BPF_LOG_KERNEL) {
|
|
bool newline = n > 0 && log->kbuf[n - 1] == '\n';
|
|
|
|
pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
|
|
return;
|
|
}
|
|
|
|
n += 1; /* include terminating zero */
|
|
bpf_vlog_update_len_max(log, n);
|
|
|
|
if (log->level & BPF_LOG_FIXED) {
|
|
/* check if we have at least something to put into user buf */
|
|
new_n = 0;
|
|
if (log->end_pos < log->len_total) {
|
|
new_n = min_t(u32, log->len_total - log->end_pos, n);
|
|
log->kbuf[new_n - 1] = '\0';
|
|
}
|
|
|
|
cur_pos = log->end_pos;
|
|
log->end_pos += n - 1; /* don't count terminating '\0' */
|
|
|
|
if (log->ubuf && new_n &&
|
|
copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n))
|
|
goto fail;
|
|
} else {
|
|
u64 new_end, new_start;
|
|
u32 buf_start, buf_end, new_n;
|
|
|
|
new_end = log->end_pos + n;
|
|
if (new_end - log->start_pos >= log->len_total)
|
|
new_start = new_end - log->len_total;
|
|
else
|
|
new_start = log->start_pos;
|
|
|
|
log->start_pos = new_start;
|
|
log->end_pos = new_end - 1; /* don't count terminating '\0' */
|
|
|
|
if (!log->ubuf)
|
|
return;
|
|
|
|
new_n = min(n, log->len_total);
|
|
cur_pos = new_end - new_n;
|
|
div_u64_rem(cur_pos, log->len_total, &buf_start);
|
|
div_u64_rem(new_end, log->len_total, &buf_end);
|
|
/* new_end and buf_end are exclusive indices, so if buf_end is
|
|
* exactly zero, then it actually points right to the end of
|
|
* ubuf and there is no wrap around
|
|
*/
|
|
if (buf_end == 0)
|
|
buf_end = log->len_total;
|
|
|
|
/* if buf_start > buf_end, we wrapped around;
|
|
* if buf_start == buf_end, then we fill ubuf completely; we
|
|
* can't have buf_start == buf_end to mean that there is
|
|
* nothing to write, because we always write at least
|
|
* something, even if terminal '\0'
|
|
*/
|
|
if (buf_start < buf_end) {
|
|
/* message fits within contiguous chunk of ubuf */
|
|
if (copy_to_user(log->ubuf + buf_start,
|
|
log->kbuf + n - new_n,
|
|
buf_end - buf_start))
|
|
goto fail;
|
|
} else {
|
|
/* message wraps around the end of ubuf, copy in two chunks */
|
|
if (copy_to_user(log->ubuf + buf_start,
|
|
log->kbuf + n - new_n,
|
|
log->len_total - buf_start))
|
|
goto fail;
|
|
if (copy_to_user(log->ubuf,
|
|
log->kbuf + n - buf_end,
|
|
buf_end))
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return;
|
|
fail:
|
|
log->ubuf = NULL;
|
|
}
|
|
|
|
void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos)
|
|
{
|
|
char zero = 0;
|
|
u32 pos;
|
|
|
|
if (WARN_ON_ONCE(new_pos > log->end_pos))
|
|
return;
|
|
|
|
if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL)
|
|
return;
|
|
|
|
/* if position to which we reset is beyond current log window,
|
|
* then we didn't preserve any useful content and should adjust
|
|
* start_pos to end up with an empty log (start_pos == end_pos)
|
|
*/
|
|
log->end_pos = new_pos;
|
|
if (log->end_pos < log->start_pos)
|
|
log->start_pos = log->end_pos;
|
|
|
|
if (!log->ubuf)
|
|
return;
|
|
|
|
if (log->level & BPF_LOG_FIXED)
|
|
pos = log->end_pos + 1;
|
|
else
|
|
div_u64_rem(new_pos, log->len_total, &pos);
|
|
|
|
if (pos < log->len_total && put_user(zero, log->ubuf + pos))
|
|
log->ubuf = NULL;
|
|
}
|
|
|
|
static void bpf_vlog_reverse_kbuf(char *buf, int len)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0, j = len - 1; i < j; i++, j--)
|
|
swap(buf[i], buf[j]);
|
|
}
|
|
|
|
static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end)
|
|
{
|
|
/* we split log->kbuf into two equal parts for both ends of array */
|
|
int n = sizeof(log->kbuf) / 2, nn;
|
|
char *lbuf = log->kbuf, *rbuf = log->kbuf + n;
|
|
|
|
/* Read ubuf's section [start, end) two chunks at a time, from left
|
|
* and right side; within each chunk, swap all the bytes; after that
|
|
* reverse the order of lbuf and rbuf and write result back to ubuf.
