mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 13:41:51 +00:00
ac5c66f261
This reverts commit aebe4426cc
.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
725 lines
22 KiB
C
725 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF)
|
|
*
|
|
* Copyright (C) 2013 Terry Lam <vtlam@google.com>
|
|
* Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
|
|
*/
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/module.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/siphash.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/sock.h>
|
|
|
|
/* Heavy-Hitter Filter (HHF)
|
|
*
|
|
* Principles :
|
|
* Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
|
|
* buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
|
|
* as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
|
|
* The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
|
|
* in which the heavy-hitter bucket is served with less weight.
|
|
* In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
|
|
* are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
|
|
* higher share of bandwidth.
|
|
*
|
|
* To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
|
|
* following paper:
|
|
* [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
|
|
* Accounting", in ACM SIGCOMM, 2002.
|
|
*
|
|
* Conceptually, a multi-stage filter comprises k independent hash functions
|
|
* and k counter arrays. Packets are indexed into k counter arrays by k hash
|
|
* functions, respectively. The counters are then increased by the packet sizes.
|
|
* Therefore,
|
|
* - For a heavy-hitter flow: *all* of its k array counters must be large.
|
|
* - For a non-heavy-hitter flow: some of its k array counters can be large
|
|
* due to hash collision with other small flows; however, with high
|
|
* probability, not *all* k counters are large.
|
|
*
|
|
* By the design of the multi-stage filter algorithm, the false negative rate
|
|
* (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
|
|
* susceptible to false positives (non-heavy-hitters mistakenly classified as
|
|
* heavy-hitters).
|
|
* Therefore, we also implement the following optimizations to reduce false
|
|
* positives by avoiding unnecessary increment of the counter values:
|
|
* - Optimization O1: once a heavy-hitter is identified, its bytes are not
|
|
* accounted in the array counters. This technique is called "shielding"
|
|
* in Section 3.3.1 of [EV02].
|
|
* - Optimization O2: conservative update of counters
|
|
* (Section 3.3.2 of [EV02]),
|
|
* New counter value = max {old counter value,
|
|
* smallest counter value + packet bytes}
|
|
*
|
|
* Finally, we refresh the counters periodically since otherwise the counter
|
|
* values will keep accumulating.
|
|
*
|
|
* Once a flow is classified as heavy-hitter, we also save its per-flow state
|
|
* in an exact-matching flow table so that its subsequent packets can be
|
|
* dispatched to the heavy-hitter bucket accordingly.
|
|
*
|
|
*
|
|
* At a high level, this qdisc works as follows:
|
|
* Given a packet p:
|
|
* - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
|
|
* heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
|
|
* bucket.
|
|
* - Otherwise, forward p to the multi-stage filter, denoted filter F
|
|
* + If F decides that p belongs to a non-heavy-hitter flow, then send p
|
|
* to the non-heavy-hitter bucket.
|
|
* + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
|
|
* then set up a new flow entry for the flow-id of p in the table T and
|
|
* send p to the heavy-hitter bucket.
|
|
*
|
|
* In this implementation:
|
|
* - T is a fixed-size hash-table with 1024 entries. Hash collision is
|
|
* resolved by linked-list chaining.
|
|
* - F has four counter arrays, each array containing 1024 32-bit counters.
|
|
* That means 4 * 1024 * 32 bits = 16KB of memory.
|
|
* - Since each array in F contains 1024 counters, 10 bits are sufficient to
|
|
* index into each array.
|
|
* Hence, instead of having four hash functions, we chop the 32-bit
|
|
* skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
|
|
* computed as XOR sum of those three chunks.
|
|
* - We need to clear the counter arrays periodically; however, directly
|
|
* memsetting 16KB of memory can lead to cache eviction and unwanted delay.
|
|
* So by representing each counter by a valid bit, we only need to reset
|
|
* 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
|
|
* - The Deficit Round Robin engine is taken from fq_codel implementation
|
|
* (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
|
|
* fq_codel_flow in fq_codel implementation.
