linux/arch/sparc64/kernel/iommu.c
Jens Axboe 2c941a2040 SPARC64: sg chaining support
This updates the sparc64 iommu/pci dma mappers to sg chaining.

Acked-by: David S. Miller <davem@davemloft.net>

Later updated to newer kernel with unified sparc64 iommu sg handling.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-10-16 11:27:32 +02:00

819 lines
19 KiB
C

/* iommu.c: Generic sparc64 IOMMU support.
*
* Copyright (C) 1999, 2007 David S. Miller (davem@davemloft.net)
* Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/scatterlist.h>
#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif
#include <asm/iommu.h>
#include "iommu_common.h"
#define STC_CTXMATCH_ADDR(STC, CTX) \
((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
#define STC_FLUSHFLAG_INIT(STC) \
(*((STC)->strbuf_flushflag) = 0UL)
#define STC_FLUSHFLAG_SET(STC) \
(*((STC)->strbuf_flushflag) != 0UL)
#define iommu_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define iommu_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E))
/* Must be invoked under the IOMMU lock. */
static void __iommu_flushall(struct iommu *iommu)
{
if (iommu->iommu_flushinv) {
iommu_write(iommu->iommu_flushinv, ~(u64)0);
} else {
unsigned long tag;
int entry;
tag = iommu->iommu_tags;
for (entry = 0; entry < 16; entry++) {
iommu_write(tag, 0);
tag += 8;
}
/* Ensure completion of previous PIO writes. */
(void) iommu_read(iommu->write_complete_reg);
}
}
#define IOPTE_CONSISTENT(CTX) \
(IOPTE_VALID | IOPTE_CACHE | \
(((CTX) << 47) & IOPTE_CONTEXT))
#define IOPTE_STREAMING(CTX) \
(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
/* Existing mappings are never marked invalid, instead they
* are pointed to a dummy page.
*/
#define IOPTE_IS_DUMMY(iommu, iopte) \
((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
{
unsigned long val = iopte_val(*iopte);
val &= ~IOPTE_PAGE;
val |= iommu->dummy_page_pa;
iopte_val(*iopte) = val;
}
/* Based largely upon the ppc64 iommu allocator. */
static long arena_alloc(struct iommu *iommu, unsigned long npages)
{
struct iommu_arena *arena = &iommu->arena;
unsigned long n, i, start, end, limit;
int pass;
limit = arena->limit;
start = arena->hint;
pass = 0;
again:
n = find_next_zero_bit(arena->map, limit, start);
end = n + npages;
if (unlikely(end >= limit)) {
if (likely(pass < 1)) {
limit = start;
start = 0;
__iommu_flushall(iommu);
pass++;
goto again;
} else {
/* Scanned the whole thing, give up. */
return -1;
}
}
for (i = n; i < end; i++) {
if (test_bit(i, arena->map)) {
start = i + 1;
goto again;
}
}
for (i = n; i < end; i++)
__set_bit(i, arena->map);
arena->hint = end;
return n;
}
static void arena_free(struct iommu_arena *arena, unsigned long base, unsigned long npages)
{
unsigned long i;
for (i = base; i < (base + npages); i++)
__clear_bit(i, arena->map);
}
int iommu_table_init(struct iommu *iommu, int tsbsize,
u32 dma_offset, u32 dma_addr_mask)
{
unsigned long i, tsbbase, order, sz, num_tsb_entries;
num_tsb_entries = tsbsize / sizeof(iopte_t);
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->page_table_map_base = dma_offset;
iommu->dma_addr_mask = dma_addr_mask;
/* Allocate and initialize the free area map. */
sz = num_tsb_entries / 8;
sz = (sz + 7UL) & ~7UL;
iommu->arena.map = kzalloc(sz, GFP_KERNEL);
if (!iommu->arena.map) {
printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
return -ENOMEM;
}
iommu->arena.limit = num_tsb_entries;
/* Allocate and initialize the dummy page which we
* set inactive IO PTEs to point to.