|
|
* This way we'll end up with swapped contents of specified
|
|
* [start, end) ubuf segment.
|
|
*/
|
|
while (end - start > 1) {
|
|
nn = min(n, (end - start ) / 2);
|
|
|
|
if (copy_from_user(lbuf, log->ubuf + start, nn))
|
|
return -EFAULT;
|
|
if (copy_from_user(rbuf, log->ubuf + end - nn, nn))
|
|
return -EFAULT;
|
|
|
|
bpf_vlog_reverse_kbuf(lbuf, nn);
|
|
bpf_vlog_reverse_kbuf(rbuf, nn);
|
|
|
|
/* we write lbuf to the right end of ubuf, while rbuf to the
|
|
* left one to end up with properly reversed overall ubuf
|
|
*/
|
|
if (copy_to_user(log->ubuf + start, rbuf, nn))
|
|
return -EFAULT;
|
|
if (copy_to_user(log->ubuf + end - nn, lbuf, nn))
|
|
return -EFAULT;
|
|
|
|
start += nn;
|
|
end -= nn;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual)
|
|
{
|
|
u32 sublen;
|
|
int err;
|
|
|
|
*log_size_actual = 0;
|
|
if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL)
|
|
return 0;
|
|
|
|
if (!log->ubuf)
|
|
goto skip_log_rotate;
|
|
/* If we never truncated log, there is nothing to move around. */
|
|
if (log->start_pos == 0)
|
|
goto skip_log_rotate;
|
|
|
|
/* Otherwise we need to rotate log contents to make it start from the
|
|
* buffer beginning and be a continuous zero-terminated string. Note
|
|
* that if log->start_pos != 0 then we definitely filled up entire log
|
|
* buffer with no gaps, and we just need to shift buffer contents to
|
|
* the left by (log->start_pos % log->len_total) bytes.
|
|
*
|
|
* Unfortunately, user buffer could be huge and we don't want to
|
|
* allocate temporary kernel memory of the same size just to shift
|
|
* contents in a straightforward fashion. Instead, we'll be clever and
|
|
* do in-place array rotation. This is a leetcode-style problem, which
|
|
* could be solved by three rotations.
|
|
*
|
|
* Let's say we have log buffer that has to be shifted left by 7 bytes
|
|
* (spaces and vertical bar is just for demonstrative purposes):
|
|
* E F G H I J K | A B C D
|
|
*
|
|
* First, we reverse entire array:
|
|
* D C B A | K J I H G F E
|
|
*
|
|
* Then we rotate first 4 bytes (DCBA) and separately last 7 bytes
|
|
* (KJIHGFE), resulting in a properly rotated array:
|
|
* A B C D | E F G H I J K
|
|
*
|
|
* We'll utilize log->kbuf to read user memory chunk by chunk, swap
|
|
* bytes, and write them back. Doing it byte-by-byte would be
|
|
* unnecessarily inefficient. Altogether we are going to read and
|
|
* write each byte twice, for total 4 memory copies between kernel and
|
|
* user space.
|
|
*/
|
|
|
|
/* length of the chopped off part that will be the beginning;
|
|
* len(ABCD) in the example above
|
|
*/
|
|
div_u64_rem(log->start_pos, log->len_total, &sublen);
|
|
sublen = log->len_total - sublen;
|
|
|
|
err = bpf_vlog_reverse_ubuf(log, 0, log->len_total);
|
|
err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen);
|
|
err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total);
|
|
if (err)
|
|
log->ubuf = NULL;
|
|
|
|
skip_log_rotate:
|
|
*log_size_actual = log->len_max;
|
|
|
|
/* properly initialized log has either both ubuf!=NULL and len_total>0
|
|
* or ubuf==NULL and len_total==0, so if this condition doesn't hold,
|
|
* we got a fault somewhere along the way, so report it back
|
|
*/
|
|
if (!!log->ubuf != !!log->len_total)
|
|
return -EFAULT;
|
|
|
|
/* did truncation actually happen? */
|
|
if (log->ubuf && log->len_max > log->len_total)
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* log_level controls verbosity level of eBPF verifier.