|
|
*
|
|
*/
|
|
|
|
/* Non-configurable parameters */
|
|
#define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */
|
|
#define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */
|
|
#define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */
|
|
#define HHF_BIT_MASK_LEN 10 /* masking 10 bits */
|
|
#define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */
|
|
|
|
#define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */
|
|
enum wdrr_bucket_idx {
|
|
WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */
|
|
WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */
|
|
};
|
|
|
|
#define hhf_time_before(a, b) \
|
|
(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
|
|
|
|
/* Heavy-hitter per-flow state */
|
|
struct hh_flow_state {
|
|
u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */
|
|
u32 hit_timestamp; /* last time heavy-hitter was seen */
|
|
struct list_head flowchain; /* chaining under hash collision */
|
|
};
|
|
|
|
/* Weighted Deficit Round Robin (WDRR) scheduler */
|
|
struct wdrr_bucket {
|
|
struct sk_buff *head;
|
|
struct sk_buff *tail;
|
|
struct list_head bucketchain;
|
|
int deficit;
|
|
};
|
|
|
|
struct hhf_sched_data {
|
|
struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
|
|
siphash_key_t perturbation; /* hash perturbation */
|
|
u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
|
|
u32 drop_overlimit; /* number of times max qdisc packet
|
|
* limit was hit
|
|
*/
|
|
struct list_head *hh_flows; /* table T (currently active HHs) */
|
|
u32 hh_flows_limit; /* max active HH allocs */
|
|
u32 hh_flows_overlimit; /* num of disallowed HH allocs */
|
|
u32 hh_flows_total_cnt; /* total admitted HHs */
|
|
u32 hh_flows_current_cnt; /* total current HHs */
|
|
u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
|
|
u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays
|
|
* was reset
|
|
*/
|
|
unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
|
|
* of hhf_arrays
|
|
*/
|
|
/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
|
|
struct list_head new_buckets; /* list of new buckets */
|
|
struct list_head old_buckets; /* list of old buckets */
|
|
|
|
/* Configurable HHF parameters */
|
|
u32 hhf_reset_timeout; /* interval to reset counter
|
|
* arrays in filter F
|
|
* (default 40ms)
|
|
*/
|
|
u32 hhf_admit_bytes; /* counter thresh to classify as
|
|
* HH (default 128KB).
|
|
* With these default values,
|
|
* 128KB / 40ms = 25 Mbps
|
|
* i.e., we expect to capture HHs
|
|
* sending > 25 Mbps.
|
|
*/
|
|
u32 hhf_evict_timeout; /* aging threshold to evict idle
|
|
* HHs out of table T. This should
|
|
* be large enough to avoid
|
|
* reordering during HH eviction.
|
|
* (default 1s)
|
|
*/
|
|
u32 hhf_non_hh_weight; /* WDRR weight for non-HHs
|
|
* (default 2,
|
|
* i.e., non-HH : HH = 2 : 1)
|
|
*/
|
|
};
|
|
|
|
static u32 hhf_time_stamp(void)
|
|
{
|
|
return jiffies;
|
|
}
|
|
|
|
/* Looks up a heavy-hitter flow in a chaining list of table T. */
|
|
static struct hh_flow_state *seek_list(const u32 hash,
|
|
struct list_head *head,
|
|
struct hhf_sched_data *q)
|
|
{
|
|
struct hh_flow_state *flow, *next;
|
|
u32 now = hhf_time_stamp();
|
|
|
|
if (list_empty(head))
|
|
return NULL;
|
|
|
|
list_for_each_entry_safe(flow, next, head, flowchain) {
|
|
u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
|
|
|
|
if (hhf_time_before(prev, now)) {
|
|
/* Delete expired heavy-hitters, but preserve one entry
|
|
* to avoid kzalloc() when next time this slot is hit.