*/
iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0);
if (!iommu->dummy_page) {
printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
goto out_free_map;
}
memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
/* Now allocate and setup the IOMMU page table itself. */
order = get_order(tsbsize);
tsbbase = __get_free_pages(GFP_KERNEL, order);
if (!tsbbase) {
printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
goto out_free_dummy_page;
}
iommu->page_table = (iopte_t *)tsbbase;
for (i = 0; i < num_tsb_entries; i++)
iopte_make_dummy(iommu, &iommu->page_table[i]);
return 0;
out_free_dummy_page:
free_page(iommu->dummy_page);
iommu->dummy_page = 0UL;
out_free_map:
kfree(iommu->arena.map);
iommu->arena.map = NULL;
return -ENOMEM;
}
static inline iopte_t *alloc_npages(struct iommu *iommu, unsigned long npages)
{
long entry;
entry = arena_alloc(iommu, npages);
if (unlikely(entry < 0))
return NULL;
return iommu->page_table + entry;
}
static inline void free_npages(struct iommu *iommu, dma_addr_t base, unsigned long npages)
{
arena_free(&iommu->arena, base >> IO_PAGE_SHIFT, npages);
}
static int iommu_alloc_ctx(struct iommu *iommu)
{
int lowest = iommu->ctx_lowest_free;
int sz = IOMMU_NUM_CTXS - lowest;
int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
if (unlikely(n == sz)) {
n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
if (unlikely(n == lowest)) {
printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
n = 0;
}
}
if (n)
__set_bit(n, iommu->ctx_bitmap);
return n;
}
static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
{
if (likely(ctx)) {
__clear_bit(ctx, iommu->ctx_bitmap);
if (ctx < iommu->ctx_lowest_free)
iommu->ctx_lowest_free = ctx;
}
}
static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addrp, gfp_t gfp)
{
struct iommu *iommu;
iopte_t *iopte;
unsigned long flags, order, first_page;
void *ret;
int npages;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= 10)
return NULL;
first_page = __get_free_pages(gfp, order);
if (first_page == 0UL)
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = dev->archdata.iommu;
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_npages(iommu, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(iopte == NULL)) {
free_pages(first_page, order);
return NULL;
}
*dma_addrp = (iommu->page_table_map_base +
((iopte - iommu->page_table) << IO_PAGE_SHIFT));
ret = (void *) first_page;
npages = size >> IO_PAGE_SHIFT;
first_page = __pa(first_page);
while (npages--) {
iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
IOPTE_WRITE |
(first_page & IOPTE_PAGE));
iopte++;
first_page += IO_PAGE_SIZE;
}
return ret;
}
static void dma_4u_free_coherent(struct device *dev, size_t size,
void *cpu, dma_addr_t dvma)
{
struct iommu *iommu;
iopte_t *iopte;
unsigned long flags, order, npages;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = dev->archdata.iommu;
iopte = iommu->page_table +
((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
free_npages(iommu, dvma - iommu->page_table_map_base, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t dma_4u_map_single(struct device *dev, void *ptr, size_t sz,
enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr, ctx;
u32 bus_addr, ret;
unsigned long iopte_protection;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (unlikely(direction == DMA_NONE))
goto bad_no_ctx;
oaddr = (unsigned long)ptr;
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
spin_lock_irqsave(&iommu->lock, flags);
base = alloc_npages(iommu, npages);
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(!base))
goto bad;
bus_addr = (iommu->page_table_map_base +
((base - iommu->page_table) << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
iopte_protection = IOPTE_CONSISTENT(ctx);
if (direction != DMA_TO_DEVICE)
iopte_protection |= IOPTE_WRITE;
for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
iopte_val(*base) = iopte_protection | base_paddr;
return ret;
bad:
iommu_free_ctx(iommu, ctx);
bad_no_ctx:
if (printk_ratelimit())
WARN_ON(1);
return DMA_ERROR_CODE;
}
static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
u32 vaddr, unsigned long ctx, unsigned long npages,
enum dma_data_direction direction)
{
int limit;
if (strbuf->strbuf_ctxflush &&
iommu->iommu_ctxflush) {
unsigned long matchreg, flushreg;
u64 val;
flushreg = strbuf->strbuf_ctxflush;
matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
iommu_write(flushreg, ctx);
val = iommu_read(matchreg);
val &= 0xffff;
if (!val)
goto do_flush_sync;
while (val) {
if (val & 0x1)
iommu_write(flushreg, ctx);
val >>= 1;
}
val = iommu_read(matchreg);
if (unlikely(val)) {
printk(KERN_WARNING "strbuf_flush: ctx flush "
"timeout matchreg[%lx] ctx[%lx]\n",
val, ctx);
goto do_page_flush;
}
} else {
unsigned long i;
do_page_flush:
for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
iommu_write(strbuf->strbuf_pflush, vaddr);
}
do_flush_sync:
/* If the device could not have possibly put dirty data into
* the streaming cache, no flush-flag synchronization needs
* to be performed.