|
|
* bpf_verifier_log_write() is used to dump the verification trace to the log,
|
|
* so the user can figure out what's wrong with the program
|
|
*/
|
|
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(&env->log))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(&env->log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
|
|
|
|
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bpf_log);
|
|
|
|
static const struct bpf_line_info *
|
|
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
|
|
{
|
|
const struct bpf_line_info *linfo;
|
|
const struct bpf_prog *prog;
|
|
u32 nr_linfo;
|
|
int l, r, m;
|
|
|
|
prog = env->prog;
|
|
nr_linfo = prog->aux->nr_linfo;
|
|
|
|
if (!nr_linfo || insn_off >= prog->len)
|
|
return NULL;
|
|
|
|
linfo = prog->aux->linfo;
|
|
/* Loop invariant: linfo[l].insn_off <= insns_off.
|
|
* linfo[0].insn_off == 0 which always satisfies above condition.
|
|
* Binary search is searching for rightmost linfo entry that satisfies
|
|
* the above invariant, giving us the desired record that covers given
|
|
* instruction offset.
|
|
*/
|
|
l = 0;
|
|
r = nr_linfo - 1;
|
|
while (l < r) {
|
|
/* (r - l + 1) / 2 means we break a tie to the right, so if:
|
|
* l=1, r=2, linfo[l].insn_off <= insn_off, linfo[r].insn_off > insn_off,
|
|
* then m=2, we see that linfo[m].insn_off > insn_off, and so
|
|
* r becomes 1 and we exit the loop with correct l==1.
|
|
* If the tie was broken to the left, m=1 would end us up in
|
|
* an endless loop where l and m stay at 1 and r stays at 2.
|
|
*/
|
|
m = l + (r - l + 1) / 2;
|
|
if (linfo[m].insn_off <= insn_off)
|
|
l = m;
|
|
else
|
|
r = m - 1;
|
|
}
|
|
|
|
return &linfo[l];
|
|
}
|
|
|
|
static const char *ltrim(const char *s)
|
|
{
|
|
while (isspace(*s))
|
|
s++;
|
|
|
|
return s;
|
|
}
|
|
|
|
__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
|
|
u32 insn_off,
|
|
const char *prefix_fmt, ...)
|
|
{
|
|
const struct bpf_line_info *linfo, *prev_linfo;
|
|
const struct btf *btf;
|
|
const char *s, *fname;
|
|
|
|
if (!bpf_verifier_log_needed(&env->log))
|
|
return;
|
|
|
|
prev_linfo = env->prev_linfo;
|
|
linfo = find_linfo(env, insn_off);
|
|
if (!linfo || linfo == prev_linfo)
|
|
return;
|
|
|
|
/* It often happens that two separate linfo records point to the same
|
|
* source code line, but have differing column numbers. Given verifier
|
|
* log doesn't emit column information, from user perspective we just
|
|
* end up emitting the same source code line twice unnecessarily.
|
|
* So instead check that previous and current linfo record point to
|
|
* the same file (file_name_offs match) and the same line number, and
|
|
* avoid emitting duplicated source code line in such case.
|
|
*/
|
|
if (prev_linfo && linfo->file_name_off == prev_linfo->file_name_off &&
|
|
BPF_LINE_INFO_LINE_NUM(linfo->line_col) == BPF_LINE_INFO_LINE_NUM(prev_linfo->line_col))
|
|
return;
|
|
|
|
if (prefix_fmt) {
|
|
va_list args;
|
|
|
|
va_start(args, prefix_fmt);
|
|
bpf_verifier_vlog(&env->log, prefix_fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
btf = env->prog->aux->btf;
|
|
s = ltrim(btf_name_by_offset(btf, linfo->line_off));
|
|
verbose(env, "%s", s); /* source code line */
|
|
|
|
s = btf_name_by_offset(btf, linfo->file_name_off);
|
|
/* leave only file name */
|
|
fname = strrchr(s, '/');
|
|
fname = fname ? fname + 1 : s;
|
|
verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col));
|
|
|
|
env->prev_linfo = linfo;
|
|
}
|
|
|
|
static const char *btf_type_name(const struct btf *btf, u32 id)
|
|
{
|
|
return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
|
|
}
|
|
|
|
/* string representation of 'enum bpf_reg_type'
|
|
*
|
|
* Note that reg_type_str() can not appear more than once in a single verbose()
|
|
* statement.