|
|
*/
|
|
if (list_is_last(&flow->flowchain, head))
|
|
return NULL;
|
|
list_del(&flow->flowchain);
|
|
kfree(flow);
|
|
q->hh_flows_current_cnt--;
|
|
} else if (flow->hash_id == hash) {
|
|
return flow;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns a flow state entry for a new heavy-hitter. Either reuses an expired
|
|
* entry or dynamically alloc a new entry.
|
|
*/
|
|
static struct hh_flow_state *alloc_new_hh(struct list_head *head,
|
|
struct hhf_sched_data *q)
|
|
{
|
|
struct hh_flow_state *flow;
|
|
u32 now = hhf_time_stamp();
|
|
|
|
if (!list_empty(head)) {
|
|
/* Find an expired heavy-hitter flow entry. */
|
|
list_for_each_entry(flow, head, flowchain) {
|
|
u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
|
|
|
|
if (hhf_time_before(prev, now))
|
|
return flow;
|
|
}
|
|
}
|
|
|
|
if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
|
|
q->hh_flows_overlimit++;
|
|
return NULL;
|
|
}
|
|
/* Create new entry. */
|
|
flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
|
|
if (!flow)
|
|
return NULL;
|
|
|
|
q->hh_flows_current_cnt++;
|
|
INIT_LIST_HEAD(&flow->flowchain);
|
|
list_add_tail(&flow->flowchain, head);
|
|
|
|
return flow;
|
|
}
|
|
|
|
/* Assigns packets to WDRR buckets. Implements a multi-stage filter to
|
|
* classify heavy-hitters.
|
|
*/
|
|
static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
u32 tmp_hash, hash;
|
|
u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
|
|
struct hh_flow_state *flow;
|
|
u32 pkt_len, min_hhf_val;
|
|
int i;
|
|
u32 prev;
|
|
u32 now = hhf_time_stamp();
|
|
|
|
/* Reset the HHF counter arrays if this is the right time. */
|
|
prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
|
|
if (hhf_time_before(prev, now)) {
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++)
|
|
bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
|
|
q->hhf_arrays_reset_timestamp = now;
|
|
}
|
|
|
|
/* Get hashed flow-id of the skb. */
|
|
hash = skb_get_hash_perturb(skb, &q->perturbation);
|
|
|
|
/* Check if this packet belongs to an already established HH flow. */
|
|
flow_pos = hash & HHF_BIT_MASK;
|
|
flow = seek_list(hash, &q->hh_flows[flow_pos], q);
|
|
if (flow) { /* found its HH flow */
|
|
flow->hit_timestamp = now;
|
|
return WDRR_BUCKET_FOR_HH;
|
|
}
|
|
|
|
/* Now pass the packet through the multi-stage filter. */
|
|
tmp_hash = hash;
|
|
xorsum = 0;
|
|
for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
|
|
/* Split the skb_hash into three 10-bit chunks. */
|
|
filter_pos[i] = tmp_hash & HHF_BIT_MASK;
|
|
xorsum ^= filter_pos[i];
|
|
tmp_hash >>= HHF_BIT_MASK_LEN;
|
|
}
|
|
/* The last chunk is computed as XOR sum of other chunks. */
|
|
filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
|
|
|
|
pkt_len = qdisc_pkt_len(skb);
|
|
min_hhf_val = ~0U;
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++) {
|
|
u32 val;
|
|
|
|
if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
|
|
q->hhf_arrays[i][filter_pos[i]] = 0;
|
|
__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
|
|
}
|
|
|
|
val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
|
|
if (min_hhf_val > val)
|
|
min_hhf_val = val;
|
|
}
|
|
|
|
/* Found a new HH iff all counter values > HH admit threshold. */
|
|
if (min_hhf_val > q->hhf_admit_bytes) {
|
|
/* Just captured a new heavy-hitter. */
|
|
flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
|
|
if (!flow) /* memory alloc problem */
|
|
return WDRR_BUCKET_FOR_NON_HH;
|
|
flow->hash_id = hash;
|
|
flow->hit_timestamp = now;
|
|
q->hh_flows_total_cnt++;
|
|
|
|
/* By returning without updating counters in q->hhf_arrays,
|
|
* we implicitly implement "shielding" (see Optimization O1).