*/
if (direction == DMA_TO_DEVICE)
return;
STC_FLUSHFLAG_INIT(strbuf);
iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
(void) iommu_read(iommu->write_complete_reg);
limit = 100000;
while (!STC_FLUSHFLAG_SET(strbuf)) {
limit--;
if (!limit)
break;
udelay(1);
rmb();
}
if (!limit)
printk(KERN_WARNING "strbuf_flush: flushflag timeout "
"vaddr[%08x] ctx[%lx] npages[%ld]\n",
vaddr, ctx, npages);
}
static void dma_4u_unmap_single(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
iopte_t *base;
unsigned long flags, npages, ctx, i;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
/* Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
/* Step 1: Kick data out of streaming buffers if necessary. */
if (strbuf->strbuf_enabled)
strbuf_flush(strbuf, iommu, bus_addr, ctx,
npages, direction);
/* Step 2: Clear out TSB entries. */
for (i = 0; i < npages; i++)
iopte_make_dummy(iommu, base + i);
free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg,
int nused, int nelems,
unsigned long iopte_protection)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg_last(sg, nelems);
int i;
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg = sg_next(sg);
}
pteval = iopte_protection | (pteval & IOPTE_PAGE);
while (len > 0) {
*iopte++ = __iopte(pteval);
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg = sg_next(sg);
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg != sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg = sg_next(sg);
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg = sg_next(dma_sg);
}
}
static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
unsigned long flags, ctx, npages, iopte_protection;
iopte_t *base;
u32 dma_base;
struct scatterlist *sgtmp;
int used;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
sglist->dma_address =
dma_4u_map_single(dev,
(page_address(sglist->page) +
sglist->offset),
sglist->length, direction);
if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
return 0;
sglist->dma_length = sglist->length;
return 1;
}
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (unlikely(direction == DMA_NONE))
goto bad_no_ctx;
/* Step 1: Prepare scatter list. */
npages = prepare_sg(sglist, nelems);
/* Step 2: Allocate a cluster and context, if necessary. */
spin_lock_irqsave(&iommu->lock, flags);
base = alloc_npages(iommu, npages);
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = iommu_alloc_ctx(iommu);
spin_unlock_irqrestore(&iommu->lock, flags);
if (base == NULL)
goto bad;
dma_base = iommu->page_table_map_base +
((base - iommu->page_table) << IO_PAGE_SHIFT);
/* Step 3: Normalize DMA addresses. */
used = nelems;
sgtmp = sglist;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp = sg_next(sgtmp);
used--;
}
used = nelems - used;
/* Step 4: Create the mappings. */
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
iopte_protection = IOPTE_CONSISTENT(ctx);
if (direction != DMA_TO_DEVICE)
iopte_protection |= IOPTE_WRITE;
fill_sg(base, sglist, used, nelems, iopte_protection);
#ifdef VERIFY_SG
verify_sglist(sglist, nelems, base, npages);
#endif
return used;
bad:
iommu_free_ctx(iommu, ctx);
bad_no_ctx:
if (printk_ratelimit())
WARN_ON(1);
return 0;
}
static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
iopte_t *base;
unsigned long flags, ctx, i, npages;
struct scatterlist *sg, *sgprv;
u32 bus_addr;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
}
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
bus_addr = sglist->dma_address & IO_PAGE_MASK;
sgprv = NULL;
for_each_sg(sglist, sg, nelems, i) {
if (sg->dma_length == 0)
break;
sgprv = sg;
}
npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
bus_addr) >> IO_PAGE_SHIFT;
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
/* Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush)
ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
/* Step 1: Kick data out of streaming buffers if necessary. */
if (strbuf->strbuf_enabled)
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
/* Step 2: Clear out the TSB entries. */
for (i = 0; i < npages; i++)
iopte_make_dummy(iommu, base + i);
free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
iommu_free_ctx(iommu, ctx);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4u_sync_single_for_cpu(struct device *dev,
dma_addr_t bus_addr, size_t sz,
enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
unsigned long flags, ctx, npages;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4u_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct iommu *iommu;
struct strbuf *strbuf;
unsigned long flags, ctx, npages, i;
struct scatterlist *sg, *sgprv;
u32 bus_addr;
iommu = dev->archdata.iommu;
strbuf = dev->archdata.stc;
if (!strbuf->strbuf_enabled)
return;
spin_lock_irqsave(&iommu->lock, flags);
/* Step 1: Record the context, if any. */
ctx = 0;
if (iommu->iommu_ctxflush &&
strbuf->strbuf_ctxflush) {
iopte_t *iopte;
iopte = iommu->page_table +
((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
}
/* Step 2: Kick data out of streaming buffers. */
bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
sgprv = NULL;
for_each_sg(sglist, sg, nelems, i) {
if (sg->dma_length == 0)
break;
sgprv = sg;
}
npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
- bus_addr) >> IO_PAGE_SHIFT;
strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
spin_unlock_irqrestore(&iommu->lock, flags);
}
const struct dma_ops sun4u_dma_ops = {
.alloc_coherent = dma_4u_alloc_coherent,
.free_coherent = dma_4u_free_coherent,
.map_single = dma_4u_map_single,
.unmap_single = dma_4u_unmap_single,
.map_sg = dma_4u_map_sg,
.unmap_sg = dma_4u_unmap_sg,
.sync_single_for_cpu = dma_4u_sync_single_for_cpu,
.sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
};
const struct dma_ops *dma_ops = &sun4u_dma_ops;
EXPORT_SYMBOL(dma_ops);
int dma_supported(struct device *dev, u64 device_mask)
{
struct iommu *iommu = dev->archdata.iommu;
u64 dma_addr_mask = iommu->dma_addr_mask;
if (device_mask >= (1UL << 32UL))
return 0;
if ((device_mask & dma_addr_mask) == dma_addr_mask)
return 1;
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_dma_supported(to_pci_dev(dev), device_mask);
#endif
return 0;
}
EXPORT_SYMBOL(dma_supported);
int dma_set_mask(struct device *dev, u64 dma_mask)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
#endif
return -EINVAL;
}
EXPORT_SYMBOL(dma_set_mask);