|
|
*/
|
|
const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
|
|
{
|
|
char postfix[16] = {0}, prefix[64] = {0};
|
|
static const char * const str[] = {
|
|
[NOT_INIT] = "?",
|
|
[SCALAR_VALUE] = "scalar",
|
|
[PTR_TO_CTX] = "ctx",
|
|
[CONST_PTR_TO_MAP] = "map_ptr",
|
|
[PTR_TO_MAP_VALUE] = "map_value",
|
|
[PTR_TO_STACK] = "fp",
|
|
[PTR_TO_PACKET] = "pkt",
|
|
[PTR_TO_PACKET_META] = "pkt_meta",
|
|
[PTR_TO_PACKET_END] = "pkt_end",
|
|
[PTR_TO_FLOW_KEYS] = "flow_keys",
|
|
[PTR_TO_SOCKET] = "sock",
|
|
[PTR_TO_SOCK_COMMON] = "sock_common",
|
|
[PTR_TO_TCP_SOCK] = "tcp_sock",
|
|
[PTR_TO_TP_BUFFER] = "tp_buffer",
|
|
[PTR_TO_XDP_SOCK] = "xdp_sock",
|
|
[PTR_TO_BTF_ID] = "ptr_",
|
|
[PTR_TO_MEM] = "mem",
|
|
[PTR_TO_ARENA] = "arena",
|
|
[PTR_TO_BUF] = "buf",
|
|
[PTR_TO_FUNC] = "func",
|
|
[PTR_TO_MAP_KEY] = "map_key",
|
|
[CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
|
|
};
|
|
|
|
if (type & PTR_MAYBE_NULL) {
|
|
if (base_type(type) == PTR_TO_BTF_ID)
|
|
strncpy(postfix, "or_null_", 16);
|
|
else
|
|
strncpy(postfix, "_or_null", 16);
|
|
}
|
|
|
|
snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
|
|
type & MEM_RDONLY ? "rdonly_" : "",
|
|
type & MEM_RINGBUF ? "ringbuf_" : "",
|
|
type & MEM_USER ? "user_" : "",
|
|
type & MEM_PERCPU ? "percpu_" : "",
|
|
type & MEM_RCU ? "rcu_" : "",
|
|
type & PTR_UNTRUSTED ? "untrusted_" : "",
|
|
type & PTR_TRUSTED ? "trusted_" : ""
|
|
);
|
|
|
|
snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
|
|
prefix, str[base_type(type)], postfix);
|
|
return env->tmp_str_buf;
|
|
}
|
|
|
|
const char *dynptr_type_str(enum bpf_dynptr_type type)
|
|
{
|
|
switch (type) {
|
|
case BPF_DYNPTR_TYPE_LOCAL:
|
|
return "local";
|
|
case BPF_DYNPTR_TYPE_RINGBUF:
|
|
return "ringbuf";
|
|
case BPF_DYNPTR_TYPE_SKB:
|
|
return "skb";
|
|
case BPF_DYNPTR_TYPE_XDP:
|
|
return "xdp";
|
|
case BPF_DYNPTR_TYPE_INVALID:
|
|
return "<invalid>";
|
|
default:
|
|
WARN_ONCE(1, "unknown dynptr type %d\n", type);
|
|
return "<unknown>";
|
|
}
|
|
}
|
|
|
|
const char *iter_type_str(const struct btf *btf, u32 btf_id)
|
|
{
|
|
if (!btf || btf_id == 0)
|
|
return "<invalid>";
|
|
|
|
/* we already validated that type is valid and has conforming name */
|
|
return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
|
|
}
|
|
|
|
const char *iter_state_str(enum bpf_iter_state state)
|
|
{
|
|
switch (state) {
|
|
case BPF_ITER_STATE_ACTIVE:
|
|
return "active";
|
|
case BPF_ITER_STATE_DRAINED:
|
|
return "drained";
|
|
case BPF_ITER_STATE_INVALID:
|
|
return "<invalid>";
|
|
default:
|
|
WARN_ONCE(1, "unknown iter state %d\n", state);
|
|
return "<unknown>";
|
|
}
|
|
}
|
|
|
|
static char slot_type_char[] = {
|
|
[STACK_INVALID] = '?',
|
|
[STACK_SPILL] = 'r',
|
|
[STACK_MISC] = 'm',
|
|
[STACK_ZERO] = '0',
|
|
[STACK_DYNPTR] = 'd',
|
|
[STACK_ITER] = 'i',
|
|
};
|
|
|
|
static void print_liveness(struct bpf_verifier_env *env,
|
|
enum bpf_reg_liveness live)
|
|
{
|
|
if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
|
|
verbose(env, "_");
|
|
if (live & REG_LIVE_READ)
|
|
verbose(env, "r");
|
|
if (live & REG_LIVE_WRITTEN)
|
|
verbose(env, "w");
|
|
if (live & REG_LIVE_DONE)
|
|
verbose(env, "D");
|
|
}
|
|
|
|
#define UNUM_MAX_DECIMAL U16_MAX
|
|
#define SNUM_MAX_DECIMAL S16_MAX
|
|
#define SNUM_MIN_DECIMAL S16_MIN
|
|
|
|
static bool is_unum_decimal(u64 num)
|
|
{
|
|
return num <= UNUM_MAX_DECIMAL;
|
|
}
|
|
|
|