|
|
*/
|
|
return WDRR_BUCKET_FOR_HH;
|
|
}
|
|
|
|
/* Conservative update of HHF arrays (see Optimization O2). */
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++) {
|
|
if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
|
|
q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
|
|
}
|
|
return WDRR_BUCKET_FOR_NON_HH;
|
|
}
|
|
|
|
/* Removes one skb from head of bucket. */
|
|
static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
|
|
{
|
|
struct sk_buff *skb = bucket->head;
|
|
|
|
bucket->head = skb->next;
|
|
skb_mark_not_on_list(skb);
|
|
return skb;
|
|
}
|
|
|
|
/* Tail-adds skb to bucket. */
|
|
static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
|
|
{
|
|
if (bucket->head == NULL)
|
|
bucket->head = skb;
|
|
else
|
|
bucket->tail->next = skb;
|
|
bucket->tail = skb;
|
|
skb->next = NULL;
|
|
}
|
|
|
|
static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
struct wdrr_bucket *bucket;
|
|
|
|
/* Always try to drop from heavy-hitters first. */
|
|
bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
|
|
if (!bucket->head)
|
|
bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
|
|
|
|
if (bucket->head) {
|
|
struct sk_buff *skb = dequeue_head(bucket);
|
|
|
|
sch->q.qlen--;
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
/* Return id of the bucket from which the packet was dropped. */
|
|
return bucket - q->buckets;
|
|
}
|
|
|
|
static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
enum wdrr_bucket_idx idx;
|
|
struct wdrr_bucket *bucket;
|
|
unsigned int prev_backlog;
|
|
|
|
idx = hhf_classify(skb, sch);
|
|
|
|
bucket = &q->buckets[idx];
|
|
bucket_add(bucket, skb);
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
|
|
|
if (list_empty(&bucket->bucketchain)) {
|
|
unsigned int weight;
|
|
|
|
/* The logic of new_buckets vs. old_buckets is the same as
|
|
* new_flows vs. old_flows in the implementation of fq_codel,
|
|
* i.e., short bursts of non-HHs should have strict priority.
|
|
*/
|
|
if (idx == WDRR_BUCKET_FOR_HH) {
|
|
/* Always move heavy-hitters to old bucket. */
|
|
weight = 1;
|
|
list_add_tail(&bucket->bucketchain, &q->old_buckets);
|
|
} else {
|
|
weight = q->hhf_non_hh_weight;
|
|
list_add_tail(&bucket->bucketchain, &q->new_buckets);
|
|
}
|
|
bucket->deficit = weight * q->quantum;
|
|
}
|
|
if (++sch->q.qlen <= sch->limit)
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
prev_backlog = sch->qstats.backlog;
|
|
q->drop_overlimit++;
|
|
/* Return Congestion Notification only if we dropped a packet from this
|
|
* bucket.