static bool is_snum_decimal(s64 num)
|
|
{
|
|
return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL;
|
|
}
|
|
|
|
static void verbose_unum(struct bpf_verifier_env *env, u64 num)
|
|
{
|
|
if (is_unum_decimal(num))
|
|
verbose(env, "%llu", num);
|
|
else
|
|
verbose(env, "%#llx", num);
|
|
}
|
|
|
|
static void verbose_snum(struct bpf_verifier_env *env, s64 num)
|
|
{
|
|
if (is_snum_decimal(num))
|
|
verbose(env, "%lld", num);
|
|
else
|
|
verbose(env, "%#llx", num);
|
|
}
|
|
|
|
int tnum_strn(char *str, size_t size, struct tnum a)
|
|
{
|
|
/* print as a constant, if tnum is fully known */
|
|
if (a.mask == 0) {
|
|
if (is_unum_decimal(a.value))
|
|
return snprintf(str, size, "%llu", a.value);
|
|
else
|
|
return snprintf(str, size, "%#llx", a.value);
|
|
}
|
|
return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tnum_strn);
|
|
|
|
static void print_scalar_ranges(struct bpf_verifier_env *env,
|
|
const struct bpf_reg_state *reg,
|
|
const char **sep)
|
|
{
|
|
/* For signed ranges, we want to unify 64-bit and 32-bit values in the
|
|
* output as much as possible, but there is a bit of a complication.
|
|
* If we choose to print values as decimals, this is natural to do,
|
|
* because negative 64-bit and 32-bit values >= -S32_MIN have the same
|
|
* representation due to sign extension. But if we choose to print
|
|
* them in hex format (see is_snum_decimal()), then sign extension is
|
|
* misleading.
|
|
* E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in
|
|
* hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two
|
|
* very different numbers.
|
|
* So we avoid sign extension if we choose to print values in hex.
|
|
*/
|
|
struct {
|
|
const char *name;
|
|
u64 val;
|
|
bool omit;
|
|
} minmaxs[] = {
|
|
{"smin", reg->smin_value, reg->smin_value == S64_MIN},
|
|
{"smax", reg->smax_value, reg->smax_value == S64_MAX},
|
|
{"umin", reg->umin_value, reg->umin_value == 0},
|
|
{"umax", reg->umax_value, reg->umax_value == U64_MAX},
|
|
{"smin32",
|
|
is_snum_decimal((s64)reg->s32_min_value)
|
|
? (s64)reg->s32_min_value
|
|
: (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN},
|
|
{"smax32",
|
|
is_snum_decimal((s64)reg->s32_max_value)
|
|
? (s64)reg->s32_max_value
|
|
: (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX},
|
|
{"umin32", reg->u32_min_value, reg->u32_min_value == 0},
|
|
{"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX},
|
|
}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
|
|
bool neg1, neg2;
|
|
|
|
for (m1 = &minmaxs[0]; m1 < mend; m1++) {
|
|
if (m1->omit)
|
|
continue;
|
|
|
|
neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
|
|
|
|
verbose(env, "%s%s=", *sep, m1->name);
|
|
*sep = ",";
|
|
|
|
for (m2 = m1 + 2; m2 < mend; m2 += 2) {
|
|
if (m2->omit || m2->val != m1->val)
|
|
continue;
|
|
/* don't mix negatives with positives */
|
|
neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
|
|
if (neg2 != neg1)
|
|
continue;
|
|
m2->omit = true;
|
|
verbose(env, "%s=", m2->name);
|
|
}
|
|
|
|
if (m1->name[0] == 's')
|
|
verbose_snum(env, m1->val);
|
|
else
|
|
verbose_unum(env, m1->val);
|
|
}
|
|
}
|
|
|
|
static bool type_is_map_ptr(enum bpf_reg_type t) {
|
|
switch (base_type(t)) {
|
|
case CONST_PTR_TO_MAP:
|
|
case PTR_TO_MAP_KEY:
|
|
case PTR_TO_MAP_VALUE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* _a stands for append, was shortened to avoid multiline statements below.
|
|
* This macro is used to output a comma separated list of attributes.
|
|
*/
|
|
#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; })
|
|
|
|
static void print_reg_state(struct bpf_verifier_env *env,
|
|
const struct bpf_func_state *state,
|
|
const struct bpf_reg_state *reg)
|
|
{
|
|
enum bpf_reg_type t;
|
|
const char *sep = "";
|
|
|
|
t = reg->type;
|
|
if (t == SCALAR_VALUE && reg->precise)
|
|
verbose(env, "P");
|
|
if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {
|
|
/* reg->off should be 0 for SCALAR_VALUE */
|
|
verbose_snum(env, reg->var_off.value + reg->off);
|
|
return;
|
|
}
|
|
|
|
verbose(env, "%s", reg_type_str(env, t));
|
|
if (t == PTR_TO_ARENA)
|
|
return;
|
|
if (t == PTR_TO_STACK) {
|
|
if (state->frameno != reg->frameno)
|
|
verbose(env, "[%d]", reg->frameno);
|
|
if (tnum_is_const(reg->var_off)) {
|
|
verbose_snum(env, reg->var_off.value + reg->off);
|
|
return;
|
|
}
|
|
}
|
|
if (base_type(t) == PTR_TO_BTF_ID)
|
|
verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
|
|
verbose(env, "(");
|
|
if (reg->id)
|
|
verbose_a("id=%d", reg->id);
|
|
if (reg->ref_obj_id)
|
|
verbose_a("ref_obj_id=%d", reg->ref_obj_id);
|
|
if (type_is_non_owning_ref(reg->type))
|
|
verbose_a("%s", "non_own_ref");
|
|
if (type_is_map_ptr(t)) {
|
|
if (reg->map_ptr->name[0])
|
|
verbose_a("map=%s", reg->map_ptr->name);
|
|
verbose_a("ks=%d,vs=%d",
|
|
reg->map_ptr->key_size,
|
|
reg->map_ptr->value_size);
|
|
}
|
|
if (t != SCALAR_VALUE && reg->off) {
|
|
verbose_a("off=");
|
|
verbose_snum(env, reg->off);
|
|
}
|
|
if (type_is_pkt_pointer(t)) {
|
|
verbose_a("r=");
|
|
verbose_unum(env, reg->range);
|
|
}
|
|
if (base_type(t) == PTR_TO_MEM) {
|
|
verbose_a("sz=");
|
|
verbose_unum(env, reg->mem_size);
|
|
}
|
|
if (t == CONST_PTR_TO_DYNPTR)
|
|
verbose_a("type=%s", dynptr_type_str(reg->dynptr.type));
|
|
if (tnum_is_const(reg->var_off)) {
|
|
/* a pointer register with fixed offset */
|
|
if (reg->var_off.value) {
|
|
verbose_a("imm=");
|
|
verbose_snum(env, reg->var_off.value);
|
|
}
|
|
} else {
|
|
print_scalar_ranges(env, reg, &sep);
|
|
if (!tnum_is_unknown(reg->var_off)) {
|
|
char tn_buf[48];
|
|
|
|
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
|
|
verbose_a("var_off=%s", tn_buf);
|
|
}
|
|
}
|
|
verbose(env, ")");
|
|
}
|
|
|
|
void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state,
|
|
bool print_all)
|
|
{
|
|
const struct bpf_reg_state *reg;
|
|
int i;
|
|
|
|
if (state->frameno)
|
|
verbose(env, " frame%d:", state->frameno);
|
|
for (i = 0; i < MAX_BPF_REG; i++) {
|
|
reg = &state->regs[i];
|
|
if (reg->type == NOT_INIT)
|
|
continue;
|
|
if (!print_all && !reg_scratched(env, i))
|
|
continue;
|
|
verbose(env, " R%d", i);
|
|
print_liveness(env, reg->live);
|
|
verbose(env, "=");
|
|
print_reg_state(env, state, reg);
|
|
}
|
|
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
|
|
char types_buf[BPF_REG_SIZE + 1];
|
|
const char *sep = "";
|
|
bool valid = false;
|
|
u8 slot_type;