|
|
*/
|
|
if (hhf_drop(sch, to_free) == idx)
|
|
return NET_XMIT_CN;
|
|
|
|
/* As we dropped a packet, better let upper stack know this. */
|
|
qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb = NULL;
|
|
struct wdrr_bucket *bucket;
|
|
struct list_head *head;
|
|
|
|
begin:
|
|
head = &q->new_buckets;
|
|
if (list_empty(head)) {
|
|
head = &q->old_buckets;
|
|
if (list_empty(head))
|
|
return NULL;
|
|
}
|
|
bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
|
|
|
|
if (bucket->deficit <= 0) {
|
|
int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
|
|
1 : q->hhf_non_hh_weight;
|
|
|
|
bucket->deficit += weight * q->quantum;
|
|
list_move_tail(&bucket->bucketchain, &q->old_buckets);
|
|
goto begin;
|
|
}
|
|
|
|
if (bucket->head) {
|
|
skb = dequeue_head(bucket);
|
|
sch->q.qlen--;
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
}
|
|
|
|
if (!skb) {
|
|
/* Force a pass through old_buckets to prevent starvation. */
|
|
if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
|
|
list_move_tail(&bucket->bucketchain, &q->old_buckets);
|
|
else
|
|
list_del_init(&bucket->bucketchain);
|
|
goto begin;
|
|
}
|
|
qdisc_bstats_update(sch, skb);
|
|
bucket->deficit -= qdisc_pkt_len(skb);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void hhf_reset(struct Qdisc *sch)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = hhf_dequeue(sch)) != NULL)
|
|
rtnl_kfree_skbs(skb, skb);
|
|
}
|
|
|
|
static void hhf_destroy(struct Qdisc *sch)
|
|
{
|
|
int i;
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++) {
|
|
kvfree(q->hhf_arrays[i]);
|
|
kvfree(q->hhf_valid_bits[i]);
|
|
}
|
|
|
|
if (!q->hh_flows)
|
|
return;
|
|
|
|
for (i = 0; i < HH_FLOWS_CNT; i++) {
|
|
struct hh_flow_state *flow, *next;
|
|
struct list_head *head = &q->hh_flows[i];
|
|
|
|
if (list_empty(head))
|
|
continue;
|
|
list_for_each_entry_safe(flow, next, head, flowchain) {
|
|
list_del(&flow->flowchain);
|
|
kfree(flow);
|
|
}
|
|
}
|
|
kvfree(q->hh_flows);
|
|
}
|
|
|
|
static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
|
|
[TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 },
|
|
[TCA_HHF_QUANTUM] = { .type = NLA_U32 },
|
|
[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
|
|
[TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 },
|
|
[TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 },
|
|
[TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 },
|
|
[TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static int hhf_change(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tb[TCA_HHF_MAX + 1];
|
|
unsigned int qlen, prev_backlog;
|
|
int err;
|
|
u64 non_hh_quantum;
|
|
u32 new_quantum = q->quantum;
|
|
u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
|
|
|
|
if (!opt)
|
|
return -EINVAL;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy,
|
|
NULL);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_HHF_QUANTUM])
|
|
new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
|
|
|
|
if (tb[TCA_HHF_NON_HH_WEIGHT])
|
|
new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
|
|
|
|
non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
|
|
if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX)
|
|
return -EINVAL;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
if (tb[TCA_HHF_BACKLOG_LIMIT])
|
|
sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
|
|
|
|
q->quantum = new_quantum;
|
|
q->hhf_non_hh_weight = new_hhf_non_hh_weight;
|
|
|
|
if (tb[TCA_HHF_HH_FLOWS_LIMIT])
|
|
q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
|
|
|
|
if (tb[TCA_HHF_RESET_TIMEOUT]) {
|
|
u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
|
|
|
|
q->hhf_reset_timeout = usecs_to_jiffies(us);
|
|
}
|
|
|
|
if (tb[TCA_HHF_ADMIT_BYTES])
|
|
q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
|
|
|
|
if (tb[TCA_HHF_EVICT_TIMEOUT]) {
|
|
u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
|
|
|
|
q->hhf_evict_timeout = usecs_to_jiffies(us);
|
|
}
|
|
|
|
qlen = sch->q.qlen;
|
|
prev_backlog = sch->qstats.backlog;
|
|
while (sch->q.qlen > sch->limit) {
|
|
struct sk_buff *skb = hhf_dequeue(sch);