|
|
int j;
|
|
|
|
if (!print_all && !stack_slot_scratched(env, i))
|
|
continue;
|
|
|
|
for (j = 0; j < BPF_REG_SIZE; j++) {
|
|
slot_type = state->stack[i].slot_type[j];
|
|
if (slot_type != STACK_INVALID)
|
|
valid = true;
|
|
types_buf[j] = slot_type_char[slot_type];
|
|
}
|
|
types_buf[BPF_REG_SIZE] = 0;
|
|
if (!valid)
|
|
continue;
|
|
|
|
reg = &state->stack[i].spilled_ptr;
|
|
switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
|
|
case STACK_SPILL:
|
|
/* print MISC/ZERO/INVALID slots above subreg spill */
|
|
for (j = 0; j < BPF_REG_SIZE; j++)
|
|
if (state->stack[i].slot_type[j] == STACK_SPILL)
|
|
break;
|
|
types_buf[j] = '\0';
|
|
|
|
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
|
|
print_liveness(env, reg->live);
|
|
verbose(env, "=%s", types_buf);
|
|
print_reg_state(env, state, reg);
|
|
break;
|
|
case STACK_DYNPTR:
|
|
/* skip to main dynptr slot */
|
|
i += BPF_DYNPTR_NR_SLOTS - 1;
|
|
reg = &state->stack[i].spilled_ptr;
|
|
|
|
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
|
|
print_liveness(env, reg->live);
|
|
verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
|
|
if (reg->id)
|
|
verbose_a("id=%d", reg->id);
|
|
if (reg->ref_obj_id)
|
|
verbose_a("ref_id=%d", reg->ref_obj_id);
|
|
if (reg->dynptr_id)
|
|
verbose_a("dynptr_id=%d", reg->dynptr_id);
|
|
verbose(env, ")");
|
|
break;
|
|
case STACK_ITER:
|
|
/* only main slot has ref_obj_id set; skip others */
|
|
if (!reg->ref_obj_id)
|
|
continue;
|
|
|
|
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
|
|
print_liveness(env, reg->live);
|
|
verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
|
|
iter_type_str(reg->iter.btf, reg->iter.btf_id),
|
|
reg->ref_obj_id, iter_state_str(reg->iter.state),
|
|
reg->iter.depth);
|
|
break;
|
|
case STACK_MISC:
|
|
case STACK_ZERO:
|
|
default:
|
|
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
|
|
print_liveness(env, reg->live);
|
|
verbose(env, "=%s", types_buf);
|
|
break;
|
|
}
|
|
}
|
|
if (state->acquired_refs && state->refs[0].id) {
|
|
verbose(env, " refs=%d", state->refs[0].id);
|
|
for (i = 1; i < state->acquired_refs; i++)
|
|
if (state->refs[i].id)
|
|
verbose(env, ",%d", state->refs[i].id);
|
|
}
|
|
if (state->in_callback_fn)
|
|
verbose(env, " cb");
|
|
if (state->in_async_callback_fn)
|
|
verbose(env, " async_cb");
|
|
verbose(env, "\n");
|
|
if (!print_all)
|
|
mark_verifier_state_clean(env);
|
|
}
|
|
|
|
static inline u32 vlog_alignment(u32 pos)
|
|
{
|
|
return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
|
|
BPF_LOG_MIN_ALIGNMENT) - pos - 1;
|
|
}
|
|
|
|
void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state)
|
|
{
|
|
if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
|
|
/* remove new line character */
|
|
bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
|
|
verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
|
|
} else {
|
|
verbose(env, "%d:", env->insn_idx);
|
|
}
|
|
print_verifier_state(env, state, false);
|
|
}
|