|
|
|
|
rtnl_kfree_skbs(skb, skb);
|
|
}
|
|
qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
|
|
prev_backlog - sch->qstats.backlog);
|
|
|
|
sch_tree_unlock(sch);
|
|
return 0;
|
|
}
|
|
|
|
static int hhf_init(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
int i;
|
|
|
|
sch->limit = 1000;
|
|
q->quantum = psched_mtu(qdisc_dev(sch));
|
|
get_random_bytes(&q->perturbation, sizeof(q->perturbation));
|
|
INIT_LIST_HEAD(&q->new_buckets);
|
|
INIT_LIST_HEAD(&q->old_buckets);
|
|
|
|
/* Configurable HHF parameters */
|
|
q->hhf_reset_timeout = HZ / 25; /* 40 ms */
|
|
q->hhf_admit_bytes = 131072; /* 128 KB */
|
|
q->hhf_evict_timeout = HZ; /* 1 sec */
|
|
q->hhf_non_hh_weight = 2;
|
|
|
|
if (opt) {
|
|
int err = hhf_change(sch, opt, extack);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (!q->hh_flows) {
|
|
/* Initialize heavy-hitter flow table. */
|
|
q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head),
|
|
GFP_KERNEL);
|
|
if (!q->hh_flows)
|
|
return -ENOMEM;
|
|
for (i = 0; i < HH_FLOWS_CNT; i++)
|
|
INIT_LIST_HEAD(&q->hh_flows[i]);
|
|
|
|
/* Cap max active HHs at twice len of hh_flows table. */
|
|
q->hh_flows_limit = 2 * HH_FLOWS_CNT;
|
|
q->hh_flows_overlimit = 0;
|
|
q->hh_flows_total_cnt = 0;
|
|
q->hh_flows_current_cnt = 0;
|
|
|
|
/* Initialize heavy-hitter filter arrays. */
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++) {
|
|
q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN,
|
|
sizeof(u32),
|
|
GFP_KERNEL);
|
|
if (!q->hhf_arrays[i]) {
|
|
/* Note: hhf_destroy() will be called
|
|
* by our caller.
|
|
*/
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
q->hhf_arrays_reset_timestamp = hhf_time_stamp();
|
|
|
|
/* Initialize valid bits of heavy-hitter filter arrays. */
|
|
for (i = 0; i < HHF_ARRAYS_CNT; i++) {
|
|
q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
|
|
BITS_PER_BYTE, GFP_KERNEL);
|
|
if (!q->hhf_valid_bits[i]) {
|
|
/* Note: hhf_destroy() will be called
|
|
* by our caller.
|
|
*/
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Initialize Weighted DRR buckets. */
|
|
for (i = 0; i < WDRR_BUCKET_CNT; i++) {
|
|
struct wdrr_bucket *bucket = q->buckets + i;
|
|
|
|
INIT_LIST_HEAD(&bucket->bucketchain);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *opts;
|
|
|
|
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (opts == NULL)
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
|
|
nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
|
|
nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
|
|
nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
|
|
jiffies_to_usecs(q->hhf_reset_timeout)) ||
|
|
nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
|
|
nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
|
|
jiffies_to_usecs(q->hhf_evict_timeout)) ||
|
|
nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, opts);
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
{
|
|
struct hhf_sched_data *q = qdisc_priv(sch);
|
|
struct tc_hhf_xstats st = {
|
|
.drop_overlimit = q->drop_overlimit,
|
|
.hh_overlimit = q->hh_flows_overlimit,
|
|
.hh_tot_count = q->hh_flows_total_cnt,
|
|
.hh_cur_count = q->hh_flows_current_cnt,
|
|
};
|
|
|
|
return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
}
|
|
|
|
static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
|
|
.id = "hhf",
|
|
.priv_size = sizeof(struct hhf_sched_data),
|
|
|
|
.enqueue = hhf_enqueue,
|
|
.dequeue = hhf_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = hhf_init,
|
|
.reset = hhf_reset,
|
|
.destroy = hhf_destroy,
|
|
.change = hhf_change,
|
|
.dump = hhf_dump,
|
|
.dump_stats = hhf_dump_stats,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init hhf_module_init(void)
|
|
{
|
|
return register_qdisc(&hhf_qdisc_ops);
|
|
}
|
|
|
|
static void __exit hhf_module_exit(void)
|
|
{
|
|
unregister_qdisc(&hhf_qdisc_ops);
|
|
}
|
|
|
|
module_init(hhf_module_init)
|
|
module_exit(hhf_module_exit)
|
|
MODULE_AUTHOR("Terry Lam");
|
|
MODULE_AUTHOR("Nandita Dukkipati");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)");
|